导航:首页 > 网络数据 > 大数据预测读书笔记

大数据预测读书笔记

发布时间:2022-12-21 08:23:58

『壹』 【《大数据时代》读书笔记3】数据是可再生的可再生资源

本科毕业论文写的是风力发电,作为一种安全清洁的可再生能源,虽然并网会给电网带来较大压力,但随着智能电网的普及,风力发电前景喜人。与风力资源类似,数据也是可再生的,而且与对风力资源的利用暂时只局限在发电领域不同,数据可以被称作是可再生的可再生资源。两个可再生并非笔误,而是源自其价值的多样化,对数据利用方式的创新,带来的,是源源不断的数据价值。

数据冰山,更需要仔细勘探,太远,会看不清,太近,会迷失方向,如果不小心撞上,那恐怕只能在数据之海里沉没了。所幸,在大数据思维的指引下,在数据的首要价值被挖掘后,潜在价值也持续不断被释放。

三种创新让我们得以初探冰山全貌。

数据创新1:数据的再利用

数据再利用的前提是收集或控制数据集尤其是大型数据集。有些机构如谷歌、如亚马逊,早早地开启了他们的数据再利用之旅,谷歌基于关键词搜索整理了一个版本的搜索词分析,并公开供人们查询,如实时经济指标以及旅游部门的业务预报服务;而亚马逊则一直致力于让数据的价值再大一点,通过早期为AOL电子商务网站提供后台技术服务的合作,让亚马逊掌握了用户的数据,包括他们在看什么、买什么,进一步帮助亚马逊提高推荐引擎性能。

与这些线上企业对数据利用的敏感度不同,一些线下运作的传统企业,也许还在信息喷泉上安睡。有些数据被收集、被保存,但也把数据带入了坟墓,暂不能见天日。但当他们嗅到了数据所带来的机会后,如一家知名的物流企业,针对其掌握的全球出货信息,成立专门部门,以商业和经济预测的形式出售汇总数据,创造了谷歌搜索查询业务的一个线下版本。

数据创新2:重组数据

还记得那个将某个地区的交通事故发生情况与犯罪发生情况映射到一张地图上的例子么,这就是数据重组,很多时候,1+1>2的效果一次又一次地在证明其强大魔力。其实,两个或者更多个大数据的相加,是更大的大数据,关键在于怎么相加。丹麦癌症协会曾就手机是否增加致癌率这个命题进行研究,通过将1990年至2007年间拥有手机用户的信息和该国所有癌症患者的信息这两个数据集结合后,得出了没有发现使用移动电话和癌症风险增加之间存在任何关系的结论。这就是一个数据与数据相加的实例,虽然未能形成轰动的效果,但至少也能让人们更加放心的使用移动电话了,也为我们提示了大数据运用的更多可能性。

数据创新3:可扩展数据

一个数据集并不会只有一种用途,就如美的发现需要一双发现美的眼睛一样,数据的用途也需要一双发现数据用途的眼睛。零售商店内的监控摄像头,不仅可以用来认出商店扒手,还能跟踪在商店里购物的客户流和他们停留的位置,利用这些信息,零售商可以设计店面的最佳布局并判断营销活动的有效性,正如那句话所说,无心插柳柳成荫。

数据利用的其他可能,还有数据的折旧值、数据废气、开放数据等。其中,开放数据最吸引人眼球,这也是各国政府现在正在努力推进的,其主旨是通过多元主体的参与,唤醒沉睡的数据,虽然真正实施起来,并不是那么容易,但这,必然是大势所趋,方向已经确定,路途的曲折蜿蜒,不过是为了更好地前进。

『贰』 《大数据时代》读后感 - 读书笔记

《大数据时代》读后感

这么多年来,看了很多东西,如今回过头来发现,好像什么都忘了,真是悲剧,所谓读书破万卷,下笔如有神或许是不对的,还是需要下笔勤快,所以决定从这里开始。
这些年对于技术的发展, 我是没有跟上,如今发现即便是对于投资,技术对于我们生活的改变太大,而自己身在这个技术浪潮的前沿,还是需要跟上步伐。
——前言

大数据这个概念已经提了很久,我也一直疏忽了对于它的理解。看完《大数据时代》,再结合如果工作上对于大数据的理解,顿时发现数据的重要性,以前在这方面的确没有足够的思想意识。
整本书来说,我觉得最关键的三个点是前面几个章节:
1、要总体,不要随机样本:从小对于统计学相关的学习,基本都是从样本出发,理论的基础在于如何随机的足够分散的选取样本,这可是技术活加直觉。而对于大数据来说,要的就是总体,本质上来说,总体样本的确更能准确找到结果。但是对于统计来说,总体的分析增加了数据分析的难度,不仅数据核对不好进行,一旦出现数据污染,准确度就会大打折扣,而且进行数据回溯的时候,也无法准确确认问题,而这一点也是后面相关性上问题;
2、要混乱,而不是精确:这里主要想说明的是希望数据的多样性,尽量将相关数据都收集起来,不管是结构化的还是非结构化的。这样就不可避免的最终结果的不准确性。大数据更多的是从一个总体数据中说明以后概率事件,既然是概率,也就可以理解无法精确。这里有个点的说明,我觉得需要提一下,大数据算法更倾向于“简单”,而不是复杂,这个倒是出乎我的意外。
3、要相关性,而不是因果:从我对于知识获取的过程来说,我是不同意这个观点,从人体对于知识的理解,还是要从因果论出发,没有因果论,就会变成瞎子。而作者的观点上来说,原因可能还是从大数据本身的非准确性,一旦找到合适的算法,找到相关性,向上追述原因本身就很难。但是从举的示例上看,相关性的确认是一个非常大的工程,基本就是使用排举法,一个一个试。
所以,对于大数据来说,最重要的三点是:1、数据——得到更多数据;2、算法——建立更快的算法体系;3、思维——寻找数据间更多的相关性。
对于数据最终的走向,我同意书中所提到的政府管理的观点,既然都是以“石油”的标准来看待数据,政府统一管理也就是必然的了。而且对于政府来说,掌握更多数据也有利于其管理及维护社会的稳定性。而对于社会道德方面的论述,我不想多说什么,时代发展是不会被道德绑架的。
所以最后,想要建立对于大数据的思维,《大数据时代》还是值得一读,里面的很多示例也非常不错。如人际关系这一块,也是出乎我的意料。

『叁』 大数据时代读后感

《大数据时代》是国外大数据系统研究的先河之作,本书作者维克托·迈尔·舍恩伯格被誉为“大数据商业应用第一人”,拥有在哈佛大学、牛津大学、耶鲁大学和新加坡国立大学等多个互联网研究重镇任教的经历,早在2010年就在《经济学人》上发布了长达14页对大数据应用的前瞻性研究。以下是这本书的读后感范文,欢迎阅读!

