Ⅰ 大数据应用的成本高吗在使用者之间信息是否对称
因为大数据使用的是云计算技术,企业是按需租用的,费用只占传统方式的30%。内
而且云计算平容台有如下优点:
超大规模数据分布式计算
超大规模数据平行计算
超大数据中心管理
数据加密和认证:数据和身份隐私
灾难防护及恢复
因此在使用者之间信息不对称的问题可以得到很好的解决。
可以自己去体验一下承载大数据的平台—蜘蛛网http://www.spidervv.com/
Ⅱ 什么是大数据
大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
大数据的特征:
容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;
种类(Variety):数据类型的多样性;
速度(Velocity):指获得数据的速度;
可变性(Variability):妨碍了处理和有效地管理数据的过程。
真实性(Veracity):数据的质量。
复杂性(Complexity):数据量巨大,来源多渠道。
价值(value):合理运用大数据,以低成本创造高价值。
Ⅲ 互联网大数据有哪些好处多
大数据是大量、高速、多变的信息,它需要新型的处理方式去促成更强的决策能力、洞察力与最佳化处理。大数据为企业获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。
借助大数据及相关技术,我们可针对不同行为特征的客户进行针对性营销,甚至能从“将一个产品推荐给一些合适的客户”到“将一些合适的产品推荐给一个客户”,得以更聚焦客户,进行个性化精准营销。
大数据时代下的精准营销是指通过大数据获取对象的喜好,行为偏好,对不同对象进行不同营销。大数据精准营销的核心可以概括为几大关键词:用户、需求、识别、体验。
亿美软通推出数据云服务,延续亿美的客户服务、客户营销、客户管理的公司经营理念,通过庞大的消费数据资源,为客户提供数据验证,精准营销等数据级服务。简单说就是为企业提供数据验证和数据筛选业务。
Ⅳ 如何理解大数据商业价值的创业机遇
大数据时代,人们寻找创业机遇,最重要的是数据收集和分析能力,从数据中找到好点子。首先,大数据技术在萌芽阶段就是开源技术,这会给基础架构硬件、应用程序开发工具、应用、服务等各个方面的相关领域带来更多的机会。其次,创业者不需要是统计学家、工程师或者数据分析师也可以轻松获取数据,然后凭借分析和洞察力开发可行的产品。此外,将众多数据聚合,或者将公共数据和个人数据源相结合,新数据组合能开辟出产品开发的新机遇。总之,开放数据和开源技术将使创业门槛降低,创业机会大大增加。
一、大数据的创业方向 strong>
现有的大数据工具有着技术门槛高、上手成本高、和实际业务结合较差以及部署成本高,小公司用不起等特点。那么新创企业就可以根据以往这些产品的缺陷,来做更适合市场和客户的大数据分析工具和服务。另外,将大数据工具完整化和产品化也是一个方向。新一代的大数据处理工具应该是有着漂亮UI,功能按键和数据可视化等模块的完整产品,而不是一堆代码。
因此大数据创业的2B方向,更多的是做工具和服务,如数据可视化、商务智能、CRM等。而在2C方向,大数据一个很大的作用就是为决策做依据,以前做决定是“拍脑袋”决定,现在,做决定是根据数据结果。个人理财(我的钱花哪去了,哪些可以省下来)、家庭决策(孩子报考哪所大学)、职业发展/自我量化(该不该跳槽,现在薪水到底合适不合适 )以及个人健康都可以用到大数据。
二、大数据时代的创业机会 strong>
