① 大数据应用在哪些行业
大数据应用于各个行业包括金融、汽车、餐饮、电信、能源、娱乐等在内的社会各行各业都已经融入了大数据的痕迹。
制造业:利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融业:大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车行业:利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
互联网行业:借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
餐饮行业:利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。
电信行业:利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
能源行业:随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
物流行业:利用大数据优化物流网络,提高物流效率,降低物流成本。
城市管理:利用大数据实现智能交通、环保监测、城市规划和智能安防。
生物医学:大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。
公共安全领域:政府利用大数据技术构建强大的国家安全保障体系,公共安全领域的大数据分析应用,反恐维稳与各类案件分析的信息化手段,借助大数据预防犯罪。
个人生活:大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为轨迹,为其提供更加周到的个性化服务。
大数据的价值远不止于此,大数据对各行各业的渗透,是推动社会生产和生活的核心要素。
(1)大数据与养殖扩展阅读:
大数据的价值体现在以下几个方面:
1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销
2) 做小而美模式的中小微企业可以利用大数据做服务转型
3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值
不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。
著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。
参考资料:大数据_网络
② 农业大数据类型有哪些农业大数据主要包含了哪些内容
根据农业的产业链条划分,目前农业大数据主要集中在农业环境与资源、农业内生产、农业市场和农容业管理等领域。
(1)农业自然资源与环境数据。主要包括土地资源数据、水资源数据、气象资源数据、生物资源数据和灾害数据。
(2)农业生产数据包括种植业生产数据和养殖业生产数据。其中,种植业生产数据包括良种信息、地块耕种历史信息、育苗信息、播种信息、农药信息、化肥信息、农膜信息、灌溉信息、农机信息和农情信息;养殖业生产数据主要包括个体系谱信息、个体特征信息、饲料结构信息、圈舍环境信息、疫情情况等。目前,广西慧云信息所做的农业大数据就是主要是在种植方面,其智慧农业云平台可以自动采集农田数据以及实时视频,通过云端发送到用户手机上,用户可以直观快速准确了解农田情况,为农业生产带来了便利与高效。
(3)农业市场数据包括市场供求信息、价格行情、生产资料市场信息、价格及利润、流通市场和国际市场信息等。
(4)农业管理数据主要包括国民经济基本信息、国内生产信息、贸易信息、国际农产品动态信息和突发事件信息等。
③ 大数据驱动农业发展新路径
大数据驱动农业发展新路径
农业大数据:从国内国际的发展来看,大数据正在驱动农业发展路径发生变化,以提高农业效率,保障食品安全,实现农产品优质优价,农业大数据蕴含着巨大的商业价值。
以主要应用目的划分,国内农业大数据应用分六种类型:1。重塑产业生态圈。代表性公司大北农,利用大数据再造养殖生态产业链。2。打造“新农人”运营服务平台。代表性公司智慧农业,通过集聚、分析“新农人”的生产经营数据,提高专业合作社运营效率。3。汇聚产业链大数据,降低交易成本,形成品牌溢价。
