导航:首页 > 网络数据 > 大数据工程师云课堂

大数据工程师云课堂

发布时间:2022-12-21 08:08:04

大数据工程师需要学哪些技术

一、大数据采集


大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。


数据库采集:流行的有Sqoop和ETL,传统的关系型数据库MySQL和Oracle 也依然充当着许多企业的数据存储方式。当然了,目前对于开源的Kettle和Talend本身,也集成了大数据集成内容,可实现hdfs,hbase和主流Nosq数据库之间的数据同步和集成。


网络数据采集:一种借助网络爬虫或网站公开API,从网页获取非结构化或半结构化数据,并将其统一结构化为本地数据的数据采集方式。


文件采集:包括实时文件采集和处理技术flume、基于ELK的日志采集和增量采集等等。


二、大数据预处理


大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列操作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。


三、大数据储存


大数据每年都在激增庞大的信息量,加上已有的历史数据信息,对整个业界的数据存储、处理带来了很大的机遇与挑战.为了满足快速增长的存储需求,云存储需要具备高扩展性、高可靠性、高可用性、低成本、自动容错和去中心化等特点.常见的云存储形式可以分为分布式文件系统和分布式数据库。其中,分布式文件系统采用大规模的分布式存储节点来满足存储大量文件的需求,而分布式的NoSQL数据库则为大规模非结构化数据的处理和分析提供支持。


四、大数据清洗


MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Rece(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。


关于大数据工程师需要学哪些技术,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

Ⅱ 奈学教育大数据课程怎么样

通过分析源码深入理解技术原理,对多样化数据处理进行全新剖析,奈学教育《大数据资深研发工程师》由大厂数据项目沉淀架构能力进行课程扩展。

Ⅲ 大数据云计算可以学习么

当然可以学!大数据课程难度大,有本科学历要求!云计算相对简单,但也需专要大专学历!

大数据学习内属容主要有:

①JavaSE核心技术;

②Hadoop平台核心技术、Hive开发、HBase开发;

③Spark相关技术、Scala基本编程;

④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;

⑤大数据项目开发实战,大数据系统管理优化等。

北大青鸟中博软件学院主教学楼

Ⅳ 大数据开发工程师要学习哪些课程

1.大数据工程师工作中会做什么?

集群运维:安装、测试、运维各种大数据组件
数据开发:细分一点的话会有ETL工程师、数据仓库工程师等
数据系统开发:偏重Web系统开发,比如报表系统、推荐系统等
这里面有很多内容其实是十分重合的,下面大致聊一下每一块内容大致需要学什么,以及侧重点。
2.集群运维
数据工程师,基本上是离不开集群搭建,比如hadoop、Spark、Kafka,不要指望有专门的运维帮你搞定,新组件的引入一般都要自己来动手的。
因此这就要求数据工程师了解各种大数据的组件。
由于要自己的安装各种开源的组件,就要求数据工程师要具备的能力: Linux 。要对Linux比较熟悉,能各种自己折腾着玩。
由于现在的大数据生态系统基本上是 JVM系的,因此在语言上,就不要犹豫了,JVM系的Java和Scala基本上跑不掉,Java基本上要学的很深,Scala就看情况了。
3. ETL
ETL在大数据领域主要体现在各种数据流的处理。这一块一方面体现在对一些组件的了解上,比如Sqoop、Flume、Kafka、Spark、MapRece;另一方面就是编程语言的需要,Java、Shell和Sql是基本功。
4.系统开发
我们大部分的价值最后都会由系统来体现,比如报表系统和推荐系统。因此就要求有一定的系统开发能力,最常用的就是 Java Web这一套了,当然Python也是挺方便的。
需要注意的是,一般数据开发跑不掉的就是各种提数据的需求,很多是临时和定制的需求,这种情况下, Sql就跑不掉了,老老实实学一下Sql很必要。
如何入门?
前面提到了一些数据工程师会用到的技能树,下面给一个入门的建议,完全个人意见。
1.了解行业情况
刚开始一定要了解清楚自己和行业的情况,很多人根本就分不清招聘信息中的大数据和数据挖掘的区别就说自己要转行,其实是很不负责的。不要总是赶热点,反正我就是经常被鄙视做什么大数据开发太Low,做数据就要做数据挖掘,不然永远都是水货。
2.选择学习途径
如果真是清楚自己明确地想转数据开发了,要考虑一下自己的时间和精力,能拿出来多少时间,而且在学习的时候最好有人能多指点下,不然太容易走弯路了。
在选择具体的学习途径时,要慎重一点,有几个选择:
自学
报班
找人指点
别的不说了,报班是可以考虑的,不要全指望报个辅导班就能带你上天,但是可以靠他帮你梳理思路。如果有专业从事这一行的人多帮帮的话,是最好的。不一定是技术好,主要是可沟通性强。
3.学习路线
学习路线,下面是一个大致的建议:
第一阶段
先具备一定的Linux和Java的基础,不一定要特别深,先能玩起来,Linux的话能自己执行各种操作,Java能写点小程序。这些事为搭建Hadoop环境做准备。
学习Hadoop,学会搭建单机版的Hadoop,然后是分布式的Hadoop,写一些MR的程序。
接着学学Hadoop生态系统的其它大数据组件,比如Spark、Hive、Hbase,尝试去搭建然后跑一些官网的Demo。
Linux、Java、各种组件都有一些基础后,要有一些项目方面的实践,这时候找一些成功案例,比如搜搜各种视频教程中如何搞一个推荐系统,把自己学到的用起来。
第二阶段
到这里是一个基本的阶段了,大致对数据开发有一些了解了。接着要有一些有意思内容可以选学。
数据仓库体系:如何搞数据分层,数据仓库体系该如何建设,可以有一些大致的了解。
用户画像和特征工程:这一部分越早了解越好。
一些系统的实现思路:比如调度系统、元数据系统、推荐系统这些系统如何实现。
第三阶段
下面要有一些细分的领域需要深入进行,看工作和兴趣来选择一些来深入进行
分布式理论:比如Gossip、DHT、Paxo这些构成了各种分布式系统的底层协议和算法,还是要学一下的。
数据挖掘算法:算法是要学的,但是不一定纯理论,在分布式环境中实现算法,本身就是一个大的挑战。
各种系统的源码学习:比如Hadoop、Spark、Kafka的源码,想深入搞大数据,源码跑不掉。