大数据时代读后感(一)

我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。这个命题是我读这本书最大的感触。个人认为也是这本书最核心的思想。从头说起吧,首先,书提出一个颠覆我以前认知的命题--”并非原子而是信息才是一切的本源“,将世界看做信息,看做可以理解的数据的海洋,为我们提供了一个从未有过的审视下是的视角。它是一种可以渗透到所有生活领域的世界观。这个命题是在书的最后一部分中的某一段中描写的。我之所以把它放在最前面来讲,因为我觉得,这是谈数据化世界的前提,自然也是谈论大数据的前提啦。书的中间部分有一节讲到数据化和数字化的区别。经过我自己脑子的整理,把数据化世界这个命题列为大数据思维的第二步。写到这里,我不由得反省下,我是不是有领悟到书的精髓所在(我认为的精髓),就是第一句话。因为回顾我整个思路,还是按照旧模式的因果关系思考模式思考问题。书中另一个吸引我的地方就是,有很多观点的论述,会从哲学的高度论述。虽然,自己肚子没多少墨水,但是读这些描述的时候,就会发现自己会更好的理解作者提出的命题。比如书中有一段文字

当我们说人类是通过因果关系了解世界时,我们指的是我们再理解和解释世界各种现象时使用的两种基本方法:一种是通过快速、虚幻的因果关系,还有一种就是通过缓慢、有条不紊的因果关系。大数据会改变这两种基本方法在我们认识世界时所扮演的角色。

在附上一些事例的时候,用作者提供的”本质“去看待时,很容易理解,确实是这么回事。好了,那么大数据到底改变了我们什么呢,作者给出3点,

大数据的精髓在于我们分析信息时的三个转变,这些转变讲改变我们理解和组建社会的方法。

第一个转变就是,在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(样本=总体)

第二个转变就是,研究数据如此之多,以至于我们不再热衷于追求精确度

第三个转变因前两个转变而促成,即我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。大数据告诉我们”是什么“而不是”为什么“。在大数据时代,我们不必知道现象背后的原因,我们只要让数据自己发声。

正如大家所知道的那样,人类的大脑具备这样的功能,它会把新输入的刺激或信息与”过去的经验或积累的部分知识“相对照,然后进行调整并接受下来。如果眼前新的现实与大脑中储存的固有信息无法协调,便会在无意识中拒绝接受新的现实(当作没有看见);或者通过自己一知半解的知识任意推测,使自己认识到的情况偏离实际(产生错觉)。这是人的一种本能,目的在于使自己保持冷静。

所以作者称之为revolution。

讲了这么多,那么大数据到底给我们带来什么。在这里,我只想谈我感触最深的,其他的有兴趣的可以自己去了解。当然,书中提了很多,最多的就是,XXX公司或者个人利用大数据创造了多大的财富了,抛开这些表面的不说,最让我动心亦或者是害怕的是---预测。这是大数据带来最核心的东西,动心的理由无须赘述,计算机会告诉你什么时候买什么双色球可以中头奖,想想心里是不是有一点小激动咧。当然这只是我打的一个比较夸张的比喻。至于害怕呢,书中有段话我很喜欢

公平正义的基础是人只有做了某事才需要对它负责,毕竟,想做而未做不是犯罪,社会关系于个人责任的基本信条是,人为其选择的行为承担责任。如果大数据分析完全准确,那么我们的未来会被精准的预测,因此在未来,我们不仅会失去选择的权利,而且会按照预测去行动。如果精准的预测成为现实的话,我们也就失去了自由意志,失去了自由选择的权利。既然我们别无选择,那么我们也就不需要承担责任。这不是很讽刺吗。

扯到这里,顺便扯一下,书中另一段关于自由意志的描述

在哲学界,关于因果关系是否存在的争论已经持续了几个世纪。毕竟,如果凡事皆有因果的话,那么我们就没有决定任何事的自由了。如果说我们做的每一个决定或者每一个想法都是其他事情的结果。而这个结果又是由其他原因导致的。以此循环往复,那么就不存在人的自由意志这一说了。——所有的生命轨迹都只是受因果关系的控制了。因此,对于因果关系在世间所扮演的角色,哲学家们争论不休,有时他们认为,这是与自由意志相对立。

书中举了个例子,举了部电影《少数派报告》,当我看到这里的时候,”哎哟,我居然看过这部电影,想想心里还是有点小激动“,有兴趣的可以去看下,大概就是讲警察通过预测来提前抓捕犯人,不过不是通过大数据,是通过超人类的方式。当你什么举动都可以被预测,相当于你完全暴露在太阳光下,换成你,你害怕不。

最后,附上两段结语,一段是书中的一段话,另一段是我自己瞎编的。

大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。

大数据终将会影响到我们,也像其他技术一样会是一把双刃剑,用得好,动心,滥用,害怕。如同核技术一样,用的话,造福地球,滥用,给个金刚石地球你,照样爆。我相信,未来的大数据的发展会如作者所说的,是一场生活、工作与思维的革命。

大数据时代读后感(二)

去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的CIO也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。

不过话又还得说回来,《大数据时代》是本好书。

当然,很多IT知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的BI,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧---巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时BI最大的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。看完此书,我心中的一些问题:

1.什么是大数据?

查了查网络,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的'的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity--这个好像是IBM的定义吧。

以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。

2.大数据适合什么样的企业?

诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过

专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,5,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。同样,在公共事业类的政府机构,大数据的作用也许也能很好的发挥。反而感觉在大多数中小型企业应用大数据,似乎有点大题小作。书中说:大数据是企业竞争力。诚然,数据是一个企业的核心无形资源(利用得好的话),但是否所有的数据,或都换则方式说:所有的企业都以大数据为竞争力,是否真的合适么?是否在中小企业中,会显示得小题大做呢?

3.大数据带来的影响

当一波又一波的IT技术热潮源源不断地向我们铺面而来的时候,你甚至都没有做好准备,你都要开始迎接它所给你带来的影响了。经过物联网,云计算的推波助澜下,大数据开始登场了。但它到底给我们带来了什么呢?