代表性公司新希望,搭建养殖服务云平台,监控养殖全程,实现可追溯,汇聚产业链真实数据,实现消费者对厂家的信任,从而形成品牌溢价。4。转型种植服务商,提高生产效率及产品品质。代表性公司芭田股份,集聚种植大数据,成为全面解决种植问题的服务提供商!5。升级农产品流通模式,提升农产品交易效率。代表性公司一亩田,积累大量的交易数据,提供价格指导、金融等多项服务。6。为企事业提供农业大数据分析服务。代表性公司龙信思源,以大数据分析挖掘技术为核心竞争力,帮助企事业单位实现高效管理,提升服务质量,推动行业发展。
国际上,利用大数据及互联网提高农业效率的企业和案例也比比皆是,大数据及互联网技术已开始在全球农业中得到广泛运用,并成为资本与农业龙头投资的下一风口!代表性公司有孟山都收购的精准种植服务商PrecisionPlantingInc,大数据意外天气保险公司TheClimateCorporation等。
以上是小编为大家分享的关于大数据驱动农业发展新路径的相关内容,更多信息可以关注环球青藤分享更多干货
④ 在大数据时代的精准农业下,农民们能从中获得什么利益
在农业4.0时代前夕,中国农业生产的三大要素悄然发生了变化。农民传统形象已经被抛弃,科技力量使农村劳动力成为“网上新农民”。他们手中的新农业大数据平台工具已经可以随时监控土壤、天气、作物和其他数据。
预测未来,帮助农民做出选择。精准农业是农业中最常用大数据的领域之一。在精准农业中,控制中心实时收集和处理数据,帮助农民在播种、施肥和收获作物方面做出最明智的决定。
大型农业企业拥有大量的研发资金和机制,这使得它们更容易利用复杂技术开发新产品。
谁能抓住这个机会,谁就在市场上有主动权。正如谷歌改变了许多行业,打车软件改变了人们的出行方式。
⑤ 大数据对于养猪行业能有什么作用
首先,解释一下大抄数据的含义。以养猪为例,所谓大数据,就是说要包含与养猪有关的尽可能全的数据,注意,此处强调的数据的“全面性”。在数据全面性的基础上,追求数据量上的大,也就是数据的“海量性”。
通过对搜集到的大数据进行分析,能够得出许多有用的信息。例如,以喂食为例,通过数据分析,得出体重为多少的猪,它的最佳喂食量是多少,几点钟喂食最佳,喂食持续多长时间最佳,那种饲料最佳,等等。
其实,大数据很早就被提出,最近由于高性能计算的不断发展,是大数据分析得到了质的提升。
⑥ 大数据产业:未开放的农业之花
大数据产业:未开放的农业之花
当前,大数据已快速发展为新一代的信息技术和服务业态,成为了国家基础性战略资源。农业农村是大数据生产和应用的重要领域之一,农业农村大数据已成为现代农业新型资源要素。
在当下全球科技、经济发展格局下,数据已经成为了一种生产力和竞争力。当前,大数据已快速发展为新一代的信息技术和服务业态,成为了国家基础性战略资源。农业农村是大数据生产和应用的重要领域之一,农业农村大数据已成为现代农业新型资源要素。
近年来,农业大数据可谓炙手可热。但相比于其他行业,农业农村大数据的采集、发布和应用仍面临着种种亟待化解的困境。
我国农业大数据尚未形成
涉及面广泛的农业大数据尤为庞大和复杂,可谓是最大的大数据。
根据农业的特点和农业全产业链切分,农业大数据可分为农业环境与资源大数据、农业生产大数据、农业市场大数据和农业管理大数据等。而从行业来看,农业的大数据则可分为成种植业、农资及养殖业等不同的行业,其中还可再细分成不同的品种和产品。
中国农业大学信息与电气工程学院教授李道亮曾在今年5月举办的中国大数据产业峰会上指出,农业大数据主要来自四个方面:物联网、生物信息数据、资源环境数据、农业统计数据。而从应用来看,农业大数据主要在五个方面:第一是基础研究,第二是农业智能生产,第三是农产品市场行情预测与物流,第四是农产品质量安全,第五是农业资源整合共享与服务平台。
李道亮告诉《中国科学报》记者,目前我国的大数据概括来说有两大类,一类是微观的,主要来自企业;另一类是宏观的,来自政府部门。
随着大数据的战略资源地位越来越凸显,不少农业领域企业纷纷布局深耕大数据,甚至由此转型。孟山都公司中国总裁在今年上半年就透露,孟山都近几年的战略方向是数据科学在农业上的应用。2014年,大北农集团提出“智慧大北农”战略,推出“三网一通”,据了解,其在全国分布了上万名业务员,记录猪场生产情况、搜集客户信息,以不断更新数据。
但李道亮也表示,无论是从政府层面来看,还是从企业层面来看,目前中国的农业大数据“还没有形成”。