Ⅳ 大数据培训课程介绍,大数据学习课程要学习哪些

《大数据实训课程资料》网络网盘资源免费下载

链接:https://pan..com/s/1RiGvjn2DlL5pPISCG_O0Sw

?pwd=zxcv 提取码:zxcv

大数据实训课程资料|云计算与虚拟化课程资源|课程实验指导书综合版|机器学习与算法分析课程资源|Spark课程资源|Python课程资源|Hadoop技术课程资源|云计算课程资料.zip|微课.zip|算法建模与程序示例.zip|spark课程资源.zip|hadoop课程资源.zip|实验指导书|教学视频|教学PPT

Ⅵ 大数据学习需要哪些课程

主修课程抄:面向对象袭程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等

Ⅶ 云计算与大数据专业的主要课程是什么

大数据的基础知识,科普类的,个人去买本书就行了,大数据时代这样的书很多介绍的大数据的。

另外大数据的技术,如数据采集,数据存取,基础架构,数据处理,统计分析,数据挖掘,模型预测,结果呈现。

大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术等。

主修课程:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。

旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。


(7)大数据工程师云课堂扩展阅读:

应用领域

大数据技术被渗透到社会的方方面面,医疗卫生、商业分析、国家安全、食品安全、金融安全等方面。2014年,从大数据作为国家重要的战略资源和加快实现创新发展的高度,在全社会形成“用数据来说话、用数据来管理、用数据来决策、用数据来创新”的文化氛围与时代特征。

大数据科学将成为计算机科学、人工智能技术(虚拟现实、商业机器人、自动驾驶、全能的自然语言处理)、数字经济及商业、物联网应用、还有各个人文社科领域发展的核心。

Ⅷ 大数据云计算课程视频教程

企业中都使用Linux来搭建部署大数据项目。学习熟悉关系型数据库Mysql以及Oracle,了解大数据的源内头,数据从何而来,如容何集成整合大数据,才能更好的了解大数据。扣丁平台大数据开发课程了解hadoop的用途,快速搭建hadoop实验环境,为以后学习和构建大数据项目打下坚实基础。

Ⅸ 大数据要学哪些课程

大数据存储阶段:来百源hbase、hive、sqoop。
大数度据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶内段:实操企业大数据处理业务场景,分析需求、解决方案实施,技术实战应用。

Ⅹ 大数据云计算好不好学习

大数据学习并不是高深莫测的,虽然它并没有多简单,但是通过努力,零基础的朋友也是完全可以掌握的。

大数据前景:
1、市场需求大
随着信息产业的迅猛发展,行业人才需求量也在逐年扩大。据国内权威数据统计,未来五年,我国信息化人才总需求量高达1500万— 2000万人。以大数据分析为例,我国大数据人才需求以每年递增20%的速度增长,每年新增需求近百万。
2、就业范围广
一般稍微有规模的企业,都有自己的IT部门,如果企业里的信息量比较大,就势必需要数据库的管理、企业信息化管理等,学员除了去新兴行业外,还可以去这些比较有规模的企业,担任信息部的重要岗位。

大数据专业就业方向:
1. Hadoop大数据开发方向
市场需求旺盛,大数据培训的主体,目前IT培训机构的重点
对应岗位:大数据开发工程师、爬虫工程师、数据分析师 等
2. 数据挖掘、数据分析&机器学习方向
学习起点高、难度大,市面上只有很少的培训机构在做。
对应岗位:数据科学家、数据挖掘工程师、机器学习工程师等
3. 大数据运维&云计算方向
市场需求中等,更偏向于Linux、云计算学科
对应岗位:大数据运维工程师

阅读全文

与大数据工程师云课堂相关的资料

热点内容
ubunturoot文件夹 浏览:745
手机文件误删能否恢复数据 浏览:955
照片文件名中的数字代表什么 浏览:44
cs6裁切工具 浏览:235
数据库超过多少数据会卡 浏览:858
CAD落图文件 浏览:125
怎样翻译文件内容 浏览:679
戴尔r910安装linux 浏览:69
有线电视升级失败 浏览:560
火绒安全把文件删掉了在哪里找 浏览:503
手机qq网络状态方框 浏览:225
哪里有文件纸袋 浏览:873
复制的东西能不能粘贴到空文件夹 浏览:876
酒店没有网络如何缴费 浏览:380
win10开机滚动很久 浏览:520
可对元数据实例进行的操作有什么 浏览:934
什么后缀的文件kit 浏览:295
word行书字体库下载 浏览:579
iosuc版本历史版本 浏览:14
电影字幕文件制作软件 浏览:723

友情链接