1、金融:大数据公司专门聚焦在通过大数据进行客户信用评级,并为银行、保险公司或者P2P平台服务;或者基于大数据挖掘帮助银行进行客户细分、精准营销服务。
2、电信:这个方向已经有专门为电信企业提供客户生命周期管理解决方案、客户关系管理、精细化运营分析和营销的数据公司;或者基于大数据提供网络层的运维管理和网络优化服务的大数据公司。
3、健康:未来两三年将会出现一批基于各种可穿戴设备形成的健康云数据,进行深度的数据数据分析和挖掘的企业,帮助人们进行健康预测和预警;未来还可以服务公共卫生部门,打通全国的患者电子病历数据库,快速检测传染病,进行全面的疫情监测,并通过集成疾病监测和响应程序,快速进行响应等。
4、媒体广告:可以通过大数据实现更科学的媒介选择;或者基于大数据的精准广告投放系统、基于大数据的广告效果监测评估服务、基于大数据的网站分析优化服务以及基于大数据DMP数据平台并为DSP平台提供精准营销服务等。
5、零售:大数据公司可以帮助零售企业进行店面选址服务;利用关联规则进行客户购物篮分析,从而给客户推荐相应的促销活动;基于天气的分析和预期来判断畅销产品以及相应的进货和运营策略,或者把天气数据加入物流预测模型,确保在天气模式没有改变之前,商品能够顺利运送到各商店。
Ⅳ 如何将CRM中大数据的高成本转变成高价值
建议上一套8Manage CRM系统,可以有效整理和分析数据,提高数据利用率,将数据转化成信息,从而拟定营销方案,提高企业业绩
Ⅵ 大数据培训大概要多少钱
您好,很开心为您解答。
大数据培训大概在2万左右(面授课),但如果是线上授课,估计会便宜点。
但费用不能作为评价一家大数据培训机构好不好的决定性因素,需要从师资力量、机构口碑、就业情况等多方面考察。
Ⅶ 大数据的合理使用,可以很好地节约企业成本
大数据精准获客。目前比较常看到的是运营商大数据获客,以及互联网大数据获客。运营商大数据获客,目前市面上的三大运营商都开辟了这块业务,精准营销业务,主要是电销及短信的方式。互联网大数据获客主要是 用运营商大数据在相应的行业中进行数据抓取,相对高额的企业成本来说这种方式显得更加简洁和节约成本,最常见的行业,获客效果很好的行业有:教育,房产,招商加盟,企业服务,装饰装房,包括金融行业等等全行业都有一定的好的获客效果!
其实运营商大数据到底能不能精准获客这个问题的关键点在于相关合作者所提供的抓取平台与自身是否垂直!因为运营商大数据可以通过建模抓取如网站(竞价网站,推广网页,品牌官网等)每天的实时访客数据;垂直行业手机App(如房产行业垂直App:安居客,装修行业垂直App:土巴兔等等)可以抓取实时高频活跃用户,新注册用户数据;400电话,固话可以获取实时来电咨询者,主叫被叫通话记录数据;关键词,小程序同样可以抓取。
运营商的数据抓取有很多其他方式不能比拟的优势
1、数据范围广,目前移动,联通的活跃用户量达到总电话数的80%左右,所以说范围还是很广,很好挖掘
2、数据真实性高,因为运营商大数据可以通过建模抓取如网站每天的实时访客数据;垂直行业手机App可以抓取实时高频活跃用户,不是一味的刷之前的老客户
3、时效性好,数据新鲜——直接从运营商一手客源隔天就可以提供捕获的数据。不仅精准而且高效。
4、成本低,谈获客,不得不说获客的成本低。前面也介绍了目前传统的营销方式,获客有效的客户高达三位数,运营商大数据只需要几块钱的成本就可以获取到潜在意向的客户线索信息,只需要几块钱就可以截取同行几百元做来的客户,降低成本,精准打击,弯道超车。
所以相关合作者在合作运营商大数据之前要考虑所抓取的平台是否与自身业务垂直,如果垂直,那么通过运营商大数据抓取出来的数据就会精准,获客效果也会大大提高!
