导航:首页 > 网络数据 > 大数据负载

大数据负载

发布时间:2022-12-21 04:39:16

1. 保护大数据安全的10个要点

一项对2021年数据泄露的分析显示,总共有50亿份数据被泄露,这对所有参与大数据管道工作的人来说,从开发人员到DevOps工程师,安全性与基础业务需求同等重要。

大数据安全是指在存储、处理和分析过于庞大和复杂的数据集时,采用任何措施来保护数据免受恶意活动的侵害,传统数据库应用程序无法处理这些数据集。大数据可以混合结构化格式(组织成包含数字、日期等的行和列)或非结构化格式(社交媒体数据、PDF 文件、电子邮件、图像等)。不过,估计显示高达90%的大数据是非结构化的。

大数据的魅力在于,它通常包含一些隐藏的洞察力,可以改善业务流程,推动创新,或揭示未知的市场趋势。由于分析这些信息的工作负载通常会将敏感的客户数据或专有数据与第三方数据源结合起来,因此数据安全性至关重要。声誉受损和巨额经济损失是大数据泄露和数据被破坏的两大主要后果。

在确保大数据安全时,需要考虑三个关键阶段:

当数据从源位置移动到存储或实时摄取(通常在云中)时,确保数据的传输

保护大数据管道的存储层中的数据(例如Hadoop分布式文件系统)

确保输出数据的机密性,例如报告和仪表板,这些数据包含通过Apache Spark等分析引擎运行数据收集的情报

这些环境中的安全威胁类型包括不适当的访问控制、分布式拒绝服务(DDoS)攻击、产生虚假或恶意数据的端点,或在大数据工作期间使用的库、框架和应用程序的漏洞。

由于所涉及的架构和环境复杂性,大数据安全面临着许多挑战。在大数据环境中,不同的硬件和技术在分布式计算环境中相互作用。比如:

像Hadoop这样的开源框架在设计之初并没有考虑到安全性

依赖分布式计算来处理这些大型数据集意味着有更多的系统可能出错

确保从端点收集的日志或事件数据的有效性和真实性

控制内部人员对数据挖掘工具的访问,监控可疑行为

运行标准安全审计的困难

保护非关系NoSQL数据库

这些挑战是对保护任何类型数据的常见挑战的补充。

静态数据和传输中数据的可扩展加密对于跨大数据管道实施至关重要。可扩展性是这里的关键点,因为除了NoSQL等存储格式之外,需要跨分析工具集及其输出加密数据。加密的作用在于,即使威胁者设法拦截数据包或访问敏感文件,实施良好的加密过程也会使数据不可读。

获得访问控制权可针对一系列大数据安全问题提供强大的保护,例如内部威胁和特权过剩。基于角色的访问可以帮助控制对大数据管道多层的访问。例如,数据分析师可以访问分析工具,但他们可能不应该访问大数据开发人员使用的工具,如ETL软件。最小权限原则是访问控制的一个很好的参考点,它限制了对执行用户任务所必需的工具和数据的访问。

大数据工作负载所需要的固有的大存储容量和处理能力使得大多数企业可以为大数据使用云计算基础设施和服务。但是,尽管云计算很有吸引力,暴露的API密钥、令牌和错误配置都是云中值得认真对待的风险。如果有人让S3中的AWS数据湖完全开放,并且对互联网上的任何人都可以访问,那会怎么样?有了自动扫描工具,可以快速扫描公共云资产以寻找安全盲点,从而更容易降低这些风险。

在复杂的大数据生态系统中,加密的安全性需要一种集中的密钥管理方法,以确保对加密密钥进行有效的策略驱动处理。集中式密钥管理还可以控制从创建到密钥轮换的密钥治理。对于在云中运行大数据工作负载的企业,自带密钥 (BYOK) 可能是允许集中密钥管理而不将加密密钥创建和管理的控制权交给第三方云提供商的最佳选择。

在大数据管道中,由于数据来自许多不同的来源,包括来自社交媒体平台的流数据和来自用户终端的数据,因此会有持续的流量。网络流量分析提供了对网络流量和任何潜在异常的可见性,例如来自物联网设备的恶意数据或正在使用的未加密通信协议。

2021年的一份报告发现,98%的组织感到容易受到内部攻击。在大数据的背景下,内部威胁对敏感公司信息的机密性构成严重风险。有权访问分析报告和仪表板的恶意内部人员可能会向竞争对手透露见解,甚至提供他们的登录凭据进行销售。从内部威胁检测开始的一个好地方是检查常见业务应用程序的日志,例如 RDP、VPN、Active Directory 和端点。这些日志可以揭示值得调查的异常情况,例如意外的数据下载或异常的登录时间。

威胁搜寻主动搜索潜伏在您的网络中未被发现的威胁。这个过程需要经验丰富的网络安全分析师的技能组合,利用来自现实世界的攻击、威胁活动的情报或来自不同安全工具的相关发现来制定关于潜在威胁的假设。具有讽刺意味的是,大数据实际上可以通过发现大量安全数据中隐藏的洞察力来帮助改进威胁追踪工作。但作为提高大数据安全性的一种方式,威胁搜寻会监控数据集和基础设施,以寻找表明大数据环境受到威胁的工件。

