导航:首页 > 网络数据 > 大数据病种

大数据病种

发布时间:2022-12-26 05:35:35

1. 大数据医疗具体是指什么

医疗大数据是个很宽泛的概念,他有很多详细的分类,包括:电子病历数据,这是患者就医过程中所产生的数据,包括患者基本信息、疾病主诉、检验数据、影像数据、诊断数据、治疗数据等,这类数据一般产生及存储在医疗机构的电子病历中,这也是医疗数据最主要的产生地。电子化的医疗病历方便了病历的存储和传输,但是并未达到进行数据分析的要求。大约80%的医疗数据是自由文本构成的非结构化数据,其中不仅包括大段的文字描述,也包括包含非统一文字的表格字段。通过医学自然语言理解技术,将非结构化医疗数据转化为适合计算机分析的结构化形式是医疗大数据分析的基础。电子病历中所采集的数据是数据量最多、最有价值的医疗数据。通过和临床信息系统的整合,内容涵盖了医院内的方方面面的临床数据集。在电子病历的互通互联上,出于各自的利益性(限制病人转诊),各大电子病历企业也不愿意使数据互通互联。根据美国政府相关报告显示,其电子病历共享比例也仅为30%左右。
检验数据
医院检验机构产生了大量患者的诊断、检测数据,也有大量存在的第三方医学检验中心也在产生数据。检验数据是医疗临床子系统中的一个细分小类,但是可以通过检验数据直接患者的疾病发展和变化。目前临床检验设备得到迅速发展,通过LIS 系统对检验数据进行收集,可以对疾病的早发现早诊断和正确诊断做出贡献。
影像数据
随着数据库技术和计算机通讯技术的发展,数字化影像传输和电子胶片应运而生。医疗影像数据是通过影像成像设备和影像信息化系统产生的,医院影像科和第三方独立影像中心存储了大量的数字化影像数据。医学影像大数据,是由DR、CT、MR 等医学影像设备产生所产生并存储在PACS 系统内的大规模、高增速、多结构、高价值和真实准确的影像数据集合。与检验信息系统(LIS)大数据和电子病历(EMR)等同属于医疗大数据的核心范畴。医学影像数据量非常庞大,影像数据增速快,标准化程度高。影像数据和临床其他数据比较起来,它的标准化、格式化、统一性是最好的,价值开发也最早。
费用数据
医院门诊费用、住院费用、单病种费用、医保费用、检查和化验收入、卫生材料收入、诊疗费用、管理费用率、资产负债率等和经济相关的数据。除了医疗服务的收入费用之外,还包含医院所提供医疗服务的成本数据,包含药品、器械、卫生人员工资等成本数据。在DRGs 按疾病诊断相关组付费模式中,需要详细的成本数据核算。通过大样本量的测算,建立病种标准成本,加强病种成本核算和精细化成本管理。
基因测序数据
基因检测技术通过基因组信息以及相关数据系统,预测罹患多种疾病的可能性。基因测序会产大量的个人遗传基因数据,一次全面的基因测序,产生的个人数据则达到300GB。一家基因测序企业每月产生的数据量可以达到数百TB 甚至1PB。
智能穿戴数据
各种智能可穿戴设备的出现,使得血压、心率、体重、体脂、血糖、心电图等健康体征数据的监测都变成可能,患者的单一体征健康数据以及运动数据快速上传到云端,而且数据的采集频率和分析速度大大提升。除了生命体征之外,还有其他智能设备收集的健康行为数据,比如每天的卡路里摄入量、喝水量、步行数、运动时间、睡眠时间等等。智能穿戴设备虽然在这两年遇冷,用户很难形成粘性,但是并不意味着智能穿戴设备所产生的数据没有意义。提供健康数据和服务,可能是智能穿戴厂商未来的转型之路。健康大数据的收集必须依靠硬件载体,智能穿戴设备还将会遇到自己的第二春。
体检数据
体检数据是体检机构所产生的健康人群的身高、体重、检验和影像等数据。这部分数据来自医院或者第三体检机构,大部分是健康人群的体征数据。随着亚健康人群、慢病患者的增加,越来越多的体检者除了想从体检报告中了解自己的健康状况,还想从体检结果中获得精准的健康风险评估,以及如何进行健康、慢病管理。
移动问诊数据
通过移动设备端或者PC 端连接到互联网医疗机构,产生的轻问诊数据和行为数据。曾经通过互联网问诊企业春雨医生的数据,分析各地医生互联网问诊的活跃度、细分疾病种的问诊行为。通过这些数据的分析,对行业发展、互联网问诊企业的决策有非常重要的帮助。