Ⅷ 大数据时代,学习的成本越来越高,要怎样提升自己呢
哈佛大学有一项研究表明,稀缺的资源会占用你大量的注意力,然后导致这个资源对你来说会更加稀缺。
想要自己变得越来越值钱,一味省钱省不出来的,关键做好这三件事。
记住,凡是阻碍你成长的一切,该远离远离,该删除删除,该绝交绝交。
还有,学会偷懒,就是洗衣服、干家务等的活,能用钱解决就解决。让你的时间和金钱最大利润化,就能提升你的个人价值。
最后记住:教你怎么赚钱的人大部分都没有赚到什么钱,到处都是有才华的穷人。而赚到钱的人,大都会教你应该怎么思考,再高一级就是怎么做出判断。
Ⅸ 大数据对供应链将产生哪些影响
大数据对供应链将产生哪些影响
大数据对供应链将产生哪些影响,大数据时代的到来为供应链管理提供了难得的机遇,但同时也会伴随着一些不好的影响,有利也有弊,能顺应时代而变化才是正确的方向,以下是关于大数据对供应链将产生哪些影响。
传统供应链管理模式所面临的挑战
大数据时代的来临不仅仅是给我们提供了很大的发展机遇,重要的是传统供应链模式所面临的挑战极大的加剧了新生产力条件下企业之间的竞争,正是因为大数据时代的生产力特征这种新事物与传统的生产力特征供应链管理模式之间的矛盾
所以传统的供应链管理模式所面临的挑战也是非常严重的,新事物取代旧事物必然是旧事物自身的转型升级,适应新事物的发展,供应链管理模式也不例外。
1、响应速度较慢
传统供应链管理在技术水平不断提升的同时,经历了从最基本的MIS到ERP,再从ERP到当前供应链一体化的进化,但是从整体水平上来看,传统的供应链管理仍然存在着以订货订单为驱动的库存管理,周转库存的管理从本质上来看是一种应对传统供应链管理的经营模式,再次种经营模式的管理水平下,周转库存构成了晶莹的基本保障
安全库存成为订货管理的服务水平底线。另一方面,此种模式的出现,也在一定程度上说明了产品生命周期理论的响应速度依靠周转库存和安全库存来保障客户的服务水平,所以在这种模式下顾客需求的响应速度比较慢。
2、终端消费需求不能有效满足
传统供应链模式对企业经营的贡献主要在于企业对市场是一处永的形式满足部分需求而进行产品的设计,在这种情况下,终端消费者的基本需求能够得到满足,但是现有产品不能满足终端消费者的潜在的深层次需求
这种产品经营的设计和生态注定了终端消费需求和源头的生产制造脱节的商业逻辑。供给侧的生产制造不能够针对终端用户的体验进行个性化设计,只能在短期内以批量的模式提升自己的生产效率。
例如,在互联网时代出现之前,市场上的衣服大部分是根据设计师对终端用户体验的评估进行设计,而没有针对更多用户特别是普遍用户的个性化需求进行定制,而且衣服定制成本非常高、时间比较长,这从根本上制约了终端消费需求的普遍性满足。
3、库存周期较长
传统的供应链管理模式以存货管理构成支撑企业经营的基本条件,库存成为实现经营的流动资产,大部分行业的库存盘点是以月为单位进行计算的,因为产品属性的不同,库存管理盘点有所差异
从整体的水平看库存周期大部分在计算仓储、包装、搬运装卸、运输等时间的条件下基本上在途库存和周转库存周期均在两个月以上,从资金利用的角度来看,在很大程度上制约了流动资金的利用率。
4、协同效应差
供应链管理模式协同效应较差主要体现在,生产制造型企业不能够快速的实现渠道的建立,销售渠道未能实现和终端消费者有效的互动,终端消费者的反馈也不能其实的成为生产制造企业进行产品换的升级的依据
从整个供应链的管理水平可以看出各个环节都在实现自身利益的最大化,但是未能实现整体效益的最大化,在面临市场的竞争时存在着互相挤压,为维护自身环节的利益牺牲整体供应链整体效益的情况屡见不鲜。
5、管理成本非常高
传统供应链模式的管理成本由于信息化水平低下,不能将各个环节所设计的的企业进行信息的有效传递最终造成了各自企业所付出的固定成本中的摊销成本非常高,人工成本尤其突出,因为条块分割的严重所造成的管理混乱进而导致的管理成本已经成为供应链管理当中占比较高的部分之一。