1)预测未来书中以Google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。

2)变革商业大数据所带来的商机,同时会衍生出一系列与大数据相关的商业机遇与商业模式,数据的潜在价值会源源不断地发挥作用可以容易想到的是未来有专门的数据收集,数据分析,数据生成的一条数据产业链产生。影响最大的,当然是IT公司

3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。

大数据时代读后感(三)

如今说起新媒体和互联网,必提大数据,似乎不这样说就OUT了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典着作——舍恩佰格的《大数据时代》。维克托·迈尔——舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和IBM等全球顶级企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,如果能做足功课又具备相应的理论功底,就能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。在风险社会中信息安全问题日趋凸显,数据独裁与隐私保护成为一对矛盾。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

『肆』 《大数据》读书笔记

《大数据》(徐子沛)

核心观点: 一个真正的信息社会,首先是一个公民社会。

徐子沛和吴军是国内科技界文笔最好的两位大拿,能把复杂的技术发展讲得像故事一样引人入胜。书中讲述了美国信息开放、数据技术创新、数据逐步开放的历史,例举了美国政府如何通过大数据来治国:降低犯罪率、纠正福利滥用、增加财务透明度,并展望了大数据发展的未来,他觉得中国和美国最大的区别就在中国习惯于说“差不多”,不善于用数字管理国家。书中也介绍了大数据中数据仓库、数据挖掘、数据分析、数据可视化等技术的发展,他认为: 数据就是企业的财富和金矿,数据分析和挖掘的能力就是企业的核心竞争力。 阿里网罗了徐子沛和王坚两个大数据和云计算专家,估计在大数据和云计算领域鲜有敌手了。

核心观点: 推崇知识和理性,用数据创新

本书讲述互联网对传统工业 生活的推进,大量数据没有数字化,数据基本都困在一家医院内,电子病历推进也很缓慢,通过数据的流通让患者享受更便捷、更安全的服务基本只限制在思考层,这里面有方方面面的各种利益、法规的原因,这就像书中说的“也许是由于其本身的根深蒂固。作者认为 iPhone、云计算、3D打印、基因测序、无线传感器、超级计算机,这些改变了我们生活的事物,将再一次地融合在一起,对医学进行一次“创造性破坏” ,我觉得新技术的应用比新规则的创立在国内还是相对简单,而也能解决医疗资源不足的痛点,把像IBM沃森这样的智能作为医疗的辅助判断,提升医疗的效率和准确率还是前景明朗的。但要说像书中说的“旧的体系完全不复存在,新的体系随之取代...在这超级融合之下,权力再次交回到我们自己手中,而只有我们自己,。我想这还有很远的路要走,与生命有关的事物,一定是慎之又慎的;与体系有关的事情,改变一定是难上加难的。

所以 崇正说他们阿里都是看数据做事情,不是臆想做事情。因为在这个高速发展的时代,数据都是流动。他们都是落实到行动,分析数据,应用数据,依靠数据。

『伍』 大数据时代读后感怎么写

读后感也可以叫做读书笔记,是一种常用的应用文体,也是应用写作研究的文体之一。简单说就是看完书后的感触。下面是大数据时代读后感怎么写,请参考!

【篇一:大数据时代读后感】

对于畅销书刊、热点话题、时尚科技,始终不太感兴趣。书刊,喜欢有一定年份的;话题,钟情于务虚的观点;新奇的产品于我无缘,习惯使用成熟的科技产品。既不清高,也非冷漠,就是要与现实保持一定的距离,给自己留一点思考的空间。这一习惯最近破了例。由于工作的原因,耳濡目染,“大数据”这个新兴概念开始频繁步入我的视野。按捺不住内心的好奇,网购《大数据时代》,手不释卷,三天读完,颇有收获。此书有如下特点。

首先,作者站在理论的制高点上,条理清楚地阐述了大数据对人类的工作、生活、思维带来的革新,大数据时代的三种典型的商业模式,以及大数据时代对于个人隐私保护、公共安全提出的挑战。其次,文中的事例贴近现实生活,贴近时代,令读者既印象深刻,又感同身受。此外,作者没有使用大量的专业术语,没有假装一副专业的面孔。纵观全书,遣词造句,均通俗易懂。

作者认为大数据时代具有三个显著特点。一、人们研究与分析某个现象时,将使用全部数据而非抽样数据;二、在大数据时代,不能一味地追求数据的精确性,而要适应数据的多样性、丰富性、甚至要接受错误的数据。三、了解数据之间的相关性,胜于对因果关系的探索。“是什么”比“为什么”重要。

作者指出,随着技术的发展,数据的存储与处理成本显著降低,人们现在有能力从支离破碎的、看似毫不相干的数据矿渣中抽炼出真知烁见。在大数据时代,三类公司将成为时代的宠儿。一是拥有大数据的公司与组织。如政府、银行、电信公司、全球性互联网公司(阿里巴巴、淘宝网)。二是拥有数据分析与处理技术的专业公司,如亚马逊、谷歌。三是拥有创新思维的公司,他们可能既不掌握大数据,也没有专业技术,但却擅长使用大数据,从大数据中找到自己的理想天地。

面对即将来临的大数据时代,个人将如何应对自如?这是个严肃的问题。

【篇二:大数据时代读后感】

“除了上帝,任何人都必须用数据来说话。”——这是《大数据》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。

美国是《大数据》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,以别开生面的经典案例——建设“前所未有的开放政府”的雄心、公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,以及云计算、Facebook等社交媒体、Web3·0与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。

透过全书,一个立体的美国及美国人民的思想呈现在我们面前——美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。

读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故、腐败将降到最低点。

作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的文化以及能用于教学的鲜活案例。

每天能用来阅读的时间很少,总是要等到夜深疲倦时才有空打开书本,总是在眼睛极不舒服的情况下坚持阅读,《大数据》就这样在坚持中溶入我的思想……

【篇三:大数据时代读后感作文】

读完《大数据》,我才意识到这并不是一本枯燥无味的书籍。作者运用案例和讲故事的方式,把美国数据开放、收集、使用背后的立法故事、公民故事、技术故事、商业故事娓娓道来,引人入胜,令我大开眼界。

我在想,大数据概念对于教育来说会产生什么样的实用价值呢?一直以来,中国教育在研究教育的数字化,比如数字化校园,这个思路就是把我们教育的内容进行数字化,其结果指向的就是电子教材的研发或者是教学过程的数字化。美其名曰,这是教育技术的重要内涵。在教学过程中,学生的行为表现都可以被数据化,而这项研究不是任何一个专业可以深入下去的,它的专业性太强,所以我才会想到,所谓教育技术与其研究教育的数字化,不如研究教育的数据化来得实在,来的有意义。长期以来,我们并不了解教育对一个人的影响具体会如何表现,我们有的只是一个轮廓,我们也并不确定一个教师的行为对学生具体产生了哪些影响。所以,人们对教育一直有一个深深的质疑,它是不是科学的?大数据概念至少提出了关注“是什么”比“为什么”要有实际意义得多。而我们的教育恰好需要把注意力从“为什么”转移到“是什么”上面来,只有如此,才能把教育从为什么发展成“可能成为什么”上来,这会是一次思想上的.革命。而对于现在地位岌岌可危的教育技术来说,把研究的重点从数字化转移到数据化上面,这才是它的出路。

如何将数据融入教学,教育者首先通过标准化全科教学处方,实现了教师授课模板和教学内容的标准化,保证每个教学过程和内容是可控的,然后结合每天的教学内容,处理好面对的数据,处理好数据,自然也就处理好了课堂的反馈,最终形成了既注重教学体验又以教学结果为导向的教学体系。

与此同时,不仅要注重课上的学生资源,在课后还要对这些资源进行跟踪处理。这与过去的教育教学显然是不同的,面对大数据时代的到来,教学有所改变是必然的。所以,无论环境怎么变换,数据如何复杂,我们都不能不去改变自己的教学去迎合将来的这个大数据时代。

【篇四:大数据时代读后感】

3月11日下午两节课后,我校全体教师和受邀而来的金南学区各友好学校的领导及教师汇聚于多媒体教室,共同分享、交流《大数据》读后感。

老师们从:何谓大数据;立足国情对大数据进行探讨;大数据在教育教学中的主要应用等几个方面畅谈了自己的感悟。

张萌老师说:大数据体量庞大、结构复杂、是产生巨大价值的数据集合。大数据这种方法在中国的国情下需要以更加科学、合适的方式进行实践,不可生搬硬套。

董译雯老师说:在你我感叹《大数据》里深植于美国民众血液中的自由、民主、严谨的价值观的同时,可否想过中国教育体制下的孩子们身上还残留多少独立与自我意识?作为典型的八零后,我们这一代人身上最缺失的便是独立思考能力。但愿,我的学生哪怕是因为我所做的一点点努力而开始思考“我”这个字的含义,足矣!