“这是目前最大的问题。”李道亮告诉记者,这是长期形成的局面,短时间内很难改变。“这与我们过去不重视积累有关,也与我们的科研机制、政府部门的工作体制有关”。
2013年,农业部市场与经济信息司时任司长张合成曾撰文指出,我国在数据采集、发布、应用等方面与决策需要存在较大差距,数据采集和发布还处于初级阶段,亟须从体制层面进行改革。
根源在于缺乏完整数据体系
“现在国内农业企业在有意识地涉足大数据,但能兼顾做全产业链的企业屈指可数。”山东卓创资询集团畜牧业产业群经理李霞在接受《中国科学报》记者采访时表示。
她介绍,以畜牧业产业群为例,做全产业链的大数据意味着要从饲料原料的供需入手,到养殖、流通环节,再到下游屠宰加工环节,环环相扣,实现数据间的引用和佐证。“很多企业做的大数据大都是自己熟悉和擅长的领域。”李霞告诉记者。
在李道亮看来,目前做大数据最“热”的是在企业,打造大数据平台,既可为企业生产经营提供决策依据,同时也利于掌握数据话语权。“只有行业里的大企业才能真正形成和掌握大数据”。
在中国大数据产业峰会论坛上,李道亮总结了我国大数据面临的问题:农业大数据缺乏,大数据模型缺乏长期的积累,大数据缺乏与行业产业的结合,大数据缺乏必要的规范。
李道亮告诉《中国科学报》记者,由于条块管理等原因,各部门间数据不共享,造成了农业大数据的缺乏。“现在从政府层面来说,事实上就是在着力打破这种局面,实现资源共享,有了资源共享,才能形成大数据,才能再分析大数据。”
说到数据的积累,李霞也表示,“数据采集的工作量是非常庞大的,需要不断甄别、筛选、更新,长时间积累形成的数据才是有价值的。”
一位不愿具名的业内人士告诉《中国科学报》记者,目前中国的市场行业尤其是农业领域对大数据的分析需求和使用远不及国外。“归根到底,还是需要扎实的、高精确度的、完整的数据体系。”
人才缺口亟待补上
约半个月前,农业部印发了《全产业链农业信息分析预警第二批试点方案》,旨在通过试点,组建全产业链农业信息分析预警团队,形成分析反应快速、信息内容全面、预测判断准确的工作格局。
记者了解到,目前国家在农业信息采集和分析方面的人员“缺口很大”,且“并不专业”。
武汉工程大学管理学院的明均仁指出,当前农业信息人才队伍主要存在以下问题:专业型农业信息人才严重缺乏,农业信息人才队伍结构失衡,农业信息活动工作流程不规范,农业信息人才薪酬管理体系不健全等。
而李霞则用“断层”来形容当前相关领域的人才现状。“行业内有领衔的专家学者和国家级的信息预警分析师,”她解释道,“但是,再往下走就没有了。”
在身处农业信息采集分析一线多年的李霞看来,做信息采集和分析应该“接地气”,真正通过实地考察,了解相关的行业和产业,“相信从方法上,信息采集分析人员肯定是熟知的,但是做这项工作更为重要的是,对行业的了解,在领域内积累的资源。”李霞说。
此外,李霞认为,还需要形成好的组织架构和采集流程,“简单说,就是怎么采集、什么时间更新、怎么检查监督,这都需要一连串配套。”
明均仁建议,将农业信息化人才培养纳入我国高等教育学科培养体系,构建农业信息人才多元培养体系。
山东农业大学农业大数据研究中心常务副主任宋长青曾撰文指出,要根据农业大数据发展和现代农业应用需求,制定农业大数据技术和应用人才培养计划,建立多学科融合的协同创新团队。
⑦ 大数据时代水产业如何与互联网做加法
大数据时代水产业如何与互联网做加法
随着科学技术的进步,物联网和制造业服务化迎来了以智能制造为主导的第四次工业革命。2013年,德国汉诺威工业博览会正式提出了“工业4.0”的概念。这是德国政府《高技术战略2020》确定的十大未来项目之一,旨在支持工业领域新一代革命性技术的研发与创新。
农业作为工业生产原材料的提供行业和工业制成品的使用行业,也必将融入这场时代的变革,向农业智能化时代即农业4.0时代发展。作为农业4.0的重要内容之一,水产行业也将发生深刻的变革,智能化、网络化、精细化和便捷化的水产养殖时代即将到来。
农业1.0 到4.0的变迁
农业4.0是以物联网、大数据、移动互联、云计算技术为支撑和手段的一种现代农业形态,即智能农业(Intelligent Agriculture),也是继传统农业、机械化农业、信息化(自动化)农业之后,进步到更高阶段的产物。