供应链管理要顺应大数据时代发展的历史潮流
从马克思主义对经济学的深入研究理论来看,变革时代正确的研究方法应该从生产力与生产关系的矛盾入手,时间对生产力要素特征的分析才能对生产关系各个方面进行针对性的改革,这一点是生产力决定生产关系的集中体现,同时也是生产关系必须顺应生产力发展的必然要求。
(一)大数据时代生产力的主导因素分析
生产力的三个要素是劳动者、生产工具和劳动对象,大数据时代改变了传统生产力的三个要素特征使得科学技术特别是互联网为核心的人工智能为代表的数据获取、处理、分析以及应用的技术成为生产力的核心特征。这些核心特征从根本上改变传统供应链管理的生存环境,也就是改变了供应链管理的生态特征。
1、大数据时代的生产力变革决定了供应链管理的变革
每个时代的生产力都决定了所在时代的生产关心的管理特征和管理模式,这个是基于人类文明的发展所确定的,大数据时代也不例外。所以,当大数据时代生产力的三个要素发生了根本的变化之后,随之而来的供应链管理也必须根据实际情况变革,符合生产力发展特征才能提升竞争力量,实现效率的提升和发展。
2、劳动者发生了决定性变化
大数据时代出现之前,传统的劳动者是以体力劳动和基本的脑力劳动来对供应链进行管理的,这种脑力劳动主要包括基本的信息处理、业务知识的一些规范、与业务相关的数据处理等内容,但是大数据时代出现之后,劳动者需要更多的参与和大数据相关的脑力劳动,例如数据的获取、对供应链数据的分析、与消费者相关的数据研究和预测
与产品设计有关的产品性能的监测和分析等内容,这样从根本上改变了劳动者对知识的掌握的需求水平,你改变了劳动者对供应链管理的思维模式认知的改变和理念的变革。进而包括人事行政管理,在招聘绩效考核等各个方面都改变了原有对供应链管理者的要求。
供应链管理贴近消费者的前端,需要更多的去对数学的进行收集和消费者行为的描述,这样的信息处理大大改变了原来依靠调研预测进行管理的模式,从而也改变了对消费端劳动者的要求
这些要求从本质上需要变革原来的管理模式,也是对劳动者创造价值的有效提升,但是这种创造的主体必须是劳动者自身的改变。所以从整体上来看对人力资源的需求是大数据时代生产力变革的第一要务。
3、生产资料中生产工具发生了很大的变化
传统的供应链管理基本上是基于信息的传递而进行的传统互联网电脑网络的设置,在这种模式下互联网仅仅是作为一种信息传输的工具电脑也是信息采集的输入端口
大部分的电脑使用者都是用来录入相关的信息或者使用电脑网络进行传递相关的业务数据。大数据时代电脑更多的倾向于采集分析处理相关的数据,更加强调软件和智能硬件的结合
最终的目标可能会是实现人机一体化,而录入和传输相关的数据成为最基本的`功能,所以从电脑计算机网络的用途来看,功能上已经完全改变了原来的目标。
4、劳动对象发生了很大的变化
大数据时代供应链管理的劳动对象逐渐从基于传统库存管理的产品生产制造、流通和销售,逐渐转化为对于产品生产制造的特征也就是满足消费者深度需求的特征进行设计
数据的利用从原来的事后分析说明解释逐渐转化为大数据的相关性应用,这一点几乎体现在每年大规模的支付信息的统计分析,例如近两年微信发红包数量的统计
支付宝对用户指出每个月账单的统计分析,跨进电商对消费者购买行为的统计分析,这样的数据分析最后形成了供应链管理中对供给的判断,也形成了对消费者未来深度需求的判断和评估。原来的分析和预测逐渐转变为大数据相关性的应用。
大数据时代生产力特征
大数据时代的生产力不同于以往技术变革所带来的生产力要素的变化,可概括的总结为以下几点。
从整个农业文明到工业文明时代各种变革的整体特征来看,农业文明时代是以生产工具的变革为主要特征,其中典型的变革包括青铜器的出现和应用、铁器工具的出现和大范围的普及和应用为主要特征,极大的推动了生产效率的提高,从而推动整个社会效率的提升、物质财富大幅度积累,使封建文明出现前所未有的鼎盛时代。