2. drgs和dip付费是什么意思

DRG付费是一种医保基金为患者购买诊疗服务的支付方式,按照同病、同治、同质、同价的原则,根据患者的临床诊断、年龄、合并症、并发症等因素,将治疗疾病所产生的医疗费用相近的患者划分到相同的诊断组进行管理。
DIP分值付费,就是过去曾说过的“大数据DRGs”,基于大数据的病种分值付费。简单来说,就是基于之前按病种付费的基础上运用大数据技术进行分类组合后进行的分值付费。之前的单病种付费方式病种覆盖范围有限,不易推广。而基于大数据的病种组合(DIP)则能很大程度规避掉这种弊端。相对于DRG付费是从西方传入的舶来品, DIP分值付费可以说是具有中国特色的医保付费方式。
【拓展资料】
一、DIP的作用机制
DIP分值付费应用体系,基于“随机”与“均值”的经济学原理和大数据理论,通过真实世界的海量病案数据,发现疾病与治疗之间的内在规律与关联关系,提取数据特征进行组合,并将区域内每一病种疾病与治疗资源消耗的均值与全样本资源消耗均值进行比对,形成DIP分值,集聚为DIP目录库。
二、DIP的适用范围
DIP分值付费主要适用于住院医疗费用结算,精神类、康复类及护理类等住院时间较长的病例不宜纳入。DIP的适应性及可扩展性可探索应用于门诊付费标准的建立和医疗机构的收费标准改革。
三、DIP与DRG区别
1.共同点:
(1)应用目标一致:医保控费;
(2)适用范围一致:集中适用于住院医疗费用结算;
(3)主要数据来源一致:病案首页数据;
(3)本质都是一种疾病组合技术:二者本质上都是以出院患者信息为基础,综合考虑患者的主要诊断和主要治疗方式,结合个体体征如年龄、并发症和伴随病等影响因素,将疾病复杂程度及费用相似的病例进行归类,并对归类后的病种或病组设置不同的支付标准(即分值或权重),从而实现对不同资源消耗、不同难易程度的医疗服务进行精准支付。
2.不同:
不管是DIP还是DRG付费,付费本质原理是一致的,即疾病越严重、难度越大、消耗越多,导致资源消耗程度越高,分值或权重就越高,所获得的支付费用也越高,两者的区别在于疾病分类方式和计算方式的不同。

3. 大数据在医保管理中的应用与发展方向

大数据在医保管理中的应用与发展方向
当前,医疗保险面临基金收支平衡压力增大、医疗服务违规行为多发、传统经验决策方式落后等多方面挑战,从信息化建设角度,人社部门推进全民参保登记、医保智能监控、支付方式改革和移动支付探索等工作,积极开展了医保大数据应用。但在应用过程中仍然面临数据质量有待提升、数据应用尚不充分、安全体系还需健全等问题。继续深化医保大数据应用,下一步应重点围绕四个方面:一是汇聚和完善医保大数据;二是加快大数据平台建设;三是持续助力医保业务发展;四是构建数据安全体系。