出于安全目的监视大数据日志和工具会产生大量信息,这些信息通常最终形成安全信息和事件管理(SIEM)解决方案。

用户行为分析比内部威胁检测更进一步,它提供了专门的工具集来监控用户在与其交互的系统上的行为。通常情况下,行为分析使用一个评分系统来创建正常用户、应用程序和设备行为的基线,然后在这些基线出现偏差时进行提醒。通过用户行为分析,可以更好地检测威胁大数据环境中资产的保密性、完整性或可用性的内部威胁和受损的用户帐户。

未经授权的数据传输的前景让安全领导者彻夜难眠,特别是如果数据泄露发生在可以复制大量潜在敏感资产的大数据管道中。检测数据泄露需要对出站流量、IP地址和流量进行深入监控。防止数据泄露首先来自于在代码和错误配置中发现有害安全错误的工具,以及数据丢失预防和下一代防火墙。另一个重要方面是在企业内进行教育和提高认识。

框架、库、软件实用程序、数据摄取、分析工具和自定义应用程序——大数据安全始于代码级别。 无论是否实施了上述公认的安全实践,代码中的安全缺陷都可能导致数据泄漏。 通过在软件开发生命周期中检测自研代码及开源组件成分的安全性,加强软件安全性来防止数据丢失。

2. 让你的大数据应用具备更高性能

让你的大数据应用具备更高性能

大数据应用在大型企业中变得越来越常见。企业具备历史数据分析和趋势预测的能力,能够为自身创造可观价值;此外,商业智能分析不仅可以避免出现运输中断、资源短缺,还能减少服务水平协议SLA和预测客户所需的产品和服务。BI能够给企业带来巨额红利。

随着购物节的临近,利用客户交互的明显增加,可以预期到你的企业将会开展更多的BI活动。通过优化大数据应用,提高性能,IT企业应该积极为更大数据量和更多的分析活动做好准备

从哪里开始

DBA、支持人员应将他们的努力集中在以下几个领域:灾难恢复,数据仓库性能和数据组织以及大数据的应用中的数据存储。

灾难恢复

大多数IT人员认为灾难恢复并不属于性能调优的范畴。在大数据环境下,这一误解又有所加深,因为人们普遍认为建立在大数据应用上的数据分析,相对于计算工资,总帐,订单输入,运输和客户服务之类的应用来说,并不十分重要。

但是,大数据应用在过去的几年里已经日趋成熟,企业所使用的业务分析功能也随之日臻完善。曾经的临时查询现在被作为常规报表来执行;额外的历史数据允许查询对大量数据进行比较和分析,通过进行负载均衡,商业分析软件可以让你的大数据应用得以更加方便快捷的执行查询。这使得今天的大数据应用提供了大量的可操作数据,可以提供更好的客户服务,消耗更低的成本并获得更高的利润。

这意味着,即使大数据应用遭遇一次很小的中断,都可能在你的用户群中产生连锁反应,报表无法按时交付、查询无法正常运行、以及那些基于商业分析结果的决策被延迟等。

DBA应该经常审核DR计划,以保证大数据应用在其控制之下。他们需要关注下列几种情况。

审核恢复过程。一年中最忙的时候就是遭到灾难性故障的时候。中断将会显著的影响企业的营利,特别是在事务频繁的时期。DBA应该协助恢复过程,避免浪费时间和精力。

验证恢复时间。很多DR计划包括一个目标恢复时间,表示可以完全恢复的最晚时间点。对于数据库来说,这可能意味着从备份文件恢复数据,并将日志从备份时间调整到恢复时间点。在高峰时期,数据和事务量较大;因此,恢复时间可能延长。为了降低这种风险,DBA应该考虑实施更频繁的关键数据库备份。由于在数据表恢复过程中,通常需要花时间来重建索引,DBA应该将DB2的备份和恢复能力考虑在内。

数据仓库性能

一般来说,大数据的存储和分析或存在于企业数据仓库(EDW)内部,或者与其相关。要整合各地的大数据解决方案,你需要为每一部分的EDW过程设置接口。下面是一个关于EDW子系统的总结,涉及大数据对它们的影响,以及如何提前制定性能计划。

数据获取和采集。包括一个在数据转移到EDW之前,用于暂存数据的方案,以避免硬件故障造成的延误。还应确定这些新资产和流程将如何影响你的灾难恢复计划。开发人员喜欢在旺季开始之前实现新功能或加固操作系统。其中一些增强数据可能需要传递到你的数据仓库,随后为大数据应用可能执行的查询提供服务。在此之前你要确定,这些新应用或者改动后的应用可能需要一个业务分析组件,

数据转换和迁移。快速迁移大量数据可能需要额外的资源,甚至特殊的软件或硬件。你的网络有能力将日益增长的数据从操作系统迁移到数据仓库,并最终部署到大数据应用中么?