工业文明主要集中在生产工具能源的变革方面所产生的生产工具动力变革,主要包括经过长期经验的积累,18世纪蒸汽时代蒸汽机的发明和应用,工业化时代电力和以电力为动力能源的机器应用,极大提升了社会生产力的变革,促使人类文明从封建文明走向资本主义文明和社会主义文明,在政治制度方面发展延续到今天。
随着时间的推移,20世纪初期部分学者提出了新技术为代表的生产力变革的来临,这些新技术包括新能源、新材料和计算机技术,经过半个世纪的发展,这些技术的应用也极大的推动了生产效率的提高,改变了生产方式的具体特征。
主要表现为新经济学的兴起和管理学派的细化。新的商业模式和企业组织方式层出不穷,资本市场以证券市场为代表,成为经济发展的晴雨表。这些生产力发展现象已经成为人们的共识。
新技术时代网络信息的应用。而大数据时代出现的今天,可以概要的总结为是以信息化时代为基础、智能化数据信息处理和应用所带来生产力在生产工具、劳动者即人力资源变革、生产方式等方面革命为主要特征的生产力的变革。
与上述人类历史上其他生产力的变革相比较,大数据时代的变革从时间的角度看来的更加突然,对社会生产生活方式的影响更大,传播速度更快,拉近了供应链的生产段和消费终端,依靠现代智能硬件和软件相结合,极大的提升了两端信息获取的能力,供需充分结合高度统一起来,并加速了产品生命周期的周转速度。
大数据时代变革所带来的机遇
随着大数据时代生产力的变革,企业组织在供应链管理方面机遇难得,主要体现在以下几个方面:
1、供应链管理理念精准化
管理理念随着生产的进步技术的发展越来越成为先进生产管理方式的核心和精髓。大数据时代的变革使得供应链管理理念能够实现深层次精准化的发展,包括供应链消费终端需求信息的收集以及用户体验反馈到生产端,对产品进行再次设计制造和生产,满足终端消费者的深层次更精准的需求。
在供应渠道方面,信息通过网络的精准传递有利于渠道的多样化,通过精准的营销广告的投放实现渠道的快速销售能力。
在库存方面主要意义消费需求拉动的库存管理为主,时间库存订货批量的同时安全库存大大降低零库存的概念已经能够完全实现周转库存。水平大大降低所以从库存成本的角度来看供应链管理里面的精准化。
最终整体上。不仅满足了消费者的终端需求深层次需求同时也满足了生产者降低成本一啸订单公民及时用户体验完美的高层次目标。
2、协同效应作用加大
通过智能硬件和软件技术的数据化处理,在供应链各个环节的信息处理收集分析和应用方面,均能及时有效地实现最优化,不但实现每个环节执行层面的学术性和敏捷性而且可以实现整体各个环节的协同作用,例如在当代电子商务的供应链管理中最典型的是以京东商城为代表的自营物流体系和平台的协同结合
不仅实现了订单的快速处理,而且是京东商城的自营物流体系实现了库存管理的最优化,更使商城的卖家能够一大数据为基础进行产品的选择,营销策略的制定,采购渠道的优化,从而最终实现了供应链一体化的最大协同效应。
除了电子商务企业这种行业的典型代表之外,在中国的汽车后市场特别是针对汽车配件供应链大数据的实现准确的进行分类包装挑选等物流服务,有效地实现产品多品类、同一个产品多参数的复杂产品特性的供应链管理
为中国汽车后市场中小企业特别是最近消费者的终端企业实践成功的用户体验奠定了坚实的基础,与传统的汽车修理厂门店相比,这种利用数据进行供应链管理的中小企业在竞争力方面特别是用户体验方面具有巨大的明显优势。
3、消费需求定制化驱动
大数据的应用对供应链管理中消费者精准需求实现了有效地满足,不仅能够对交易的分析和消费者购买行为的分析以及消费者对未来预期的分析而且可以根据这种分析实现生产定制化,把供给侧问题存在的批量生产转变为以个性化需求为满足特征的定制化生产。
例如,对衣服的生产,在传统模式下几乎都是设计者进行设计引导消费者进行购买,定制化需求在市场竞争中处于弱势地位,没有能够实现消费者个人需求的满足,而且衣服的定制化成本非常高,广大消费者不能够承担这种定制化的成本,从而造成的定制化的发展缓慢。