纵观国内外现代农业发展历程,可以分为四个阶段:农业1.0是依靠个人体力劳动及畜力劳动的农业经营模式,人们主要依靠经验来判断农时,利用简单的工具和畜力来耕种,主要以小规模的一家一户为单元从事生产,生产规模较小,经营管理和生产技术较为落后,抗御自然灾害能力差,农业生态系统功效低,商品经济较薄弱。农业2.0,即机械化农业,是以机械化生产为主的生产经营模式,运用先进适用的农业机械代替人力、畜力生产工具,改善了“面朝黄土背朝天”的农业生产条件,将落后低效的传统生产方式转变为先进高效的大规模生产方式,大幅度提高劳动生产率和农业生产力水平。随着计算机、电子及通信等现代信息技术以及自动化装备在农业中的应用逐渐增多,农业将步入3.0模式。农业3.0,即信息化(自动化)农业,是以现代信息技术的应用和局部生产作业自动化、智能化为主要特征的农业。
信息技术发展到新阶段即可产生新的农业发展模式即农业4.0,即:智能化农业,这是融合物联网、云计算和大数据的高度智能化农业,其目的是要实现大范围大尺度的农业生产全局的最优,以最高效率地利用各种农业资源、最大程度地降低农业能耗和成本、最大限度地保护农业生态环境以及实现农业系统的整体最优为目标;以农业全链条、全产业、全过程、全区域智能的泛在化为特征,以全面感知、可靠传输和智能处理等物联网技术为支撑和手段;以自动化生产、最优化控制、智能化管理、系统化物流、电子化交易为主要生产方式的高产、高效、低耗、优质、生态、安全的现代农业发展模式与形态。
农业4.0在我国“小荷才露尖尖角”,尚处概念、理念、设计和试验示范阶段:北京市重点开展了农业物联网在农业用水管理、环境调控、设施农业等方面的应用示范,实现了农业用水精细管理和设施农业环境监测;黑龙江省侧重在大田作物生产中搭建无线传感器网络,借助互联网、移动通信网络等进行数据传输及数据集中处理和分析,支撑生产决策;江苏省开发了国内领先的基于物联网的一体化智能管理平台,侧重在水产养殖等方面进行探索;山东在设施温室和水产养殖的整体行业信息化推进进步明显;浙江省重点在设施花卉方面应用物联网技术,各项环境指标通过传感器无线传输到微电脑中,实现了花卉种植全过程自动监测、传输控制;安徽省小麦“四情”监测项目建设已经启动。此外,河南、重庆、辽宁和内蒙等地也开展了一些探索工作。
现阶段,我国农业4.0主要以物联网技术在各领域各环节的示范推广应用为主,还未实现大规模、高阶化的应用。随着农业电商、农产品物流、农业市场化服务的快速发展,大数据、云计算、移动互联等也得到了广泛的应用,并与物联网技术进行了有效地融合。
“农业4.0”在水产行业的应用现状
“农业4.0”的发展以物联网、大数据、云计算、移动互联等技术为关键,突破涉及农业物联网的核心技术和重大关键技术,迎合现代农业的发展需求是迈向“农业4.0”的必经之路。现阶段,“农业4.0”在水产行业的应用主要体现在以物联网为核心的关键技术应用上。
物联网等“农业4.0”技术在水产领域的深化应用需要有大批懂技术、会应用的实用性人才。然而,水产养殖历来被视为艰苦、薪酬低、社会评价不高的职业,陈旧的社会偏见对农业院校特别是本身学水产养殖的学生及其亲人的心理产生了巨大冲击,这些学生毕业后,在自身有畏惧心理及其在家人劝阻之下,大部分转向了饲料营销等非养殖一线岗位,还有相当大一部分转向了跟水产风马牛不相及的行业,更不用说其它专业毕业生会投身这个行业。因此,在实用性人才不足的情况下,通过物联网等“农业4.0”技术大力提升行业内技术装备,打“技术牌”,才能更好地缓解水产行业高素质劳动力紧缺的困境。挪威的大型养殖场在人力成本高昂的情况下,通过集成现代信息技术,构建养殖物联网平台,实现三文鱼饲料投喂、收获、洗网、加工的完全自动化,只要定期维护便可实现1~2 人管理全场所有事务,这种良性运作的养殖业模式值得我们借鉴。
长久以来,作为我国传统的养殖方式,以低洼盐碱地和荒滩荒水等资源改造进行养殖,技术成熟、操作简便、投入适中,适合我国农村以农民承包经营的经济发展水平。但是其周期长、劳动强度大、生产效率低且养殖风险大、水体污染严重。因此,减轻劳动强度,提高生产效率,降低养殖风险,实现生态养殖是渔民多年来的梦想,也是新时期对渔业现代化的必然要求。通过物联网等“农业4.0”技术把人工智能系统和相关的仪器、仪表、装备相结合,通过计算机控制实现水体质量监控、增氧、投饵、捕捞等养殖作业和运输、加工、仓储、物流等自动化管理,减少了人力物力的投入,也减少了人为经验误差造成的损失。同时,通过水产养殖户走向联合,各种行业协会、水产组织孕育而生,形成集群效应和规模效应,这就转变了水产养殖的发展模式。