当前,在全民医保体系逐渐完善、人口老龄化趋势加剧、医疗需求快速释放、医疗费用不断攀升等因素的综合作用下,医疗保险面临基金收支平衡压力增大,医疗服务违规行为多发,传统经验决策方式落后等多方面挑战,如何充分利用大数据、“互联网+”等信息化手段,进一步支撑医疗保险在新形势下持续发展,实现全民医保、安全医保、科学医保和便捷医保,全面提升医保质量,是摆在我们面前的重要课题。
当前医保管理面临的困境
1医保基金收支平衡压力增大
随着生活水平提高,参保人更加关注健康,医疗需求不断上升,同时全民医保从制度全覆盖转向人员全覆盖,基本医保支出规模随之快速增长。这些因素都给医保基金平衡带来较大压力。2016年,人社部门管理的基本医疗保险参保人数7.44亿人,基金支出10767亿元。参保人享受医保待遇25亿人次。考虑到当前经济下行和人口老龄化的形势,未来医疗保险基金收支平衡压力更大。
2医疗服务违规行为多发
我国医保待遇支出高速增长,既有惠民生政策、人口老龄化、医疗技术进步、医疗成本上升等正常因素,更有大处方、乱检查、假发票等不合理因素。2016年审计署对医疗保险基金专项审计显示,一些医疗服务机构和个人通过虚假就医、分解住院、虚假异地发票等手段套取医保基金2亿余元。面对如此规模的支出,人工审核、抽查审核、固定规则审核等医保传统监管手段,对于日趋复杂的医保基金使用场景难以全面覆盖,对于日益隐蔽的医疗服务违规行为难以有效识别。
3传统经验决策方式落后
过去医保政策制定和效率评估往往依赖业务知识和工作经验。随着参保人数的快速增长,医疗行为的复杂变化、医保经办人手普遍吃紧,传统的经验决策方式越来越无法满足业务发展需求,在当前信息技术快速发展、医疗数据不断积累的基础上,充分利用先进技术手段,深入挖掘海量数据资源优势,通过制度运行模拟、政策效率评估、资金压力测试等方式,辅助实现决策高效化、科学化、精确化,是医保业务发展的必然要求。
医保大数据的应用
社会保险信息化多年来秉承全国统一规划、统一建设的原则,伴随统筹层次提升,推进数据向上集中、服务向下延伸,逐步奠定了坚实的数据基础。利用渐成规模的医保大数据,人社部门积极推动多项应用,遏制违规行为,辅助科学决策,保护基金安全。
1推动全民参保计划,实现全民医保
党的十八届五中全会通过的《中共中央关于制定国民经济和社会发展第十三个五年规划的建议》明确提出“实施全民参保计划,基本实现法定人员全覆盖”。2017年,人社部加快推进全民参保登记系统建设、部省对接、数据上报等工作,目前已基本形成部省两级全民参保登记库,支持摸清法定未参保人员情况,助力全民参保计划,实现应参尽参。截至2017年底,各省共计上报包括医疗保险在内的人员参保信息30.42亿条,为下一步参保扩面提供了有力的数据支撑。
2实施医保智能监控,打造安全医保
2012年,人社部组织建设了医保智能监控系统,针对门诊、住院等不同业务环节设计了500余条监控规则,对频繁就医、分解住院、过高费用、大处方、药占比异常等常见违规医疗服务行为进行监控,监控对象涵盖医疗服务机构、医师、参保人员等。2014年,在前期工作基础上,人社部下发《关于进一步加强基本医疗保险医疗服务监管的意见》(人社部发〔2014〕54号),明确了监管途径、各方职责、问题处理程序等。近几年,开展医保智能监控工作的统筹地区数量不断增加,目前全国超过90%以上的统筹地区已全面开展智能监控工作。通过全场景、全环节、全时段自动监控的震慑作用,遏制了大量潜在违法、违规行为,保障了参保人员权益和医保基金安全。
3推广支付方式改革,促进科学医保
近年来,基于过去多年积累的医保数据,人社部门广泛开展了优化支付方式工作,积极推行复合式医保支付方式探索。2017年,国务院办公厅下发了《关于进一步深化基本医疗保险支付方式改革的指导意见》(国办发〔2017〕55号),对改革目标提出了明确要求。目前绝大部分地区均开展了总额控制,分析医保历史数据是医保部门与医疗机构协商制定总额的主要依据。此外部分地区在单病种、DRGs等支付方式的探索过程中也充分利用了医保数据。如沈阳市从2015年开始探索DRGs支付,应用本地医保支付数据,优化DRGs分组。上海强化数学模型在医保预算中的应用,同步推进按病种付费。
4探索医保移动支付,引导便捷医保
《“互联网+人社”2020行动计划》(人社部发〔2016〕105号)提出“支付结算”行动主题,要求建设人力资源和社会保障支付结算平台,拓展社会保障卡线上支付结算模式。社会保障卡经过十九年建设发展,为线上应用打下了深厚基础,具有身份凭证、信息记录、自助查询、就医结算、缴费和待遇领取、金融支付等功能,已成为持卡人方便快捷享受人力资源和社会保障权益及其他政府公共服务的电子凭证。各地根据文件精神,结合“互联网+”要求,积极探索实践医保移动支付,如杭州、武汉、深圳、昆明等地参保人可通过手机完成门诊费用医保支付,缓解窗口排队压力;沈阳、天津、嘉兴、珠海等地参保人可线上购药,通过手机或移动POS刷卡完成医保支付,改善用户体验。
医保大数据的应用挑战
1数据质量有待提升