张红杰老师说:很感谢校长给我们推荐了《大数据》这本书。在教学工作中,应该有大数据意识,创新意识。学习一些专业的教学统计法、数据分析法,从中发现一些教育现象,并采取相应的策略。让我们的教育教学工作少一些随意和盲目,多一份严谨与科学。

白媛媛老师通过文中的三个事例,结合教学实际,谈了自己教学中对数据使用的价值;结合自己的工作,谈了如何实现工作的最高境界。

交流活动尾声,身为阅读《大数据》的倡议者、发起者、以及忠实的读者韩校长幽默风趣的同大家分享了他读后的感悟:我们心中要装着学校,因为我们个人的命运依赖群体的命运;工作要追求精细化,不能做胡适书中的“差不多”先生;尊重数据,拥有数据意识,建立数据团队!

此次活动从寒假期间倡导读《大数据》一书,到开学伊始的分组沙龙,再到今日的阅读共享,现已圆满告一段落。相信此次活动定会增强我校全体教师的数据意识,掌握大数据,运用大智慧助推我校的教育教学上一个新的台阶!

『陆』 【《大数据时代》读书笔记2】大数据视角下,一切皆可“量化”

“大数据”视角,并非近年来的新事物,回顾历史,早已有之。只是当时,“大数据”这个词,尚未产生。

19世纪,“量化”之于航海。 19世纪还是航海经验靠口口相传、有些甚至被证明是错误的年代,航海家莫里通过量化分析制作的导航图,是大数据的最早实践之一。在因为马车事故造成腿部残疾后,年轻的海军军官莫里离开了海上工作,来到了图表和仪器厂。在这个后来被证明是他福地的地方,在翻阅、整理库房里存放的航海书籍、地图、图表、航海日志后,莫里将这些记录进行数据整合,把整个大西洋按经纬度分成五块,并按月份标出温度、风速和风向,为找到更有效的航海路线提供参考。之后,为了提高精确度,莫里创建了一个标准的表格来记录航海数据,并在所有海军舰艇及部分商船上使用,通过分析这些数据,一些利于航行的天然航线被找到,为海军及商船减少了三分之一的航海路程。远在信息数字化之前,人工的数据运用已经充分展示了其实效。随着数据存储和处理能力的不断提高,“大数据”技术的运用领域也不断扩展。

20世纪,“量化”之于投资。 在金融领域,“量化”这个词经常以“量化投资”等词组形式出现,指的是通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易方式,其实质在于替代传统的定性分析,以数据为支撑作出投资决策。“量化投资”在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大,得到了越来越多投资者认可。金融领域是数据相对集中和易感知的领域,但量化的舞台,远不止于此。

21世纪,“量化”之于坐姿研究。 日本先进工业技术研究所的越水重臣教授将量化用于坐姿研究,通过对人坐着时的身形、姿势和重量分布等的数据化,产生独属于每个乘坐者的精确数据资料,并根据人体对座位的压力差异识别出乘坐者身份,准确率达到98%。这项技术可作为汽车防盗系统,通过这个系统,汽车可以识别驾驶者是否为车主并设置相应安全措施。数据的提取,只有你想不到,没有提取不到,关键在于如何提取、如何利用。

数据化,不是数字化。 前者,是指把现象转变为可制表分析的量化形式的过程;后者,指的是把模拟数据转换成用0和1表示的二进制码。在数字化时代来临之时,在脑海中对这两个概念有清晰概念十分重要。数据化的关注重点是在“I(信息)”上,而数字化则关注“T(技术)”。数字化的发展,提高了数据化的可行性。

“数据化”文字。 谷歌的数字图书馆,是文字数据化的典范。通过文字的数据化,人可以用之阅读,机器也可以用之分析。谷歌运用这些数据化了的文本来改进它的机器翻译服务,从几年前相当于高中水平的翻译水准,到如今的令人惊叹,着实超越了英语水平不断退化的某笔者(容某笔者先找个地儿蹲着哭一会儿)。

“数据化”方位。 手机的广泛运用,让人的实时位置信息也可以被数据化,位置信息的数据化,催生了许多新价值。比如无线数据科技公司Jana的创始人伊格尔,他使用了来100多个国家的超过200个无线运营商的手机数据,既关注家庭主妇平均每周去几次洗衣店,也试图回答关于疾病如何传播等问题。新的用途不断产生,既可以用于商业,也可以用于社会研究。

“数据化”沟通。 个人化是数据化的前沿,facebook将关系数据化,twitter将情绪数据化,linkedin将个人经历数据化,这些社交网络平台,以各种方式将个人及其沟通数据化,并存储了海量的用户数据。初步的运用,例如Derwent Capital对冲基金对微博数据文本的分析,获得了股市投资的信号,虽然由于隐私问题,数据的使用还远未成熟,但我们不难想象,当数据被充分运用,世间万物是否已不再是世间万物,而是海量的数据呢?

当看到一切皆可量化这句话,还是持一定的保留态度。因为,太过绝对。但似乎,这只是一种理念的传递,为了表达数据化的重要性而已。大数据视角,提供了看世界的另外一个角度,但绝不是唯一视角。

『柒』 读书笔记:大数据时代

随着网络的普及、计算机运算和存储能力的提高,我们获取信息越来越容易,越来越多。绝大多数信息对我们来说可能都是噪音,或者用过一次后就被丢弃;而对有大数据思维的公司或个人来说,这些则是零散的金粉,他们可以从中挖掘出许多小数据无法得到的意想不到的结果。比如人们所用的搜索词在搜索完成之时就失去用处,Google偏偏将它们重新利用,用以改善结果的排序,用来预测流感感染情况。word语法检查,小数据下表现最好的算法在大数据下准确率却最差。谁曾想坐姿可以转化成数据,并开发成汽车防盗系统?进而扩展到盗贼识别?

