❶ 大数据专业主要学什么
大数据专业主要学:
1. java编程技术
Java编程技术是大数据学习的基础,Java是一种强类型语言,拥有极高的跨平台能力,可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等,是大数据工程师最喜欢的编程工具,因此,想学好大数据,掌握Java基础是必不可少的!
2.Linux命令
对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令。
3. Hadoop
Hadoop是大数据开发的重要框架,其核心是HDFS和MapRece,HDFS为海量的数据提供了存储,MapRece为海量的数据提供了计算,因此,需要重点掌握,除此之外,还需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高级管理等相关技术与操作!
4. Hive
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapRece任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。
5. Avro与Protobuf
Avro与Protobuf均是数据序列化系统,可以提供丰富的数据结构类型,十分适合做数据存储,还可进行不同语言之间相互通信的数据交换格式,学大数据,需掌握其具体用法。
6.ZooKeeper
ZooKeeper是Hadoop和Hbase的重要组件,是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。
7. HBase
HBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。
8.phoenix
phoenix是用Java编写的基于JDBC API操作HBase的开源SQL引擎,其具有动态列、散列加载、查询服务器、追踪、事务、用户自定义函数、二级索引、命名空间映射、数据收集、行时间戳列、分页查询、跳跃查询、视图以及多租户的特性,大数据开发需掌握其原理和使用方法。
9. Redis
Redis是一个key-value存储系统,其出现很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库起到很好的补充作用,它提供了Java,C/C++,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便。
10. Flume
Flume是一款高可用、高可靠、分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。大数据开发需掌握其安装、配置以及相关使用方法。
❷ 大数据专业主要学什么
大数据专业主要学数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践、离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析等。
此外还需要学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等。知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。
大数据专业就业前景:
大数据领域的岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖。
大数据开发岗位的数量明显比较多,而且不仅需要研发型人才,也需要应用型人才,所以本科生的就业机会也比较多。
当前大数据技术正处在落地应用的初期,所以此时人才招聘会更倾向于研发型人才,而且拥有研究生学历也更容易获得大厂的就业机会,所以对于当前大数据相关专业的大学生来说,如果想获得更强的岗位竞争力和更多的就业渠道,应该考虑读一下研究生。
❸ 大数据需要学什么
数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践、离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析等。
❹ 大数据需要学什么
随着大数据的发展,越来越多的人想要进入大数据行业,大数据技术体系巨大,包含的常识非常多。
对于零基础想要学习大数据的人,一开始入门可能不会太简单。学习大数据至少需要掌握一门计算机编程语言,计算机编程语言有很多,Java是目前使用的比较广泛的编程语言之一。所以,学习大数据,掌握好Java是必不可少的。
另外学习大数据必须要学习大数据中心常识,大数据技术体系很复杂,与物联网、移动互联网、人工智能、云核算等都有着精密的关系。所以,Hadoop生态体系;HDFS技术;HBASE技术;Sqoop运用流程;数据仓库东西HIVE;大数据离线剖析Spark、Python言语;数据实时剖析Storm等都是学习大数据需要了解和掌握的。
从事大数据工作,免不了要分析数据。如果从事数据剖析师,就需要了解一定的数学常识。需要有一定的公式核算能力,了解常用计算模型算法。而如果从事数据发掘工程师,就需要能够熟练运用各类算法,对数学的要求是很高的。
❺ 大数据专业主要学什么
大数据专业
全称:数据科学与大数据技术,强调交叉学科特点,以大数据分析为核心,以统计学、计算机科学和数学为三大基础支撑性学科,培养面向多层次应用需求的复合型人才。
开设课程:
数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践、离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析等。
❻ 大数据专业主要学什么
大数据技术专业以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等。
大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。
以中国人民大学为例:
基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。
必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。
选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。
大数据专业就业方向
1、数据工程方向毕业生能够从事基于计算机、移动互联网、电子信息、电子商务技术、电子金融、电子政务、军事等领域的Java大数据分布式程序开发、大数据集成平台的应用、开发等方面的高级技术人才,可在政府机关、房地产、银行、金融、移动互联网等领域从事各类Java大数据分布式开发、基于大数据平台的程序开发、数据可视化等相关工作,也可在IT领域从事计算机应用工作。
2、数据分析方向毕业生能够从事基于计算机、移动互联网、电子信息、电子商务技术、电子金融、电子政务、军事等领域的大数据平台运维、流计算核心技术等方面的高级技术人才,可在政府机关、房地产、银行、金融、移动互联网等领域从事各类大数据平台运维、大数据分析、大数据挖掘等相关工作,也可在IT领域从事计算机应用工作。
❼ 大数据需要学什么
数据仓库东西HIVE;大数据离线剖析Spark、Python言语;数据实时剖析Storm等都是学习大数据需要了解和掌握的。
大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据归纳有五大特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
❽ 大数据具体学什么
大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术等。
主修课程:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。
大数据旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。
大数据岗位:
1、大数据系统架构师
大数据平台搭建、系统设计、基础设施。
技能:计算机体系结构、网络架构、编程范式、文件系统、分布并行处理等。
2、大数据系统分析师
面向实际行业领域,利用大数据技术进行数据安全生命周期管理、分析和应用。
技能:人工智能、机器学习、数理统计、矩阵计算、优化方法。
3、hadoop开发工程师
解决大数据存储问题。
4、数据分析师
不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员,在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
5、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等,经常会用到的语言包括Python、Java、C或者C++。
❾ 大数据技术要学什么
首先在学习真正的大数据技术之前,要熟练掌握一门编程语言,比如java等,在学习大数据期间还会接触到其他的编程语言,比如说Scala、Python等编程语言,不过这些语言都是相通的,掌握了一门编程语言其他的就很好学习了。大数据的学习需要掌握以下技术:Hadoop、spark、storm等核心技术,如果去培训机构学习的话,一定要注意的是学习周期的分布,有的并不是真正的大数据课程,真正的大数据课程是用20-30%的部分讲解编程语言,剩下的就都是对大数据技术的学习,所以在学习之前还是要了解一些关于大数据的技术知识的。
更多关于大数据技术要学什么,进入:https://m.abcgonglue.com/ask/4054561615434075.html?zd查看更多内容
❿ 大数据专业主要学什么
大数据专业主要学科目如下:
数据科学与大数据技术(理学学位),以北京大学为例,主要课程包括:概率论、数理统计,应用多元统计分析, 实变函数,应用回归分析,贝叶斯理论与算法。
应用时间序列分析,统计计算,统计机器学习,程序设计实习,数据结构与算法,分布与并行计算,算法设计与分析,数据库概论,自然语言处理导论,数值与计算方法,人工智能,最优化方法,深度学习等。
数据科学与大数据技术(工学学位),以中国人民大学为例, 该专业由统计学院、信息学院、统计与大数据研究院、数学科学研究院联合授课,为应对大数据时代带来的机遇与挑战培养专业的数据科学人才。
主要课程包括:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践、离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论。
计算机系统基础、并行体系结构与编程、非结构化大数据分析、数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。
以上内容参考:知乎