数据访问和分析。随着数据持续填满仓库,在仓库和大数据的应用合并后,用户可以运行分析软件。捕获数据访问路径和数据分布统计信息并留作分析。你需要确定是否有足够的系统资源(CPU、磁盘存储、网络容量等)来支持预期的查询工作负载。

数据归档。大量的数据分析,庞大的数据量可能会占用宝贵的存储介质,使一些进程运行缓慢。IT和业务合作伙伴必须决定如何以及何时将旧的大数据存档清除,以及它是否必须保留以供日后使用。

大数据的组织和存储

供应商销售的第一大数据应用通常是即插即用型的。几乎没有调优选项。主要的原因是,应用依赖一个专有的,混合的硬件和软件解决方案,该解决方案使用大规模并行存储和I / O,以实现对分析查询的快速应答。

客户对于大数据分析的需求日益成熟,供应商解决方案需要提供多个同步存储和检索数据的方法。其结果是供应商设计并实现了可选数据存储和检索选项。一个例子是指定关键记录如何存储的能力。设想一个大数据应用,实现了一百个独立的磁盘驱动器。原始的应用通常将记录随机分散到这些驱动器。一些分析查询可以在逻辑上分成一百个独立的查询,每个查询访问一个驱动器,所有查询的结果合并成最终的答案,比相同的序列数据库查询快上一百倍。

然而,考虑一个基于键的,需要连接两个表的查询。随机分布在一百个磁盘驱动器的两个表将不再具备性能优势,因为行连接操作与两个表存储在同一个磁盘驱动器上时已经完全不同了。

目前很多大数据应用解决方案包含选项和算法以支持跨驱动器的表查询,存储是按键值排序的,并不是随机分布。通过在每一个磁盘驱动器存储相同范围的键值行,行连接操作将在同一个驱动器上执行。因此按键值指定数据分布的能力提供了巨大性能提升。

考虑到这一点,以下是一些建议,可用于大数据应用的性能调优。

检查数据分布统计信息。使用RunStats程序来收集表键和数据分布信息。特别是主键和外键索引,因为表连接通常会基于这些列。

审查数据访问路径。在本质上分析查询是临时的,数据表最有可能使用相同或相似的访问路径加被访问。捕获和分析这些访问路径寻找常见的连接方法。这一信息,加上数据分布统计信息,将帮助您确定数据表应如何按键值分布在大数据应用中。

存储数据访问路径以进行分析。作为上面的建议的延伸,你应该有一个方法用于捕获和储存分析查询的访问路径。方法返回结果应展示出表和索引是如何被访问,以及使用了哪些索引,执行了哪些排序等等。查询获取更多的数据,数据量增加返过来审查你的历史访问路径并比较。数据量增加引起的变化,观察访问路径的变化都可能表明性能出了问题。

总结

通过审核数据恢复流程,提高数据仓库的性能,评估当前大数据应用性能的优化选项,可以让你的大数据应用为即将到来高峰做好准备。大数据应用的数据组织方式对性能有这十分显著的影响;此外,你还应该仔细考虑可能发生的故障,为灾难做好准备,即使大数据应用上一个小的中断都可能对企业利益造成重大影响。

以上是小编为大家分享的关于让你的大数据应用具备更高性能的相关内容,更多信息可以关注环球青藤分享更多干货

3. 企业应该如何在大数据基础架构方面做出选择

企业应该如何在大数据基础架构方面做出选择

如果询问十家公司他们为了运行大数据负载需要使用怎样的基础架构,那么可能会得到十种不同的答案。现在这个领域当中几乎没有可以遵循的原则,甚至没有可以参考的最佳实践。

不管是从资源还是从专业性方面来说,大数据分析已经成为基础架构领域当中真正的难题。顾名思义,大数据分析工具所针对的数据集合,规模将会非常庞大,并且需要大量的计算、存储和网络资源来满足性能需求。但是这些大数据工具通常是由超大规模企业开发的,这些企业并不存在普通企业需要考虑的同等级安全问题和高可用性问题,而主流IT企业还没有深入了解这些工具,再加上大数据在投资回报率方面的不确定性,导致只有非常少的企业愿意在大数据方面进行投入。

此外,即便对于曾经在Hadoop、Spark和类似产品上运行过大数据集群的部分企业来说,也会在大数据基础架构方面遇到技术和业务方面的挑战。

大数据带来大问题

一家大型远程通讯提供商正在构建一种新的数字服务,预计在今年年底正式推出,并且准备使用Hadoop来分析这种服务所产生的内容、使用情况和收入(广告服务)数据。但是由于这种服务是全新的,因此很难分析应该使用哪种大数据基础架构,负责这个项目的技术副总裁表示。

“对于一个还没有推出的项目来说,我们不可能进行任何容量规划,”他说。

确实,现在很多大数据项目仍然处于初级阶段。“大多数大数据项目的性质比我们想象的还要低,” 可扩展存储基础架构提供商Coho Data CTO Andrew Warfield表示。

即便企业还不是十分了解大数据技术,但这并不意味着企业不应该在大数据方面投入精力。“但是运行这种技术可能面临着很大风险,提前认识到这点非常重要,” Warfield说,他认为企业应该提前考虑基础架构方面的因素。

对于这家远程通讯提供商来说,他们将会采用一种渐进的方式,使用来自于BlueData Software的软件在商用硬件环境当中运行大数据集群,这样就能够从现有的存储系统上访问数据了。