大数据时代真的只有想不到,没有做不到。它深刻的变革着我们的工作、生活、甚至思维方式。

1.不是样本而是全部:得到全部数据并不那么难,而且结果更全面可靠,我们不再依赖小数据时代的随机取样、假设-实验-结论模式,取而代之的是直接对全部数据进行分析挖掘;

2.不是精确性而是混杂性:大数据时代我们不再执着于精确,而是允许一点瑕疵。我们要做的不是以高昂的代价消除所有的不确定性,而是接受这些纷繁的数据并从中获益。以谷歌翻译为例,它搜罗了所有可以利用的数据,虽然搜集的有错误翻译,但巨大的语料库优势完全压倒了缺点,使其好于布朗、微软的班科和布里尔、IBM的Candide。又如word语法检查,小数据下表现最好的算法在大数据下准确率却最差。混杂的大数据能创造比精确的小数据更好的结果!
小数据模式下,小的错误会导致极大的偏差,因此要求精确。值得注意的是,大数据的混杂性只是现实,而不是其固有特性,随着技术的发展将会被改善。

3.不是因果关系而是相互关系:千百年来,我们一直在寻找事件背后的原因。事实上,如果凡事皆有因果的话,我们就没有决定任何事的自由了。
基于大数据分析事物间的相互关系,使我们从因果串联思维变为相互并联思维。相互关系能提醒我们某些事正在发生,这些提醒非常有用。基于相关关系的预测是大数据的核心。通过找出一个关联物并监控它,我们就能预测未来。如塔吉特怀孕预测,美国折扣零售商塔吉特通过对女性消费记录分析,可以发现她是否怀孕,从而在相应阶段寄送相应的折扣券。

戏中主角分别是大数据拥有者、大数据技术公司、大数据思维的公司或个人。第一个吃螃蟹的人早已斩获良多,更多的人也开始去尝试;随着技术的发展,拥有大数据技术的公司的领先优势也越来越弱;而数据本身的价值则与日俱增。试想,一个拥有思维和技术的新公司,如何去跟一个拥有海量数据且知道什么更好的公司去竞争?
随着行业发展,数据中间商也将粉墨登场。因为有些数据的价值只能通过中间人来挖掘。航空公司不到最后一刻不会发布航班晚点,也不会告诉你何时买票最便宜,但只要有数据,你就能知道这些。还有一些公司愿意把数据给非营利机构。

大数据确实给我们带来诸多便利,使我们的生活更便利、更美好。但我们也变得越来越透明,通过你的检索词、购物、评论等就能轻易定位到精确的个人!想想就让人不寒而栗!
亚马逊监视着我们的购物习惯
谷歌监视着我们的网页浏览习惯
微博窃听到了我们心中的TA
而facebook似乎什么都知道,包括我们的社交关系网
我们时刻暴露在第三只眼下(政府除外)。

鉴于此,维克托也建议完善相关司法,制定更完整的隐私保护政策、反垄断。

值得注意的是,大数据给我们提供的不是最终答案,而是参考答案,我们不要过分信任、依赖数据给出的结果。假如一切都可以被预测,而且很精确,而我们想当然的去相信,放弃选择的权利,也会不为结果承担责任,那我们离变成机器人就不远了,人工智能控制人类也并非臆想!

而乐观的人们则会认为一个更美好的未来在像我们招手:

以下为收集内容 。

http://www.ximalaya.com/1000577/sound/412418?from_platform=weixin
【构建一个机器的你】模拟你的知识体系、行为习惯:通过拟合你在社交网络的发言、及其它信息。模拟声音:整合微信里的语音。模拟外貌:通过你发的照片等。将这些东西“导入”到一个机器,你在另一个地方被重生。它知道你所有的所有,宛如镜像孪生。
可以看电影黑镜2。

汽车若能交流 车祸或可避免
http://v.youku.com/v_show/id_XNTcyODU4NjQw.html
实现汽车对话以避免车祸,实际也是大数据的利用:通过数据化位置速度(通过摄像头传感器电脑系统)等信息,然后分析并做出预测。信息与机器结合会使人分为自然人、半自然人、机器人吧。现在的美瞳等改变人的外形,以及研究火热的脑机接口以实现通过意念控制机械,人正在与机器越来越多的整合在一起。

谷歌无人驾驶汽车
http://mp.weixin.qq.com/s?__biz=MjM5NzM5ODU2MA==&mid=200295774&idx=4&sn=&scene=1#rd
什么时候无人驾驶汽车成片的出现在杭州就好了[偷笑][偷笑]或者不用成片,就是有些地方会放着(比如某个山洞某个工厂),嗯,某些方式(某个app,某个电话或者直接与微信集合,或者快的打车,打的车都变成无人驾驶车)可以把他叫过来,然后用完之后他自己回到原来的地方。[傲慢][傲慢]这样社会多美好呀!还可以叫个车,让他把东西/人送到某个地方,就不是为自己叫车而是为他人叫……

如果视野更开阔点, 数据或许是实现人与机器交流的语言 ,,数据能挖掘我们不知道的一面,但也不要全迷信数据,将活生生的、复杂的人等同于毫无生命的一堆数据或机器就不好玩了。。

量化自我,一场二十年前无法想象的运动
http://www.36kr.com/p/204479.html#wechat_redirect

『捌』 读书笔记-07-数商-数据改变命运

之前看过一本书就做“奇特的一生”,本书的主人公叫柳比契夫,不仅是位著名科学家,还是“时间管理界”的大神。在他传奇的一生中,一共有70多部著作。除了其专业领域外,还有历史、宗教、数学等领域。柳比契夫的时间管理方式,首先做的就是时间记录,他时间记录到什么程度?柳比契夫从1961年开始记录直到其去世。在这长达56年的时间里,他把自己所有做过的事情,用了多长时间,都详细地记录了下来。
在这之上柳比契夫还会做周总结、月总结、年总结,统计其在每个事物上所花费的时间。有了这些数据,就能更科学做计划了。因为其有足够多的数据,对于时间就有超强的把控感,这样制定的计划也就更为合理,也更高效。我们可以想象当时在没有电脑的时代,只能通过纸质地记录方式,无论记录还是查询都非常麻烦和低效。而我们现在有了电脑,尤其是有了手机,随手记录显得异常方便,但是作为数据时代先行者的我们,真的有效地使用了这种工具,帮我们提高工作效率?答案是不一定,工具还是那个工具,工具要想发挥它的功效,首先你要深刻理解数据重要性,能想象到数据带来的好处,以及知道如何记录数据,最后再有一个易用的工具,这样才能真正把数据用起来。综合来看,就是徐子沛老师说的数商,只有数商足够高,移动互联网的工具才能发挥效能。
这就引出了我今天介绍的这本新书《数商》。之前我看很多大数据的书,比如《大数据时代》、阿里的《大数据之路》、车品觉的《数据的本质》和《决战大数据》、《数据中台》,更多的就是专业大数据技术书籍。一直没有看徐子沛老师的书,觉得没有什么特别的新意,听了罗振宇将这本书的时候,才决定看一下,看完后还是感觉收获颇丰。数商讲的是一个人如何驾驭数据的能力,数商会像智商、情商一样,决定着我们的未来。
这本书一开始就有一套数商测试题,一共34道。它测的不是你的数学能力,而是把我数据的能力。我测了一下,是82分,这套有几个问题决定了我很难拿到90分以上,比如,把你的情绪打分记录下来,把你的朋友关系打分记录下来,预测一件事打分记录下来等等,像这样的题,其实就像前面提到的柳比契夫每天做的时间管理一样,把自己的所有经历都数据化。这可能就是一般人和大神级人物的区别,看似只有一点点的区别,其实做到这点难度极大。本书后面是通过一个个故事把数商的价值体现出来,比如赌场、见未来岳母、疫情、奶茶与粪堆等等,里面的故事非常精彩,为我们后续的构建自己的大数据体系提供了很好的素材。我还特意来了徐子沛的三本实体书,主要是想写学习徐老师讲故事的能力。
同时他里面的每一个故事,都在告诉我们一个道理,一个普通人完全可以通过不断提升自己对数据的驾驭能力,来把握自己的命运,甚至是挑战权威。如果我们仔细想想真的是这样,现在“智商”和“情商”,大家都已经非常重视,都在通过各种方式提高,你如果想在这两个方面特出越来越难,但是数商却还是一片开阔地,一方面大部分人没意识到,一方面还没有特别的有效方法,只要我们稍微注意一下,就能很快脱颖而出。
在这个大数据时代,在这个阶级逐步固化的时代,《数商》给我们指明一条弯道超车之路,这条依然坎坷,但是他有机会超车,也许是这时代赋予我们的机会。