当前,我国水产养殖业发展正处于一个新的历史阶段,特别是深化水产养殖业结构调整,稳定增加农民收入,提高水产品市场竞争力,对推进水产养殖业信息化的要求比以往任何时候都显得更为紧迫。大力推进水产养殖信息化,以信息化带动我国水产养殖业现代化,对于促进农业和水产养殖业的发展,提高渔民生活质量具有重要意义。
水产行业“农业4.0”面临的问题
目前,以物联网为代表的“农业4.0”技术涵盖了水产养殖行业的多个方面,并在政策扶持、技术研发、示范应用等方面积累了一定的经验,对水产行业形成了良好的促进作用。但农业物联网技术应用总体仍处于初级阶段,还有许多问题亟待解决,主要体现在以下几个方面:
首先,关键设备与核心技术储备不足。相对于其他领域,由于动植物的生命特征、系统环境的开放性和复杂性,加之应用对象经济条件的限制,农业对物联网技术产品提出了更高的要求。从总体上看,水产养殖的装备化程度低,自动化的基础条件有待进一步夯实。同时,我国农业物联网关键技术、产品、设备技术储备不足,集成体系成熟度较低,大面积推广应用的难度较大。比如在水产养殖业方面,由于我国水体富营养化程度高,稳定、可靠、耐用溶解氧、pH 值、叶绿素、氨氮、亚硝酸盐的传感器技术仍不过关,需要小型化、精确化、灵敏化、运行稳定的传感器,这方面,我国与国外相比仍有较大差距。
其次,水产物联网应用标准体系尚不完善。农业应用对象复杂、获取信息广泛,传感器的标准是否统一、采集的信息是否可以标准化应用,都成为影响水产物联网应用成败的重要因素。目前国内还没建立完整的农业物联网技术标准体系,现有标准还很零散、缺失和不统一,标准制定与市场应用结合不够,导致物联网市场分割,制造和服务成本偏高,这已成为制约物联网技术在现代农业发展中推广应用的重要因素,具体到水产物联网更是如此。
再者,水产物联网应用商业模式亟待建立。包括水产物联网在内,我国整个水产物联网行业还处于发展初期,缺乏成熟的商业模式。目前水产物联网的市场需求仍然是以设备采购、网络接入为主,导致农业物联网的产出与预期的估计差别太大。从产业化发展角度来看,目前我国农业物联网技术应用总体处于试验示范阶段,规模小而分散,农业传感控制设备等物联网关键技术产品难于实现批量生产,导致产品价格高,用户难于接受。农业物联网技术产品投放市场前缺乏严格质量检测,当设备暴露在恶劣自然环境下,导致设备稳定性差,故障率高,维护成本高,后续技术服务落后,农业物联网应用系统不能持续正常运行,影响了用户的使用积极性,导致农业物联网产业发展缓慢。
最后,水产物联网技术专业人才缺乏。目前广大基层农户、农技人员对于水产物联网的概念还很模糊,对于水产物联网的技术、设备等知识的认识还不全面,还不具备应用推广物联网技术的能力。同时,在水产物联网的传感器开发、运算评价模型的研究等方面缺少跨专业的复合型人才。水产物联网是整合了水产、通信、机械、计算机软件等多行业的一个综合产业。因此,就需要从事水产物联网的相关技术人员对农学、通信、软件编程等方面都要有较强的专业知识,这样才能研发出符合农产品生产者实际需要,真正智能化、自动化的农业物联网。
水产行业如何融入“农业4.0”
“互联网+”缩短了信息化与农民之间的距离,但是还没有很好的消除与养殖户之间的技术障碍。只有让互联网自然融入到传统水产行业,让养殖户像打电话和看电视一样简易操作就可以进行智能水产养殖,才是真正的“互联网+水产”,也才真正迈出了水产行业“农业4.0”的第一步。
互联网尤其是移动互联网环境对于加速信息化在农业领域的应用、推进“农业4.0”发展优势明显:一是软硬件支出费用相对较低;二是可以随身携带、随时应用;三是交互方式相对优化,便于操作;四是易于附加个性化服务和实现精准推送,可加载更多智能化的应用。这些恰恰是长期以来困扰信息化在农业领域深度、广度应用的关键难题。如今劣势变优势,意味着未来农业领域,特别是水产领域的移动互联网应用前景十分光明:
“互联网+水产”有利于实现生产智能化。移动互联网与水产物联网装备结合后,能够发挥全面感知、可靠传输、先进处理和智能控制等技术优势,实现水产养殖的全程控制,降低污染,减少疫病,提高养殖品质,达到科学养殖和智能养殖的目的。