一是数据不完整。从各地层面,社会保险信息系统管理的医保数据主要集中在参保、结算类基本数据,医疗行为过程中的医嘱、病历、药品进销存、检查检验报告等数据没有全面采集,服务反馈、治疗效果类数据,以及日志、视频、文件等非结构化数据普遍缺失,制约了医保智能监控、支付方式改革等应用的深入开展,难以支撑面向参保人开展精准服务。从部级层面,自2009年开展医保联网监测指标上报以来,各地按月向人社部上报数据,医保主要包括参保、享受待遇、定点医疗机构等基本信息,缺乏业务明细信息。
二是数据时效性不强。医保联网监测数据按月上报,支持了部级基金监管、宏观决策、社会保险参保待遇比对查询等多项系统应用。但按月更新的数据时效难以满足全国统筹、重点业务实时监控等新业务需要。
三是数据准确性不高。从部级联网监测数据来看,虽然数据规模、覆盖人群快速增长,但仍然存在各险种、各业务基本信息、业务状态信息不一致,部分代码使用不标准、不规范,甚至存在不少错误或无效信息等问题,对数据的深入分析和广泛应用带来较大影响。
2数据应用尚不充分
一是数据应用意识不足。近年来,人社部门逐渐认识到数据的巨大价值,积极开展数据应用,但相较于人社部门管理的大数据,已开发的数据只是冰山一角,海量数据还在“沉睡”,沉睡数据中的问题不断累积,反过来影响数据应用工作开展。毕竟只有持续应用,才能从根本上促进数据质量提升。
二是对“问题数据”重视不够。明显异常的数据一部分是数据质量低下的垃圾数据,也有部分是客观业务问题导致数据错误。在数据应用过程中,常常首先筛除异常数据,实际上也筛除了可能存在的问题和风险。大数据时代,更要培养重视异常数据的意识,善于从中发现问题、防范风险,逐步减少“问题数据”,提升数据质量。
三是跨业务数据应用不足。目前对数据的开发应用,多集中于单业务板块,跨业务联动应用不足,如社保与就业数据关联分析、就医信息与人员生存状态的结合判断等。数据只有真正融会贯通,才能激发新思路,创造新价值。
3安全体系还需健全
2014年,人社部先后下发了《人力资源和社会保障数据中心应用系统安全管理规范(试行)》(人社厅发〔2014〕47号)和《人力资源和社会保障数据中心数据库安全管理规范(试行)》(人社厅发〔2014〕48号),从具体操作层面对应用系统和数据库安全提出了规范要求。然而,大数据环境下数据链条变长、数据规模增长、数据来源多样、数据流动性增强,使得数据安全保护难度加大,个人信息泄露风险加剧,传统的安全控制措施面临挑战。
医保大数据的发展方向
1汇聚和完善医保大数据
一是夯实基础信息。统筹全民参保登记库和持卡人员基础信息库建设,完善部级人员、单位基础信息库,准确掌握服务对象基本情况,进一步发挥人社基础性信息库作用,实现一数一源、“一人一卡”。
二是整合信息资源。从数据上报时效上,优化联网监测数据上报机制,由按月上报调整为按日实时更新;从数据上报粒度上,扩充上报指标,补充明细业务数据。从数据收集来源上,利用互联网、移动终端等渠道增加信息收集来源,补充医疗服务结果、质量、满意度等类数据,同时推动与医保局、卫健委等部门间数据共享,实现数据融合。
三是提升数据质量。持续抓好数据质量提升,一方面做好与人口库等外部数据比对,核准数据资源。另一方面逐步排查数据异常原因,对可能存在的无效数据,进一步分析比对,发现问题及时督促整改。
2加快大数据平台建设
实现对医保大数据的高效集约管理,建设大数据平台势在必行。党的十九大报告提出要“建立全国统一的社会保险公共服务平台”,其内涵是运用“互联网+”、大数据等信息化手段,为群众提供无地域流动边界、无制度衔接障碍、参保权益信息更加公开透明、社保服务更加便捷高效、各服务事项一体化有机衔接的社会保险公共服务。高效的对外服务需要底层大数据平台的强大数据支撑能力,因此,建设适应人社业务,协同、监管、决策、服务的可靠安全人社大数据管理平台,作为大数据产生、汇集、分析和应用的基础,实现数据统一标准、统一管控,提升管理服务效率,为上层应用提供数据支撑服务,是当前的重点任务。
3持续助力医保业务发展
大数据应用的根本出发点和立足点是推动业务发展,提升管理效能,实现决策科学化、监管精准化、服务人本化。具体应用如:发挥大数据聚类、决策树等算法优势,支持单病种、DRGs等支付标准设计、测算和评价,推进多元复合式医保支付方式改革工作深入开展;完善药品数据和统一标准,借鉴各地先进经验,探索制定药品支付标准;利用大数据技术,分析并预测基金运行情况,完善筹资与待遇机制;深化医保智能监控系统应用,探索利用人工智能、图计算等前沿技术,提高监控精确度,实现更加智能化的监控;推进电子社保卡研究应用,提供网上费用结算、医保移动支付等服务,打造线上应用服务体系;利用大数据推荐模型,面向参保人提供精准推荐等健康管理服务。
4构建数据安全体系
大数据环境下的数据应用实践,对数据安全和个人隐私保护提出了更高的要求。要切实树立数据安全意识,实现数据全生命周期管理,确保数据安全、完整和一致。
一是建立数据管理机制,包括信息资源目录、数据分级分类管理、数据安全管理制度、数据共享开放流程等,确保管理过程规范,权责明晰;
二是加强基础设施保障,启用电子印章、数据加密、生物特征识别等安全技术手段,为数据安全提供基础保障;
三是确保个人信息安全,提供服务要获得个人授权,保护个人隐私。