无处不在的数据

如果数据来自于云,那么当然可以直接在云中进行分析;如果数据全部位于本地,那么底层的基础架构也应该位于本地。但是如果数据分散在不同位置,那么无疑会使得基础架构更加复杂。

远程通讯提供商的服务将会同时使用来自于云和本地的数据。对于任何大数据解决方案来说,考虑到合规性、节省时间和网络带宽等因素,能够同时支持两种数据来源都是十分重要的。“同步生产环境当中的数据是一件非常困难的事情,”这位副总裁说,“我们希望将所有的实例全都指向一个单一数据源。”

此外,虽然数据科学家想要分析的信息是可用的,但是现在还不能进行使用,因为其位于大数据计算工具无法访问的存储基础架构当中,Warfield说。一种解决方案是存储硬件使用Hadoop Distributed File System或者RESTful API这样的协议公开这些数据。

注意延迟

对于特性类型的大数据分析来说,将数据从存储阵列移动到计算环境所花费的时间将会对性能造成严重影响。但是如果不将数据跨越整个网络移动到计算环境当中,而是将应用程序移动到数据附近以降低延迟,将会怎样呢?

将计算环境移动到数据附近并不是一种全新的概念,但是现在出现了一种前所未有的实现方式:Docker。比如Coho Data和Intel通过合作证明了这种概念的有效性,在一个大型金融服务公司当中,使用Docker格式封装计算节点,之后在上面直接运行Hadoop负载。

在存储阵列上直接运行Docker容器,这样做的意义在于直接对附近的数据进行分析,而不再需要跨网络移动数据,同时利用任何可用的计算资源。“相比于其他存储平台来说,大数据平台的CPU使用率通常会很高,” Warfield说。“更何况如果你将闪存加入其中,那么问题就会变成‘我该如何从这种资源当中获得更多价值?’”

直接在存储阵列当中运行容器化应用程序是一件非常有趣的事情,但是需要提前对负载进行认真评估,以确保其能够很好地适应当前环境,为建筑行业提供文档管理服务的Signature Tech Studios公司副总裁Bubba Hines说。这种服务基于Amazon Web Services,使用来自于Zadara Storage的存储服务。这家公司最近开始评估新的Zadara Container Service,其中容器化应用程序运行在存储阵列上,可以直接访问本地磁盘。根据Hines的想法,现在有几种可能的使用情况:在存储阵列上运行其灾难恢复软件的容器版本来持续监控用户数据和工作方面的变化,更改或者验证主要存储数据。

但是如果使用Zadara Container Service处理全部数据将没有什么意义。Signature Tech Studio的系统正在按照计划执行数据转换,并且已经实现大规模容器化了。但是“我们可能不会将所有Docker容器移动到Zadara容器服务当中,因为从体积和规模方面考虑这样做并没有意义,”Hines说。“我们必须寻找能够真正从降低延迟当中获利的负载。”

以上是小编为大家分享的关于企业应该如何在大数据基础架构方面做出选择的相关内容,更多信息可以关注环球青藤分享更多干货

4. 大数据会带来哪些问题

一、分布式系统


大数据解决方案将数据和操作分布在许多系统中,以实现更快的处理和分析。这种分布式系统可以平衡负载,避免单点故障。但是这样的系统容易受到安全威胁,黑客只要攻击一个点就可以渗透整个网络。


二.数据存取


大数据系统需要访问控制来限制对敏感数据的访问,否则,任何用户都可以访问机密数据,有些用户可能会出于恶意使用。此外,网络犯罪分子可以入侵与大数据系统相连的系统,窃取敏感数据。因此,使用大数据的公司需要检查和验证每个用户的身份。


三.数据不正确


网络犯罪分子可以通过操纵存储的数据来影响大数据系统的准确性。因此,网络犯罪分子可以创建虚假数据,并将这些数据提供给大数据系统。比如医疗机构可以利用大数据系统研究患者的病历,而黑客可以修改这些数据,产生不正确的诊断结果。


四.侵犯隐私


大数据系统通常包含机密数据,这是很多人非常关心的问题。这样的大数据隐私威胁已经被全世界的专家讨论过了。此外,网络犯罪分子经常攻击大数据系统以破坏敏感数据。这种数据泄露已经成为头条新闻,导致数百万人的敏感数据被盗。


五、云安全性不足


大数据系统收集的数据通常存储在云中,这可能是一个潜在的安全威胁。网络犯罪分子破坏了许多知名公司的云数据。如果存储的数据没有加密,并且没有适当的数据安全性,就会出现这些问题。

5. typecho对于大数据负载能力如何比如1000万数据,有谁测试过吗

众所周知,java在处理数据量比较大的时候,加载到内存必然会导致内存溢出,而在一些数据处理中我们不得不去处理海量数据,在做数据处理中,我们常见的手段是分解,压缩,并行,临时文件等方法;