“互联网+水产”有利于实现经营网络化。移动互联网有利于加快水产电子商务的应用,实现水产品流通扁平化、交易公平化、信息透明化,建立最快速度、最短距离、最少环节、最低费用的水产品流通网络,解决买难卖难问题,大大提高水产经营的网络化水平。
“互联网+水产”有利于实现管理精细化。移动互联网的普及,能够加快大数据、云计算等先进技术的落地应用,通过对终端、用户及其水产生产经营行为的跟踪服务,进行生产调度、应急指挥、质量监管,对上辅助宏观决策,对下优化生产经营行为,解决当前管理对象不明确、效率不高等问题。
“互联网+水产”有利于实现服务便捷化。移动互联网的便携随身和实时交互特点,很好地解决了农业信息服务“最后一公里”问题,便捷服务的同时,为市场化、多元化信息服务提供了机遇,通过创新型应用等多种手段,未来的水产信息服务将更加丰富便捷。
真正的信息化应该是“润物细无声”的,无需冗长的教程和繁难的培训,一看就会,一用就见效,自然能够受到农民追捧、赢得市场,这应该是互联网融入水产行业的最佳情境设想。因此,“互联网+水产”的发展,不能把重点放在教育一线养殖户,而是从一线养殖户的实际和思维出发,因势利导、潜移默化地进行适应性改变,这就是所谓的“引导”。那么,这个适应性改变应该如何进行?
一是要加快易用、实用APP的开发,建议模拟不同的养殖场景,按照养殖全过程设置重要节点和参数,按照农民的养殖习惯优化应用流程。
二是要打通生产和经营的通道,通过移动互联网实现“扁平化”,借助在线传输方式,让消费者与养殖现场建立关联,无论是水产品质量追溯,还是养殖现场视频调阅,甚至是水产养殖众筹,都可以大胆尝试。
三是要充分利用政策资源,实施移动互联网示范工程,通过创建“互联网+”示范养殖场、养殖能手等行动,大力推广信息化养殖理念和技术,加强用户体验,大规模提升水产养殖信息化水平。
四是要积极实践互联网思维,启动水产信息化服务市场,借用打车软件等先进的运营思维,合理配置盈利点,前端推广多采用免费、补贴等手段,让农民享受到实惠,再从水产养殖的其他环节找回企业收益。
以上是小编为大家分享的关于大数据时代水产业如何与互联网做加法的相关内容,更多信息可以关注环球青藤分享更多干货
⑧ 人工智能 大数据 如何作用在农业发展
数字农业应运而生 前景如何?
在数字经济快速发展的背景下,“数字农业”应运而生。我们应该怎样理解 “数字农业”?我国数字农业前景如何?数字农业又能如何助推传统农业转型升级?
2019年3月中国农产品进出口金额统计分析
在进口金额方面,数据显示,2018年2-4季度中国农产品进口金额逐渐下降,2019年3月中国农产品进口金额为10595.8百万美元,同比下降0.1%。
在出口金额方面,2018年1-4季度中国农产品出口金额呈增长趋势,其中,2018年2季度中国农产品出口金额增幅最大,相比1季度增长11.45%。2019年3月中国农产品出口金额为16482.3百万美元,同比增长12.3%。
我国传统农业发展痛点分析
1、需求侧——日益增长的农产品需求与国内传统的农业生产矛盾凸显,对外依存度高。随着收入增加,消费者将从满足基本的生存需求向品质更高的生活方式进行转换,进而摄入更多的肉类、蛋奶类制品以满足能量需要,对粮食等农产品的需求量逐步提高。不仅如此,随着我国居民收入的持续提升,居民对于高品质的农产品的需求也在持续提升,我国农产品生产的矛盾也逐渐将由总量的供给不足转变为产品结构不匹配。
2、供给侧——小规模分散经营,生产成本高,盈利能力弱。我国农业总产值虽常年居于世界首位,但由于长期存在的家庭联产承包责任制下的分散经营以及高度分散的种植、养殖现状,导致农业技术水平低,无论是机械化水平还是在生化技术水平,均落后于发达国家。同时,我国农业产业化程度较低,价值链短,附加值低,导致农业盈利薄弱,人均农业增加值远低于发达国家。
3、服务侧——融资困难、非标准化、信息不对称。融资环节复杂,成本高,时效性差。“三农”贷款难问题突出,民间借贷现象加大农村金融风险。农业的标准化生产和销售体系尚未建立。农产品生产技术和流程标准不完善,农产品标准化的销售体系不健全,品牌意识普遍不高。链条冗余、信息不对称导致销售难度加大、生产端附加值低。农产品从生产到消费交易链条过长,交易成本、运输成本较高,交易的不确定性增大、损耗也较高。
数字技术如何助力传统农业转型升级?