『玖』 大数据时代读后感1000字(2)

大数据时代读后感1000字(精选7篇)

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。在风险社会中信息安全问题日趋凸显,数据独裁与隐私保护成为一对矛盾。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

大数据时代读后感1000字 篇2

我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。这个命题是我读这本书最大的感触。个人认为也是这本书最核心的思想。从头说起吧,首先,书提出一个颠覆我以前认知的命题--”并非原子而是信息才是一切的本源“,将世界看做信息,看做可以理解的数据的海洋,为我们提供了一个从未有过的审视下是的视角。它是一种可以渗透到所有生活领域的世界观。这个命题是在书的最后一部分中的某一段中描写的。我之所以把它放在最前面来讲,因为我觉得,这是谈数据化世界的前提,自然也是谈论大数据的前提啦。书的中间部分有一节讲到数据化和数字化的区别。经过我自己脑子的整理,把数据化世界这个命题列为大数据思维的第二步。写到这里,我不由得反省下,我是不是有领悟到书的精髓所在(我认为的精髓),就是第一句话。因为回顾我整个思路,还是按照旧模式的因果关系思考模式思考问题。书中另一个吸引我的地方就是,有很多观点的论述,会从哲学的高度论述。虽然,自己肚子没多少墨水,但是读这些描述的时候,就会发现自己会更好的理解作者提出的命题。比如书中有一段文字

当我们说人类是通过因果关系了解世界时,我们指的是我们再理解和解释世界各种现象时使用的两种基本方法:一种是通过快速、虚幻的因果关系,还有一种就是通过缓慢、有条不紊的因果关系。大数据会改变这两种基本方法在我们认识世界时所扮演的角色。

在附上一些事例的时候,用作者提供的”本质“去看待时,很容易理解,确实是这么回事。好了,那么大数据到底改变了我们什么呢,作者给出3点,

大数据的精髓在于我们分析信息时的三个转变,这些转变讲改变我们理解和组建社会的方法。

第一个转变就是,在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(样本=总体)

第二个转变就是,研究数据如此之多,以至于我们不再热衷于追求精确度

第三个转变因前两个转变而促成,即我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。大数据告诉我们”是什么“而不是”为什么“。在大数据时代,我们不必知道现象背后的原因,我们只要让数据自己发声。,出处:短美文,否则追究其责任,谢谢你的支持,我们会给做得更好!

正如大家所知道的那样,人类的大脑具备这样的功能,它会把新输入的刺激或信息与”过去的经验或积累的部分知识“相对照,然后进行调整并接受下来。如果眼前新的现实与大脑中储存的固有信息无法协调,便会在无意识中拒绝接受新的现实(当作没有看见);或者通过自己一知半解的知识任意推测,使自己认识到的情况偏离实际(产生错觉)。这是人的一种本能,目的在于使自己保持冷静。

所以作者称之为revolution。

讲了这么多,那么大数据到底给我们带来什么。在这里,我只想谈我感触最深的,其他的有兴趣的可以自己去了解。当然,书中提了很多,最多的就是,XXX公司或者个人利用大数据创造了多大的财富了,抛开这些表面的不说,最让我动心亦或者是害怕的是,预测。这是大数据带来最核心的东西,动心的理由无须赘述,计算机会告诉你什么时候买什么双色球可以中头奖,想想心里是不是有一点小激动咧。当然这只是我打的一个比较夸张的比喻。至于害怕呢,书中有段话我很喜欢

公平正义的基础是人只有做了某事才需要对它负责,毕竟,想做而未做不是犯罪,社会关系于个人责任的基本信条是,人为其选择的行为承担责任。如果大数据分析完全准确,那么我们的未来会被精准的预测,因此在未来,我们不仅会失去选择的权利,而且会按照预测去行动。如果精准的预测成为现实的话,我们也就失去了自由意志,失去了自由选择的权利。既然我们别无选择,那么我们也就不需要承担责任。这不是很讽刺吗。

扯到这里,顺便扯一下,书中另一段关于自由意志的描述

在哲学界,关于因果关系是否存在的争论已经持续了几个世纪。毕竟,如果凡事皆有因果的话,那么我们就没有决定任何事的自由了。如果说我们做的每一个决定或者每一个想法都是其他事情的结果。而这个结果又是由其他原因导致的。以此循环往复,那么就不存在人的自由意志这一说了。——所有的生命轨迹都只是受因果关系的控制了。因此,对于因果关系在世间所扮演的角色,哲学家们争论不休,有时他们认为,这是与自由意志相对立。

书中举了个例子,举了部电影《少数派报告》,当我看到这里的时候,”哎哟,我居然看过这部电影,想想心里还是有点小激动“,有兴趣的可以去看下,大概就是讲警察通过预测来提前抓捕犯人,不过不是通过大数据,是通过超人类的方式。当你什么举动都可以被预测,相当于你完全暴露在太阳光下,换成你,你害怕不。

最后,附上两段结语,一段是书中的一段话,另一段是我自己瞎编的。

大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。

大数据终将会影响到我们,也像其他技术一样会是一把双刃剑,用得好,动心,滥用,害怕。如同核技术一样,用的话,造福地球,滥用,给个金刚石地球你,照样爆。我相信,未来的大数据的发展会如作者所说的,是一场生活、工作与思维的革命。