近几年以来一红外技术对人体描绘使得软件和硬件相结合,不仅能够实现了消费者身体特征的描述而且能够根据不同的消费者对衣服的偏好进行设计,能够快速的让消费者根据自己的意愿进行设计,在购买和交易的阶段也能够通过智能试衣镜对现有的衣服进行挑选
在此过程中以数据收集和消费者之间的交互等环节实现了数据的分析与处理,对未来衣服的消费趋势进行描述,而且能够最终消费者为消费者提供深层次的长期的服务,这样仅能从交易中获得利润而且能够从的单一消费者的长期服务中,实现消费者粘性的提高,有利于广大中小企业利用数据实现精益经营。
4、供给侧结构管理优化
供给侧改革是我国十三五期间的主导政策,大数据时代为供给侧改革提供了有利的条件。当前,我国大部分行业在传统模式,以投资需求和外贸为拉动的主要发展模式下普遍发生了产能过剩,解决产能过剩的问题主要从两个方面入手,一方面有提高攻击测产品生产制造的质量
实现产业的转型升级,优化结构,提高生产制造的效率特别是注重保护环境等可持续发展策略;另一方面要针对终端消费者的消费需求,实现适销对路、真正满足消费者需求的竞争性产品。大数据时代为供给侧改革提供了难得的机遇。
对供给侧结构的优化管理以能源的利用为典型,随着环境问题日益严重,我国对新能源代替传统的化石能源必须采取非常有效地管理措施,其中主要体现在以数据为核心的管理处理新能源逐步代替传统化石能源从而改善环境提高能源的利用率,2010年政府下达力度关闭了近百个火力发电厂同事计划增加十三五期间核电站开发100所。
实现东部沿海地区和能源利用交大地区的清洁能源代替工程,必须利用大数据对能源的有效利用进行强力管控,对污染环境的传统化石能源进行逐步改善,最终实现我国经济的可持续发展。
5、中小企业大数据应用提升竞争力
在传统的生产力条件下,中小企业面临市场激烈的竞争,资源方面的不足创造力的不足效率利用地下等各个方面造成了大企业对中小企业的生存空间的挤压,大数据出现之后,中小企业虽然在资源方面以及创新能力方面不如大企业强,但是中小企业利用战略上的灵活性,充分发挥瞄准立即市场进行发力的敏捷。
利用大数据对市场进行再次细分,锁定目标细分市场,对客户进行深度挖掘,对产品进行二次创新,实现了市场竞争中的不对称性,在微创新方面不断满足消费者的需求,提升自身产品和服务的竞争能力。
有效的完善了自身的不足,最终提升了生存竞争力,在国家大力倡导大众创新万众创业的宏观环境下中小企业使用大数据技术,在信息沟通、营销竞争、战略再投资等方面紧紧地把握住了细分市场目标客户的有效需求,不但满足了针对性的深度需求而且提升了掌控用户体验、满足细分市场目标客户潜在需求的工具和方法,在创造和实现顾客价值的同时,也创造了大量的就业岗位,从此品牌竞争深入人心。
从国家申请专利的数量来看,除了在市场竞争中占主导地位的大型客机企业对研发投入比例大,而产生了大量的专利之外,广大中小企业在满足细分市场目标需求的同时,利用自身条件而进行重新申请专利的数量大幅度增长,竞争力提升的同时实现了价值重塑品牌塑造。
Ⅹ 互联网大数据有哪些好处
大数据是大量、高速、多变的信息,它需要新型的处理方式去促成更强的决策能力回、洞察力与最佳化处答理。大数据为企业获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。
借助大数据及相关技术,我们可针对不同行为特征的客户进行针对性营销,甚至能从“将一个产品推荐给一些合适的客户”到“将一些合适的产品推荐给一个客户”,得以更聚焦客户,进行个性化精准营销。
大数据时代下的精准营销是指通过大数据获取对象的喜好,行为偏好,对不同对象进行不同营销。大数据精准营销的核心可以概括为几大关键词:用户、需求、识别、体验。
亿美软通推出数据云服务,延续亿美的客户服务、客户营销、客户管理的公司经营理念,通过庞大的消费数据资源,为客户提供数据验证,精准营销等数据级服务。简单说就是为企业提供数据验证和数据筛选业务。