针对传统农业面临的以上问题,物联网、大数据、人工智能将会有效助力传统农业向数字农业转型升级。
1、物联网——农业数据实时获取,奠定农业数字化基础。物联网在农业领域应用范围广泛,基于物联网的农业解决方案,通过实时收集并分析现场数据及部署指挥机制的方式,达到提升运营效率、扩大收益、降低损耗的目的。可变速率、精准农业、智能灌溉、智能温室等多种基于物联网的应用将推动农业流程改进。物联网科技可用于解决农业领域特有问题,打造基于物联网的智慧农场,实现作物质量和产量双丰收。
2、大数据——决策“数字化”,全面提升生产效率。万物互联在推动海量设备接入的同时,也将在云端生成海量数据。而挖掘这些由物联网产生的大数据中隐藏信息的方法就是利用人工智能。物联网最核心的商业价值就是将这些海量的数据进行智能化的分析、处理,从而生成基于不同商业模式的各类应用。
3、人工智能——潜力巨大,激活农业高效发展。在种植领域,人工智能有望提高粮食产量、减少资源浪费。在养殖领域中,利用人工智能可以有效降低疾病造成的损失。人工智能缩短农业研发进程。在实验室和研究中心,机器学习算法能够帮助培育更好的植物基因,创造更安全、更高效的农作物保护产品和化肥,并且开发更多的农产品。
说到数字技术助推农业发展,就不得不提到以色列。以色列天然水资源短缺、降水稀少,有三分之二的地区被定义为半干旱或干旱地区。资源匮乏迫使国家聚力提高农业效率,为挖掘大数据潜力刺激数字农业发展。
近年来,以色列越来越多的农业领域正通过热像仪、传感器、无人机、卫星图像等技术监测使得实时数据及时传达给农民,大幅提高了农民相应速度,最大限度地减少了极端天气条件下的农业损害、最大限度地提高农业产量。经过农业现代化进程,截至2016年,以色列实现了从新中国成立初期80%粮食靠进口到可以生产满足自身95%需求的转变。
更多数据请参考于前瞻产业研究院发布的《中国农业产业化市场前瞻与投资战略规划分析报告》。
⑨ 农业大数据展望 六大领域数据亟须推广
农业大数据展望:六大领域数据亟须推广
随着农业的发展尤其是农村电商的发展,农业上下游的农资销售、农业生产、农产品流通数据以及与农业关联的土地流转、气象、土壤、水文等数据,均获得大规模积累沉淀,这些大数据将成为农业决策的“大脑”。
21世纪宏观研究院分析师戴春晨
继农村电商后,农业大数据获得决策层关注。
在近期国务院印发的《促进大数据发展行动纲要》中,要求推进各地区、各行业、各领域涉农数据资源的共享开放,加快农业大数据关键技术研发,推动农业资源要素数据共享。商务部等三部委印发的《推进农业电子商务发展行动计划》则强调,将移动互联网、云计算、大数据、物联网等新一代信息技术贯穿到农业电子商务的各领域各环节,切实增强自主创新能力。
21世纪宏观研究院认为,随着农业的发展尤其是农村电商的发展,农业上下游的农资销售、农业生产、农产品流通数据以及与农业关联的土地流转、气象、土壤、水文等数据,均获得大规模积累沉淀,这些大数据将成为农业决策的“大脑”,纾解当前农业产业链因信息不对称产生的痛点,从而驱动农业向精准化、网络化、智能化转变。
六大领域农业大数据亟待推广
当前,中国农业正处在以小农经营为主向规模化、机械化、集约化过渡的阶段。由于粗放生产、分散经营和农业自身的季节性、地域性特征,信息不对称,成为贯通农业产业链的共性问题。当前农业产业链令人头疼的四大痛点问题,根源之一往往在于信息的缺失:
一是种不好。种植、养殖的人力物力消耗大,农产品质量相对不高。这大多与农业经营者对种养技术和对病虫害、疫情信息把握不足有关系,也跟人力成本上升、使用假冒伪劣的农资产品有关;
二是销不出。农产品滞销、卖难问题多地频发,这往往由于农业经营者对同类产品生产数据估计不足,盲目生产而造成集中上市,另一方面则是消费者对农产品质量缺乏足够的信心;