大数据时代读后感1000字 篇3

“大数据”一词不知何时在我们的生活悄然出现,为了一探究竟,我便选择了《大数据时代》一书。

作者先从全局简单地描述大数据对我们的生活、工作与思维的影响,再从三方面具体地用上百个学术和商业的实例展开写作。样本=总体、追求精确性和相关关系等大数据时代具体特点一一现出。在同时,作者也从个人、企业等多角度分析大数据中的隐忧。

书中内容繁多,在此不能各方面概括。此书中虽有许多专有名词,但作者以其通俗的语言以及许多实例让我嗅到大数据时代中一抹清新之气。

为什么是清新的呢?因为书中的内容仿佛向我打开了一个既有点熟悉又有点陌生的世界。我们现在已处于网络时代 ,在我们日常简单的操作中大量数据产生,然而起初我们仅用众多技术在解决手头上的问题,那些大数据像沙子中的金子,价值不被发现。到目前,每当我们网上购书时总会看到“猜你喜欢”的栏目、出现谷歌搜索与流感预测、Farecast与飞机票价预测系统等,这些事情的达成全来自于那些曾被忽略的大数据同时也在证明“预测,大数据的核心”这句话,为我们的生活创造了前所未有的可量化的维度。看到书中这部分内容时,我不禁感受到自己的生活已在享大数据带来的福利,就像“猜你喜欢”栏目让我触到更多合我口味的书,让我看到了以前无法发现的细节。拥有大量数据的公司巨头如谷歌、亚马逊大力开发有关大数据的新型产业和研究相关项目。借网络时代的便利大数据成为了如今最有商业价值的事物,使一切可量化的趋势也开始出现。“本质上世界是由信息构成的”,面对这句话时,大数据时代仿佛就在眼前。

在感受惊叹着大数据能为我们做到以往无法想象的事和它巨大的价值时,我认同大数据能极大优化我们的生活,但又不禁为这时代感到担忧。一旦大数据时代来临,不仅我们的隐私可能不再是隐私,就如书中所言“我们时刻暴露在‘第三只眼’下:亚马逊监视着我们的购物习惯,谷歌监视着我们的购物习惯,而微博似乎什么都知道”,而且利用大数据我们可以预测许多事情并且十分高效,一旦人们依赖大数据极少运用人类自身的创新等能力被数据束缚住,世界只会沦落为一个极少活力的机械环境。而我认为最大的忧患,是大数据时代对人类自身思维、思想、信仰等精神领域的冲击。如今我们都生活在数据中,大数据时代说不定在几年后就会逐步来临,这使我不禁发问:我们一直坚信着信仰着的究竟是什么?我觉得世界说变就变实在令我想不通这个问题。事情都有好坏,我也不知道自己是否杞人忧天。

于是我继续去探索作者对这问题的思考。“更大的数据在于人本身”,作者还说“我们是在创造更好的未来”,也说“在一个预测的时代里,人类的自由意志不可侵犯,这一点不可轻视。我们在使用大数据时,应当怀有谦恭之心,铭记人性之本”。人类学家克利福德吉尔兹曾说:“努力在可以应用、可以拓展的地方,应用它、拓展它;在不能应用、不能拓展的地方,就停下来。”这些话语仿佛是阳光,驱散我心中对大数据时代的担忧以及内心对其的恐惧。我认为,在坚守我们内心和自由意志下,大数据才会造福我们人类世界,发挥出它背后对人温暖的光芒。

面对时代的变革,我会为坚守内心深处的自由意志而努力并“拥抱大数据”。

大数据时代读后感1000字 篇4

世界的本质就是数据,当你掌握了数据,你便掌控了世界—你可以轻而易举地通过数据中的相关关系预测事物的发展,将一切不利因素扼杀于摇篮之中—这远胜于"防患于未然"。

《大数据时代》一书,让我们在观念上有了三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。全书介绍了 "大数据"时代三种大的变革:思维变革,商业变革和管理变革。在这些巨大变革如洪水一般的"冲击"之下,现代社会的运作方式必将有重大的改变,若不顺应这种变革的潮流,就像古中国固步自封,最终被坚船利炮打开国门而自己还用着长钩铁戟抗争一样,不可避免被掠夺,被落于世界进程之后,所以我们必须转变我们的思想。

"我们不再热衷于寻找因果关系,而应该寻找事物间的相关关系",我想这句话是本书的核心思想。大数据时代,信息与数据已成为了一切的本源,我们生活在各种数据构成的海洋之中,如果从另一种视角看,就好像无数条"看不见的线"将我们与这些数据联系到一起,这是我们以前从未有过、从未想过的。大数据改变了我们以前的通过因果关系了解世界的方法,而提供了几种新的途径,因为,在大数据时代,我们可以分析更多数据,有时甚至可以处理和某个特别现象相关的所有数据,也就是:样本=总体;而且,当研究数据如此之多时,我们已不热衷于"精确",而是"混乱",若不接受"混乱",那么有95%的非结构化数据无法利用,这将无法使我们构建完整的数据世界,在分析更多、更全面的数据之后,我们就可以从这些数据之中发掘它们的相关关系,即以"是什么"而不是"为什么"的角度看待数据,不用管其从何而来,只要分析其如何影响其他事物既可,即"让数据自己发声",这些,彻底推翻了人类以前探索数据的方法,展现了一个全新的世界。

这种观念以惊人的力量给现知识状况带来了巨大的冲击,通过对海量数据的分析,获得巨大价值的产品和服务,或深刻的洞见。比如谷歌公司,2009年h1n1流行之时,通过检测检索词条,处理34。5亿个不同的数据模型,通过预测并与2007、2008年的美国疾控中心记录的实际流感病例进行对比后,确定了45条检索词条组合,并将其用于一个特定的数学模型后,预测结果与官方数据相关系数高达97%,这种大数据技术,以前所未有的方式,通过海量数据分析得出流感所传播的范围,为预测流感提供了一种更快速、高效的工具。

同时,虽然大数据可为人类造福、对抗病症,但这仅限于掌握这门技术而言,若不重视这种技术,当我们的对手早于我们一步构建这种数据网络之时,便是我们的灾难,想想,大数据虽核心的在于预测,当敌人通过这种手段预测我方下一步的行动,将是可怕的—比如你的.导弹将从何处发射,将飞往哪,你的军队动向、目标,总之所有一切"未来"将掌控于敌手,敌方甚至可以借此发现那些将来有"大作为"的人,从而进行渗透或扼杀,这对我们的发展无疑是致命的,所以,尽快加速大数据系统的构建进程是必须的。

对于我们国防生,也必须顺应这种发展趋势,未来的时代必将是数据极易获取,数据网络共享化的时代,通过这些数据,建立数据模型,可以准确分析并给出适合每一个人的计划,如运动量、训练强度,可以"先知、先觉",及时发现一个人的负面情绪前及时疏导,这些必将成为现实,我们必须跟进时代,做好准备,去应对大数据时代的一切!