例如,我们要将数据库(不论是什么数据库)的数据导出到一个文件,一般是Excel
或文本格式的CSV;对于Excel来讲,对于POI和JXL的接口,你很多时候没有办法去控制内存什么时候向磁盘写入,很恶心,而且这些API在内存构
造的对象大小将比数据原有的大小要大很多倍数,所以你不得不去拆分Excel,还好,POI开始意识到这个问题,在3.8.4的版本后,开始提供
cache的行数,提供了SXSSFWorkbook的接口,可以设置在内存中的行数,不过可惜的是,他当你超过这个行数,每添加一行,它就将相对行数前
面的一行写入磁盘(如你设置2000行的话,当你写第20001行的时候,他会将第一行写入磁盘),其实这个时候他些的临时文件,以至于不消耗内存,不过
这样你会发现,刷磁盘的频率会非常高,我们的确不想这样,因为我们想让他达到一个范围一次性将数据刷如磁盘,比如一次刷1M之类的做法,可惜现在还没有这
种API,很痛苦,我自己做过测试,通过写小的Excel比使用目前提供刷磁盘的API来写大文件,效率要高一些,而且这样如果访问的人稍微多一些磁盘
IO可能会扛不住,因为IO资源是非常有限的,所以还是拆文件才是上策;而当我们写CSV,也就是文本类型的文件,我们很多时候是可以自己控制的,不过你
不要用CSV自己提供的API,也是不太可控的,CSV本身就是文本文件,你按照文本格式写入即可被CSV识别出来;如何写入呢?下面来说说。。。

在处理数据层面,如从数据库中读取数据,生成本地文件,写代码为了方便,我们未必要
1M怎么来处理,这个交给底层的驱动程序去拆分,对于我们的程序来讲我们认为它是连续写即可;我们比如想将一个1000W数据的数据库表,导出到文件;此
时,你要么进行分页,oracle当然用三层包装即可,mysql用limit,不过分页每次都会新的查询,而且随着翻页,会越来越慢,其实我们想拿到一
个句柄,然后向下游动,编译一部分数据(如10000行)将写文件一次(写文件细节不多说了,这个是最基本的),需要注意的时候每次buffer的数据,
在用outputstream写入的时候,最好flush一下,将缓冲区清空下;接下来,执行一个没有where条件的SQL,会不会将内存撑爆?是的,这个问题我们值得去思考下,通过API发现可以对SQL进行一些操作,例如,通过:PreparedStatement
statement =
connection.prepareStatement(sql),这是默认得到的预编译,还可以通过设置:PreparedStatement
statement = connection.prepareStatement(sql ,
ResultSet.TYPE_FORWARD_ONLY ,
ResultSet.CONCUR_READ_ONLY);

来设置游标的方式,以至于游标不是将数据直接cache到本地内存,然后通过设置statement.setFetchSize(200);设置游标每次遍历的大小;OK,这个其实我用过,oracle用了和没用没区别,因为oracle的jdbc
API默认就是不会将数据cache到java的内存中的,而mysql里头设置根本无效,我上面说了一堆废话,呵呵,
我只是想说,java提供的标准API也未必有效,很多时候要看厂商的实现机制,还有这个设置是很多网上说有效的,但是这纯属抄袭;对于oracle上面
说了不用关心,他本身就不是cache到内存,所以java内存不会导致什么问题,如果是mysql,首先必须使用5以上的版本,然后在连接参数上加上
useCursorFetch=true这个参数,至于游标大小可以通过连接参数上加上:defaultFetchSize=1000来设置,例如:

jdbc:mysql://xxx.xxx.xxx.xxx:3306/abc?zeroDateTimeBehavior=convertToNull&useCursorFetch=true&defaultFetchSize=1000

上次被这个问题纠结了很久(mysql的数据老导致程序内存膨胀,并行2个直接系统
就宕了),还去看了很多源码才发现奇迹竟然在这里,最后经过mysql文档的确认,然后进行测试,并行多个,而且数据量都是500W以上的,都不会导致内
存膨胀,GC一切正常,这个问题终于完结了。

我们再聊聊其他的,数据拆分和合并,当数据文件多的时候我们想合并,当文件太大想要
拆分,合并和拆分的过程也会遇到类似的问题,还好,这个在我们可控制的范围内,如果文件中的数据最终是可以组织的,那么在拆分和合并的时候,此时就不要按
照数据逻辑行数来做了,因为行数最终你需要解释数据本身来判定,但是只是做拆分是没有必要的,你需要的是做二进制处理,在这个二进制处理过程,你要注意
了,和平时read文件不要使用一样的方式,平时大多对一个文件读取只是用一次read操作,如果对于大文件内存肯定直接挂掉了,不用多说,你此时因该每
次读取一个可控范围的数据,read方法提供了重载的offset和length的范围,这个在循环过程中自己可以计算出来,写入大文件和上面一样,不要
读取到一定程序就要通过写入流flush到磁盘;其实对于小数据量的处理在现代的NIO技术的中也有用到,例如多个终端同时请求一个大文件下载,例如视频
下载吧,在常规的情况下,如果用java的容器来处理,一般会发生两种情况:

其一为内存溢出,因为每个请求都要加载一个文件大小的内存甚至于更多,因为java
包装的时候会产生很多其他的内存开销,如果使用二进制会产生得少一些,而且在经过输入输出流的过程中还会经历几次内存拷贝,当然如果有你类似nginx之
类的中间件,那么你可以通过send_file模式发送出去,但是如果你要用程序来处理的时候,内存除非你足够大,但是java内存再大也会有GC的时
候,如果你内存真的很大,GC的时候死定了,当然这个地方也可以考虑自己通过直接内存的调用和释放来实现,不过要求剩余的物理内存也足够大才行,那么足够
大是多大呢?这个不好说,要看文件本身的大小和访问的频率;