4. dip分值付费的概念

法律分析:DIP的英文全称是:Big Data Diagnosis-Intervention Packet;中文全称是基于大数据的按病种分值付费。DIP是基于全样本数据的诊断+操作自动分组。基于客观数据,直接以主要诊断和关联手术操作的自然组合形成病种。

法律依据:《区域点数法总额预算和按病种分值付费试点工作方案》

第二条 DIP以大数据技术为基础,按照国家层面统一确定病种分值目录库、核心与综合病种的划分标准等,通过区域对近三年定点医疗机构病案数据分析,基于临床主要诊断编码(ICD-10国标版)和手术操作编码(ICD-9-CM-3)的自然组合,归类相似的疾病诊断,再与不同的治疗方式组合,建立病种组合体系。

第三条 DIP是之前单病种付费方式的升级版。既往单病种覆盖范围有限(一旦含有并发症、合并症即采用单病种退出机制),不易推广。而基于大数据的病种组合(DIP)则能很大程度规避掉这种弊端。DIP分值付费主要适用于住院医疗费用结算,DIP的适应性及可扩展性可探索应用于门诊付费标准的建立和医疗机构的收费标准改革。

5. 什么是dip分值付费

法律分析:DIP分值付费,就是过去曾说过的“大数据DRGs”,基于大数据的病种(Big Data Diagnosis-Intervention Packet, DIP)分值付费。简单来说,就是基于之前按病种付费的基础上运用大数据技术进行分类组合后进行的分值付费。之前的单病种付费方式病种覆盖范围有限(一旦含有并发症、合并症即采用单病种退出机制),不易推广。而基于大数据的病种组合(DIP)则能很大程度规避掉这种弊端。相对于DRG付费是从西方传入的舶来品, DIP分值付费可以说是具有中国特色的医保付费方式。

法律依据:《中共中央 国务院关于深化医疗保障制度改革的意见》 第十四条 持续推进医保支付方式改革。完善医保基金总额预算办法,健全医疗保障经办机构与医疗机构之间协商谈判机制,促进医疗机构集体协商,科学制定总额预算,与医疗质量、协议履行绩效考核结果相挂钩。大力推进大数据应用,推行以按病种付费为主的多元复合式医保支付方式,推广按疾病诊断相关分组付费,医疗康复、慢性精神疾病等长期住院按床日付费,门诊特殊慢性病按人头付费。探索医疗服务与药品分开支付。适应医疗服务模式发展创新,完善医保基金支付方式和结算管理机制。探索对紧密型医疗联合体实行总额付费,加强监督考核,结余留用、合理超支分担,有条件的地区可按协议约定向医疗机构预付部分医保资金,缓解其资金运行压力。

阅读全文

与大数据病种相关的资料

热点内容
ps入门必备文件 浏览:348
以前的相亲网站怎么没有了 浏览:15
苹果6耳机听歌有滋滋声 浏览:768
怎么彻底删除linux文件 浏览:379
编程中字体的颜色是什么意思 浏览:534
网站关键词多少个字符 浏览:917
汇川am系列用什么编程 浏览:41
笔记本win10我的电脑在哪里打开摄像头 浏览:827
医院单位基本工资去哪个app查询 浏览:18
css源码应该用什么文件 浏览:915
编程ts是什么意思呢 浏览:509
c盘cad占用空间的文件 浏览:89
不锈钢大小头模具如何编程 浏览:972
什么格式的配置文件比较主流 浏览:984
增加目录word 浏览:5
提取不相邻两列数据如何做图表 浏览:45
r9s支持的网络制式 浏览:633
什么是提交事务的编程 浏览:237
win10打字卡住 浏览:774
linux普通用户关机 浏览:114

友情链接