大数据时代读后感1000字 篇5

“除了上帝,任何人都必须用数据来说话。”——这是《大数据》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。

美国是《大数据》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,Web3·0与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。

透过全书,一个立体的美国及美国人民的思想呈现在我们面前——美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。

读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故、将降到最低点。

作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的文化以及能用于教学的鲜活案例。

每天能用来阅读的时间很少,总是要等到夜深疲倦时才有空打开书本,总是在眼睛极不舒服的情况下坚持阅读,《大数据》就这样在坚持中溶入我的思想……

大数据时代读后感1000字 篇6

读完《大数据》,我才意识到这并不是一本枯燥无味的书籍。作者运用案例和讲故事的方式,把美国数据开放、收集、使用背后的立法故事、公民故事、技术故事、商业故事娓娓道来,引人入胜,令我大开眼界。

我在想,大数据概念对于教育来说会产生什么样的实用价值呢?一直以来,中国教育在研究教育的数字化,比如数字化校园,这个思路就是把我们教育的内容进行数字化,其结果指向的就是电子教材的研发或者是教学过程的数字化。美其名曰,这是教育技术的重要内涵。在教学过程中,学生的行为表现都可以被数据化,而这项研究不是任何一个专业可以深入下去的,它的专业性太强,所以我才会想到,所谓教育技术与其研究教育的数字化,不如研究教育的数据化来得实在,来的有意义。长期以来,我们并不了解教育对一个人的影响具体会如何表现,我们有的只是一个轮廓,我们也并不确定一个教师的行为对学生具体产生了哪些影响。所以,人们对教育一直有一个深深的质疑,它是不是科学的?大数据概念至少提出了关注“是什么”比“为什么”要有实际意义得多。而我们的教育恰好需要把注意力从“为什么”转移到“是什么”上面来,只有如此,才能把教育从为什么发展成“可能成为什么”上来,这会是一次思想上的革命。而对于现在地位岌岌可危的教育技术来说,把研究的重点从数字化转移到数据化上面,这才是它的出路。

如何将数据融入教学,教育者首先通过标准化全科教学处方,实现了教师授课模板和教学内容的标准化,保证每个教学过程和内容是可控的,然后结合每天的教学内容,处理好面对的数据,处理好数据,自然也就处理好了课堂的反馈,最终形成了既注重教学体验又以教学结果为导向的教学体系。

与此同时,不仅要注重课上的学生资源,在课后还要对这些资源进行跟踪处理。这与过去的教育教学显然是不同的,面对大数据时代的到来,教学有所改变是必然的。所以,无论环境怎么变换,数据如何复杂,我们都不能不去改变自己的教学去迎合将来的这个大数据时代。

大数据时代读后感1000字 篇7

舍恩伯格的《大数据时代》,让我重新审视了"大数据"这个在信息时代异军突起的热点词汇,作为信息安全专业的我,对大数据这个词本身有着更多的热忱。

在网络上搜索到的解释是:"大数据",或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。特点:数量、速度、品种、真实性。

而舍恩伯格认为,大数据并不能定义一个确切的概念。他提到"大数据是人们获得新的认知,创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府和公民关系的方法。"这是一种更具有人文色彩和社会意义的诠释。

本书中,主要从三个方面论述,即思维变革、商业变革和管理变革。而舍恩伯格更是着重阐明三大观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。

对于观点一,我不敢苟同,毕竟大数据的实现需要一定的技术支持,而显然,现在这种技术还不够成熟,同时一些简单的事情运用大数据反倒是问题更加复杂化,因此这种大叔据的繁杂处理方式更适用于一些特定的情况,比如商业预测,人类dna的研究等。

而对第二种观点,我是十分赞同舍恩伯格所说的"大数据的简单算法比小数据的简单算法有效"。在计算机行业迅速发展中,一种新的简单可行的算法的出现,远没有计算机在运算速度和存储容量的发展快,而大数据算法似乎更能迎合这种大趋势。

观点三中提到的相关关系在大数据中可是重量级的,它能较快找到事物规律和对应的解决措施,当然,也不能完全忽视因果关系,毕竟人们在思维上更能够接受因果关系分析出的结果,而大数据预测的需要人们慢慢的适应才能接受。当我们完成相关关系的分析而又不满足于只知道"是什么"的时候,我们就可以转而研究"为什么"了,毕竟问题的根本在于因果。而舍恩伯格的全体数据和相关关系是大数据时代下的一种捷径。

但是在信息时代,信息安全问题的日趋凸显,数据独裁与隐私保护之间的矛盾更是立于风口浪尖,成为众矢之的,舍恩伯格在本书的最后章节曾试图寻找一种解决方式来摆脱这一种困境,但最终没能做到,但是他提出"大数据并不是一个充斥着算法的和机器的冰冷世界,人类的作用仍无法被完全代替。"这里表明人在数据时代同样的重要,数据是为人类服务的,也就该人类驱使下完成相应的目的。

在这样的大环境下,常引起我更多的思考和担忧。

大数据时代对于我们同是机遇与挑战,一些国家已开始步入大数据时代的行列,并在各个领域开始研究和使用。而对于我国庞大的人口,以及较大的领土面积,都可以在大数据时代为我们提供数据的保障,而能否面临挑战,在大国之间的新一轮角色角逐间崭露头角,我们更需要解决技术等方面的问题,更应在政策上逐步开放各领域的数据,保证数据来源、权限等问题得到解决,不断学习先进的计算机技术,缩小与其他国家的差距。

工业化、信息化,我们都向世界交出了一份让世界不能小觑的答案;

大数据时代的数据化我们又将怎样在新的风暴中所向披靡,如果大数据时代是一种必然趋势,那这就是我们这一代人的责任,是我们新的战场!

;

『拾』 大数据时代读书笔记知道是什么就够了,没必要知道

今天,一种可能的方式,亦是本书采取的方式,认为大数据是人们在大规专模数据的基础上可以做到的属事情,而这些事情在小规模数据的基础上是无法完成的。大数据是人们获得新的认知、创造新的价值的源泉;大数据还为改变市场、组织机构,以及政府与公民关系服务。

阅读全文

与大数据预测读书笔记相关的资料

热点内容
照片文件名中的数字代表什么 浏览:44
cs6裁切工具 浏览:235
数据库超过多少数据会卡 浏览:858
CAD落图文件 浏览:125
怎样翻译文件内容 浏览:679
戴尔r910安装linux 浏览:69
有线电视升级失败 浏览:560
火绒安全把文件删掉了在哪里找 浏览:503
手机qq网络状态方框 浏览:225
哪里有文件纸袋 浏览:873
复制的东西能不能粘贴到空文件夹 浏览:876
酒店没有网络如何缴费 浏览:380
win10开机滚动很久 浏览:520
可对元数据实例进行的操作有什么 浏览:934
什么后缀的文件kit 浏览:295
word行书字体库下载 浏览:579
iosuc版本历史版本 浏览:14
电影字幕文件制作软件 浏览:723
windows10免密码登录 浏览:762
iphone5s跑步记步 浏览:978

友情链接