其二为假如内存足够大,无限制大,那么此时的限制就是线程,传统的IO模型是线程是
一个请求一个线程,这个线程从主线程从线程池中分配后,就开始工作,经过你的Context包装、Filter、拦截器、业务代码各个层次和业务逻辑、访
问数据库、访问文件、渲染结果等等,其实整个过程线程都是被挂住的,所以这部分资源非常有限,而且如果是大文件操作是属于IO密集型的操作,大量的CPU
时间是空余的,方法最直接当然是增加线程数来控制,当然内存足够大也有足够的空间来申请线程池,不过一般来讲一个进程的线程池一般会受到限制也不建议太多
的,而在有限的系统资源下,要提高性能,我们开始有了new
IO技术,也就是NIO技术,新版的里面又有了AIO技术,NIO只能算是异步IO,但是在中间读写过程仍然是阻塞的(也就是在真正的读写过程,但是不会
去关心中途的响应),还未做到真正的异步IO,在监听connect的时候他是不需要很多线程参与的,有单独的线程去处理,连接也又传统的socket变
成了selector,对于不需要进行数据处理的是无需分配线程处理的;而AIO通过了一种所谓的回调注册来完成,当然还需要OS的支持,当会掉的时候会
去分配线程,目前还不是很成熟,性能最多和NIO吃平,不过随着技术发展,AIO必然会超越NIO,目前谷歌V8虚拟机引擎所驱动的node.js就是类
似的模式,有关这种技术不是本文的说明重点;

将上面两者结合起来就是要解决大文件,还要并行度,最土的方法是将文件每次请求的大
小降低到一定程度,如8K(这个大小是经过测试后网络传输较为适宜的大小,本地读取文件并不需要这么小),如果再做深入一些,可以做一定程度的
cache,将多个请求的一样的文件,cache在内存或分布式缓存中,你不用将整个文件cache在内存中,将近期使用的cache几秒左右即可,或你
可以采用一些热点的算法来配合;类似迅雷下载的断点传送中(不过迅雷的网络协议不太一样),它在处理下载数据的时候未必是连续的,只要最终能合并即可,在
服务器端可以反过来,谁正好需要这块的数据,就给它就可以;才用NIO后,可以支持很大的连接和并发,本地通过NIO做socket连接测试,100个终
端同时请求一个线程的服务器,正常的WEB应用是第一个文件没有发送完成,第二个请求要么等待,要么超时,要么直接拒绝得不到连接,改成NIO后此时
100个请求都能连接上服务器端,服务端只需要1个线程来处理数据就可以,将很多数据传递给这些连接请求资源,每次读取一部分数据传递出去,不过可以计算
的是,在总体长连接传输过程中总体效率并不会提升,只是相对相应和所开销的内存得到量化控制,这就是技术的魅力,也许不要太多的算法,不过你得懂他。

类似的数据处理还有很多,有些时候还会将就效率问题,比如在HBase的文件拆分和
合并过程中,要不影响线上业务是比较难的事情,很多问题值得我们去研究场景,因为不同的场景有不同的方法去解决,但是大同小异,明白思想和方法,明白内存
和体系架构,明白你所面临的是沈阳的场景,只是细节上改变可以带来惊人的效果。
-

6. 详细解读你所不了解的“大数据”

详细解读你所不了解的“大数据”
进入2012年,大数据(bigdata)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的证券公司等写进了投资推荐报告。
一、大数据出现的背景
进入2012年,大数据(bigdata)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的证券公司等写进了投资推荐报告。
数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然现在企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。大数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。
最早提出大数据时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”“大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。
大数据在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量,大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。

二、什么是大数据?
信息技术领域原先已经有“海量数据”、“大规模数据”等概念,但这些概念只着眼于数据规模本身,未能充分反映数据爆发背景下的数据处理与应用需求,而“大数据”这一新概念不仅指规模庞大的数据对象,也包含对这些数据对象的处理和应用活动,是数据对象、技术与应用三者的统一。
1、大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据对象既可能是实际的、有限的数据集合,如某个政府部门或企业掌握的数据库,也可能是虚拟的、无限的数据集合,如微博、微信、社交网络上的全部信息。
大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从数据的类别上看,“大数据”指的是无法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。
亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。研发小组对大数据的定义:“大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。”Kelly说:“大数据是可能不包含所有的信息,但我觉得大部分是正确的。对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。
2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
3、大数据应用,是指对特定的大数据集合,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据集合和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才能充分实现大数据的价值。
当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。

