mysql解决大数据量存储问题的方法是分表。
1.如何去分表
根据什么策略把现有表中的数据分到多个表中,并且还有考虑到以后的扩展性上。
建立一张索引表,用户id与数据库id对应,(这里他将相同结构的表分在了不同的数据库中进一步减少压力,但同时对于数据的同步也需要通过其他手段来解决),其本质也是分表了同时分库了。这么做的好处是便于以后的扩展,但损耗一点性能,因为会多一次查询。这样索引表可能会成为新的瓶颈,除非用户不会一直增长哈。
我的做法属于另一种,写了个算法通过计算某列值,按照一定规律将数据大致均分在每个分表中。至于扩展性,写算法时候考虑进去了以后增加分表数的问题了。
选择哪种策略,是要看自己的表的业务特点了,方法没有绝对的优缺,还是要根据自己的需求选取。
2.分表之后主键的维护
分表之前,主键就是自动递增的bigint型。所以主键的格式已经提早被确定了,像什么uuid之类的就被直接pass掉了。
还有想过自己写一个主键生成程序,利用Java 的Atomic原子量特性,但是考虑还需要增加工作量并且高并发下,这里很可能是个隐患。
还有就是通过应用层上管理主键,如redis中有原子性的递增。
② mysql大数据库备份什么软件好用
帝国备份王已经很来久没源有更新了,出现问题找他们,也不能及时解决的。我都换用多备份了,备份恢复都蛮简单。教你下具体操作:
1.登录多备份官网—注册账户—进入控制面板—选择开始—选择数据库备份
2.出现“你的数据库是否可以远程授权”,选择可以,进入托管模式(除非你的空间不能授权,那就是跳入插件页面)
3.进入托管模式之后,选择mysql数据库。填写好端口,ip,用户名,密码。
,之后设置好存储位置,备份频率,备份时段,然后点击启动备份。就可以了。
希望能帮到你,望采纳。
③ 如何将大数据娴MySql 数据库
1. 什么是大数据
1. 所谓大数据, 就是大的字节数据,或大的字符数据.
2. 标准 SQL 中提供了如下类型来保存大数据类型:
字节数据类型: tinyblob(256B), blob(64K), mediumblob(16M), longblob(4G)
字符数据类型: tinyclob(256B), clob(64K), mediumclob(16M), longclob(4G)
3. MySql 中处理字符的数据类型名称与 SQL 标准不同:
字符数据类型: tinytext(256B), text(64K), mediumtext(16M), longtext(4G)
④ MySQL数据库千万级数据处理
数据库主要抄就是两个功能,袭一个是查询,一个是储存,而大数据必定会拖慢查询,我们对于大数据,更多的是从业务逻辑进行拆分,比如:
当存储一个人的历史信息的时候,可以按照时间存储,一定是最近的记录最经常访问,这就是我们常说的二八定律,最长访问的数据仅仅占有不到两成的数据量。
上面说的就是分库分表,这是一种解决数据量大的办法。
内存数据库,redis也是一种处理大数据的办法,将常访问的数据放到redis里面,可以缓解数据库的压力,还是像上面说的,我们只要可以找到用户经常访问的数据,然后放到内存数据库中,就可以大大减少mysql的压力。
最后,技术一定是为解决问题而产生的,我们一定需要对业务进行分析,才能考虑使用什么技术,抛开业务单存讲技术,这是不正确的。
⑤ 数据库mysql中大数据量处理的问题
我最近刚来整过和你自类似的事情 呵呵。
你这个问题可以分成2个问题来解决
1.建立索引 首先把data_content_21.邮件, data_content_9.帐号建立索引。建立索引不会的话推荐你一个绿色工具 HAP_SQLyog_Enterprise_7.14网上自己去下很多的,然后登录进去以后选择你的表右键-》建立索引-》选上你要建立索引的字段就好了
2.mysql毕竟是轻量级数据库,如果数据超过100万条,建议你使用mysql的分表机制,需要mysql5.4.1以上的版本,分表机制在那个绿色工具里也有 自己试下吧
⑥ MySQL到底能支持多大的数据量
MySQL 3.22 限制的表大小为4GB。由于在MySQL 3.23 中使用了MyISAM 存储引擎,最大表尺寸增加到了65536TB(2567 – 1字节)。由于允许的表尺寸更大,MySQL数据库的最大有效表尺寸通常是由操作系统对文件大小的限制决定的,而不是由MySQL内部限制决定的。
InnoDB 存储引擎将InnoDB 表保存在一个表空间内,该表空间可由数个文件创建。这样,表的大小就能超过单独文件的最大容量。表空间可包括原始磁盘分区,从而使得很大的表成为可能。表空间的最大容量为64TB。
(6)mysql数据库大数据扩展阅读
MySQL数据库中,数据量越来越大的优化方案:
单表优化可以从这几个角度出发:
1、表分区
MySQL在5.1之后才有的,可以看做是水平拆分,分区表需要在建表的需要加上分区参数,用户需要在建表的时候加上分区参数;分区表底层由多个物理子表组成,但是对于代码来说,分区表是透明的。
SQL中的条件中最好能带上分区条件的列,这样可以定位到少量的分区上,否则就会扫描全部分区。
2、增加缓存
主要的思想就是减少对数据库的访问,缓存可以在整个架构中的很多地方;比如:数据库本身有就缓存,客户端缓存,数据库访问层对SQL语句的缓存,应用程序内的缓存,第三方缓存(如Redis等)。
⑦ mysql大数据量,行数多少与数据容量,哪个直接影响查询速度
首先mysql作为传统关系型数据库,并不适合大数据量的查询,一般来说,如果数据行数达到千万价格,查询的速度会有明显的下降。
影响查询速度的原因可以有很多,比如是否在常用字段上建立了索引,还有是否支持并发等等。
⑧ 大数据下,mysql怎么做数据库的备份
把我下面的来脚本,写自成一个bat文件,进行必要的修改,执行就可以方便备份了。
@echo off
echo.
echo MySQL数据库备份
echo *****************************
echo.
echo 今天是 %date%
echo 时间是 %time%
echo.
echo *****************************
set "Ymd=%date:~,4%%date:~5,2%%date:~8,2%"
md "D:\%Ymd%"
"C:\Program Files\MySQL\MySQL Server 5.1\bin\mysqlmp" --opt -Q -uroot -proot --default-character-set=gbk mysql > "D:\%Ymd%\mySQLteble.sql"
echo.
echo MySQL数据库备份完成,请进行检查。。。
echo.
echo.
pause
⑨ mysql大数据量查询
表的结构再简单,也架不住数据量庞大啊。只有2个字段的表,查询语句上好像也做版不出什么优化。个人想权法是,防伪码不会经常被查。一般一个防伪码被查个两三次就差不多了吧,是否可以考虑把建立时间较久远的防伪码去除,只保留一段时间以内的。或者按序列号创建时间分表存储数据,时间较为久远的数据单独放一张表;近期的新序列号放在另一张表,增加序列号生成时间字段。但凡在一定的创建时间之前的老序列号,就去查老表老数据,否则就查新表新数据。序列号的生成应该是有规律的吧,大数据只能分表来提升查询效率。