三是地难租。扩大生产规模租不到地,这既与地块分散、资金短缺有关,又与缺少土地流转信息渠道相关;
四是钱难借。除了抵押物,农业经营者难以提供充分的信用数据,因而往往难以借到钱,这也限制其更新生产设备、扩大生产规模。
上述四大痛点问题,涉及到农业经营者与政府、上游的农资企业、下游的消费者、金融机构等多个主体之间的信息对接。21世纪宏观研究院注意到,在打破“数字鸿沟”方面,国内已有不少机构、企业进行了初步探索。依据目前的探索,至少六大领域的大数据将发挥作用:
其一,生态环境数据,包括气象、水文、土壤和病虫害、动物疫情数据。这些数据是农业日常经营调整农业用水、农业产品投入的主要依据,准确掌握这些数据将有助于做到精准种植、养殖,减少资源浪费和成本投入。
其二,农业技术及农资流通数据。掌握农业技术能保障农产品高效、丰产,而基于农资流通数据的分析,则为农业经营者选择农资产品提供判断依据。种子、种苗的流通数据,亦可判断某个品类农产品的生产规模,为调整规模的依据。
其三,农产品价格与农产品流通数据。生产规模的调节、生产品类的调整,必须要事前获知农产品价格和各主产区的产销情况。另外,通过B2B、B2C电子商务平台促使农产品供求信息对接,能拓展销售市场,提高农产品价格。
其四,土地流转数据。通过土地流转供求双方信息的对接,促使流转更高效率,减少一方撂荒、一方找地的情况出现。
其五,农产品质量可追溯数据。通过上述的农资使用数据、生产流通数据的整合,可构建出从农场到餐桌的可追溯数据,以消除消费者对农产品质量的疑虑,提高农产品的购买率。
其六,农业经营者征信数据。前述数据可纳入银行、农村信用社以及保险机构的征信系统,作为发放贷款、设置农业保险的信用依据,以此推动金融和农业的融合。
21世纪宏观研究院认为,随着上述六大领域农业大数据的推广应用,将降低交易成本,提高生产效率及产品品质,提升农产品交易效率。从本质上看,则是促进粗放分散式经营和规模化、集约化经营向精准化、智能化经营的转变。
涉农部门需多方合力
围绕着大数据与农业的融合,农业链条上的不同产业或迎来生态的转变。
以大数据驱动下的单一农场为例,经营者将更多使用绿色、高效的农资产品,早已水涨船高的简单劳动力将被替换,而适应大数据的知识型、技术型“新农业经营者”将有更多的用武之地。如适应“水肥一体化”的发展,水溶性肥料、液体肥将获得发展,而此前大行其道的普通化学肥料将因为颗粒不能完全溶解而堵塞滴灌设备,则可能遭到市场的淘汰。
不过,需要指出的是,农业大数据技术多数还处在起步阶段,未能做到足够的智能化;承载农业大数据的农业物联网、智能监测设备等售价过高;另外,由于推广力度尚不大,农业经营者尚未有足够认识。
21世纪宏观研究院认为,当前无论是“电商下乡”还是大数据产业,都处于初级阶段。依托大数据技术广泛推动农业发展,在短时间内并不现实。农业大数据市场还是一个充满机遇、有待开发的市场。为此,需要政府部门、涉农企业、大数据企业和农业生产经营主体多方合力,共同推进农业大数据的示范与推广。
对政府而言,首先应当推动大数据的基础设施建设。这包含两个方面,一是要大力推动通信基站、电信宽带的建设,为各类农业经营者“触网”、联通大数据提供基础;二是要尽可能开发政府掌握的各类涉农大数据,包括天气数据、农业用地的各类元素含量数据、病虫害和动物疫情的监测数据,以供农资企业合理调配生产,并制定针对各区域各品种的农资解决方案。
其次,政府需要提供政策支持,引导涉农企业、大数据企业构建以品种或区域为中心的农业大数据平台。让农业大数据服务成为企业的直接盈利项目或配套的增值服务。
此外,还需要引导农业经营者主动向大数据农业转型,对优秀案例做示范推广,引导农业经营者学习“云上的示范田”。
以上是小编为大家分享的关于农业大数据展望 六大领域数据亟须推广的相关内容,更多信息可以关注环球青藤分享更多干货