三、大数据的类型和价值挖掘方法
1、大数据的类型大致可分为三类:
1)传统企业数据(Traditionalenterprisedata):包括 CRMsystems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记录(CallDetailRecords),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。
3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。
2、大数据挖掘商业价值的方法主要分为四种:
1)客户群体细分,然后为每个群体量定制特别的服务。
2)模拟现实环境,发掘新的需求同时提高投资的回报率。
3)加强部门联系,提高整条管理链条和产业链条的效率。
4)降低服务成本,发现隐藏线索进行产品和服务的创新。
四、大数据的特点
业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:
1、是数据体量巨大
数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;网络资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。
2、是数据类别大和类型多样
数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。
3、是处理速度快
在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
4、是价值真实性高和密度低
数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。

五、大数据的作用
1、对大数据的处理分析正成为新一代信息技术融合应用的结点
移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(RamayyaKrishnan,卡内基·梅隆大学海因兹学院院长)。
2、大数据是信息产业持续高速增长的新引擎
面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
3、大数据利用将成为提高核心竞争力的关键因素
各 行各业的决策正在从“业务驱动”转变“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。
4、大数据时代科学研究的方法手段将发生重大改变
例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。

六、大数据的商业价值
1、对顾客群体细分
“大数据”可以对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和“大数据”的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。
2、模拟实境
运用“大数据”模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。Blog、Twitter、Facebook和微博等社交网络也在产生着海量的数据。
云计算和“大数据”分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以数据化。“大数据”技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案投入回报最高。
3、提高投入回报率
提高“大数据”成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。“大数据”能力强的部门可以通过云计算、互联网和内部搜索引擎把”大数据”成果和“大数据”能力比较薄弱的部门分享,帮助他们利用“大数据”创造商业价值。
4、数据存储空间出租
企业和个人有着海量信息存储的需求,只有将数据妥善存储,才有可能进一步挖掘其潜在价值。具体而言,这块业务模式又可以细分为针对个人文件存储和针对企业用户两大类。主要是通过易于使用的API,用户可以方便地将各种数据对象放在云端,然后再像使用水、电一样按用量收费。目前已有多个公司推出相应服务,如亚马逊、网易、诺基亚等。运营商也推出了相应的服务,如中国移动的彩云业务。
5、管理客户关系
客户管理应用的目的是根据客户的属性(包括自然属性和行为属性),从不同角度深层次分析客户、了解客户,以此增加新的客户、提高客户的忠诚度、降低客户流失率、提高客户消费等。对中小客户来说,专门的CRM显然大而贵。不少中小商家将飞信作为初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发布新产品预告、特价销售通知,完成售前售后服务等。
6、个性化精准推荐
在运营商内部,根据用户喜好推荐各类业务或应用是常见的,比如应用商店软件推荐、IPTV视频节目推荐等,而通过关联算法、文本摘要抽取、情感分析等智能分析算法后,可以将之延伸到商用化服务,利用数据挖掘技术帮助客户进行精准营销,今后盈利可以来自于客户增值部分的分成。
以日常的“垃圾短信”为例,信息并不都是“垃圾”,因为收到的人并不需要而被视为垃圾。通过用户行为数据进行分析后,可以给需要的人发送需要的信息,这样“垃圾短信”就成了有价值的信息。在日本的麦当劳,用户在手机上下载优惠券,再去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集相关消费信息,例如经常买什么汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。
7、数据搜索
数据搜索是一个并不新鲜的应用,随着“大数据”时代的到来,实时性、全范围搜索的需求也就变得越来越强烈。我们需要能搜索各种社交网络、用户行为等数据。其商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。
运营商掌握的用户网上行为信息,使得所获取的数据“具备更全面维度”,更具商业价值。典型应用如中国移动的“盘古搜索”。

七、大数据对经济社会的重要影响
1、能够推动实现巨大经济效益
比如对中国零售业净利润增长的贡献,降低制造业产品开发、组装成本等。预计2013年全球大数据直接和间接拉动信息技术支出将达1200亿美元。
2、能够推动增强社会管理水平
大数据在公共服务领域的应用,可有效推动相关工作开展,提高相关部门的决策水平、服务效率和社会管理水平,产生巨大社会价值。欧洲多个城市通过分析实时采集的交通流量数据,指导驾车出行者选择最佳路径,从而改善城市交通状况。
3、如果没有高性能的分析工具,大数据的价值就得不到释放
对大数据应用必须保持清醒认识,既不能迷信其分析结果,也不能因为其不完全准确而否定其重要作用。
1)由于各种原因,所分析处理的数据对象中不可避免地会包括各种错误数据、无用数据,加之作为大数据技术核心的数据分析、人工智能等技术尚未完全成熟,所以对计算机完成的大数据分析处理的结果,无法要求其完全准确。例如,谷歌通过分析亿万用户搜索内容能够比专业机构更快地预测流感暴发,但由于微博上无用信息的干扰,这种预测也曾多次出现不准确的情况。
2)必须清楚定位的是,大数据作用与价值的重点在于能够引导和启发大数据应用者的创新思维,辅助决策。简单而言,若是处理一个问题,通常人能够想到一种方法,而大数据能够提供十种参考方法,哪怕其中只有三种可行,也将解决问题的思路拓展了三倍。
所以,客观认识和发挥大数据的作用,不夸大、不缩小,是准确认知和应用大数据的前提。

八、总结
不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。
1、从大数据的价值链条来分析,存在三种模式:
1)手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。
2)没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,Oracle等。
3)既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。
2、未来在大数据领域最具有价值的是两种事物:
1)拥有大数据思维的人,这种人可以将大数据的潜在价值转化为实际利益;
2)还未有被大数据触及过的业务领域。这些是还未被挖掘的油井,金矿,是所谓的蓝海。
大数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于数据的应用需求和应用水平进入新的阶段。

7. 大数据是什么

作者:李丽
链接:https://www.hu.com/question/23896161/answer/28624675
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
"大数据"是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从数据的类别上看,"大数据"指的是无法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。
亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。
研发小组对大数据的定义:"大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。" Kelly说:"大数据是可能不包含所有的信息,但我觉得大部分是正确的。对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。当你的技术达到极限时,也就是数据的极限"。 大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
二、大数据分析
从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?
1、可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了
2、数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3、预测性分析能力
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4、数据质量和数据管理
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
三、大数据技术
1、数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
2、数据存取:关系数据库、NOSQL、SQL等。
3、基础架构:云存储、分布式文件存储等。
4、数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
5、统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
6、数据挖掘:分类
(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or
association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text,
Web ,图形图像,视频,音频等)
7、模型预测:预测模型、机器学习、建模仿真。
8、结果呈现:云计算、标签云、关系图等。
四、大数据特点
要理解大数据这一概念,首先要从"大"入手,"大"是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。
1、
数据体量巨大。从TB级别,跃升到PB级别。
2、
数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
3、
价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
4、
处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。解决大数据问题的核心是大数据技术。目前所说的"大数据"不仅指数据本身的规模,也包括采集数据的工具、平台和数据分析系统。大数据研发目的是发展大数据技术并将其应用到相关领域,通过解决巨量数据处理问题促进其突破性发展。因此,大数据时代带来的挑战不仅体现在如何处理巨量数据从中获取有价值的信息,也体现在如何加强大数据技术研发,抢占时代发展的前沿。
五、大数据处理
大数据处理之一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
大数据处理之三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
大数据处理之四:挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理
六、大数据应用与案例分析
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
大数据应用案例之:医疗行业
[1] Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
[2] 在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
[3] 它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
[1] 智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。

[2] 维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
大数据应用案例之:通信行业
[1] XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取措施,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。
[2] 电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。
[3] 中国移动通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。
[4] NTT docomo把手机位置信息和互联网上的信息结合起来,为顾客提供附近的餐饮店信息,接近末班车时间时,提供末班车信息服务。

8. 大数据存在哪些安全问题

一、分布式体系


大数据解决方案将数据和操作分布在许多体系上,以便更快地进行处理和分析。这种分布式体系能够平衡负载,并避免发生单点故障。然而,这样的体系很容易遭到安全要挟,黑客只需进犯一个点就能够渗透到整个网络。


二、数据拜访


大数据体系需要拜访操控来限制对敏感数据的拜访,不然,任何用户都能够拜访秘要数据,有些用户可能将其用于恶意意图。此外,网络犯罪分子能够侵入与大数据体系相连的体系,以盗取敏感数据。


三、不正确的数据


网络犯罪分子能够通过操作存储的数据来影响大数据体系的准确性。为此,网络罪犯分子能够创建虚假数据,并将这些数据提供给大数据体系,例如,医疗机构能够使用大数据体系来研究患者的病历,而黑客能够修改此数据以生成不正确的确诊结果。


四、侵犯隐私权


大数据体系通常包括秘要数据,这是许多人非常关怀的问题。这样的大数据隐私要挟已经被全球的专家们评论过了。此外,网络犯罪分子经常进犯大数据体系,以损坏敏感数据。此类数据泄露已成为头条新闻,致使数百万人的敏感数据被盗。


五、云安全不足


大数据体系收集的数据通常存储在云中,这可能是一个潜在的安全要挟。网络罪犯分子已经损坏了许多闻名公司的云数据。如果存储的数据没有加密,而且没有适当的数据安全性,就会出现这些问题。


关于大数据存在哪些安全问题,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

9. 什么是大数据它有哪些特点

1、大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。

2、特点:大数据分析相比于传统的数据仓库应用,具有数据量大、查询分析复杂等特点。

10. 如何进行大数据分析及处理

探码科技大数据分析及处理过程


聚云化雨的处理方式

阅读全文

与大数据负载相关的资料

热点内容
starbound星球文件格式 浏览:137
javathis和super 浏览:782
iphone5左上角翘屏 浏览:863
自制音乐节奏灯教程 浏览:963
java获取jar文件路径 浏览:227
手机test文件可删除么 浏览:719
升win10卡在34 浏览:962
sfc文件 浏览:262
公牛苹果数据线2a什么意思 浏览:489
勒索蠕虫检测工具 浏览:68
苹果手表固件描述文件下载 浏览:330
android获取sd卡视频文件 浏览:949
苹果手机设置通用网络设置 浏览:83
md298zpa是什么版本 浏览:317
srslog文件在哪个目录 浏览:948
无法找到文件中可删除的图片 浏览:739
dnf90版本副职业 浏览:848
c只读打开文件 浏览:575
如何在电脑文件上添加图片 浏览:297
xslist网站怎么登录 浏览:735

友情链接