Ⅰ 搭建数据分析平台考虑哪些因素
稳定性:可以通过多台机器做数据和程序运行的备份,但服务器的质量和预算成本相应的会限制平台的稳定性;
可扩展性:大数据平台部署在多台机器上,如何在其基础上扩充新的机器是实际应用中经常会遇到的问题;
安全性:保障数据安全是大数据平台不可忽视的问题,在海量数据的处理过程中,如何防止数据的丢失和泄漏一直是大数据安全领域的研究热点。
系统架构应高安全性、易扩展性,能够支持各类主流开发语言,并提供丰富的接口。同时能够支持结构化和非结构化数据的存储和应用。通过建立物联网应用,实现对物品、人员、安全等各方面管理的强大支撑,提升管理质量的同时积累大量管理数据和行为数据。
关于搭建数据分析平台考虑哪些因素,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅱ 大数据平台是什么什么时候需要大数据平台如何建立大数据平台
首先我们要了解java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
Ⅲ 大数据基础平台有哪些
国内大数据平台有:
1、星环Transwarp。星环科技是一个以hadoop生态系统为基础的大型数据平台公司,被Gartner魔力象限列入名单过,它的潜力不容忽视,它在技术上对hadoop不稳定的部分进行了优化,功能得到了改进,提供了hadoop的企业大数据引擎等。
2、TalkingData。TalkingData属于独立的第三方品牌。它的产品与之服务涵盖了移动应用数据统计、公共数据查询、综合数据管理等多款极具针对性的产品及服务。在银行、互联网、电商行业有广泛的数据服务应用。
3、友盟+。友盟+是第一个第三方的全域大数据服务供应商,可以全面覆盖PC机、无线路由器等多种设备。为企业提供基础统计、操作分析、数据决策等全业务链的数据应用解决方案,帮助企业进行数据化操作和管理。
4、网易猛犸。网易猛犸大数据平台提供了海量应用开发的一站式数据管理平台,其中还包含了大数据开发套件和hadoop发布。该套件主要包括数据开发、任务操作、自助分析、以及多租户管理等。
5、GrowingIO。GrowingIO是一种基于因特网用户行为的数据分析产品,具有无埋点数据采集技术,可通过行为数据,如网页或APP的浏览轨迹、点击记录、鼠标滑动轨迹等行为数据,对用户行为数据,进行实时的分析,用于优化产品体验,实现精益化操作。
6、神策数据。神策数据原理也与GrowingIO类似。但是它在技术上提供开放的查询API和完整的SQL接口,同时与MapRece和Spark等计算引擎无缝融合,随时以最高效的方式来访问干净、规范的数据。
Ⅳ 企业如何选择适合自己的大数据平台
这个的话我就不太清楚了,因为我们公司选择的数据平台都是经经过其他的人员然后选择的,再加上我也不是那一方面的人才,所以说我也不太了解。
Ⅳ 大数据技术平台有哪些
Java:只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰溜溜的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接收方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
Ⅵ 大数据分析平台有哪些
1、国家数据: http://data.stats.gov.cn可以查询到国家统计局调查统计的各专业领域的主要指标时间序列数据。
2、阿里指数: https://index.1688.com最权威专业的行业价格、供应、采购趋势分析。
3、微指数: https://data.weibo.com/index微指数是对提及量、阅读量、互动量加权得出的综合指数,更加全面的体现关键词在微博上的热度情况。
4、微信指数: 微信里面搜一搜“微信指数”就能直接找到。立足于微信生态,依托海量用户数据,微信指数具有天生优势。
5、淘宝生意参谋: https://sycm.taobao.com生意参谋基于“支付金额=访客数*转化率*客单价”这一公式,帮你快速定位生意波动的核心因素。
6、搜狗指数: http://shu.sogou.com/全网热门事件、品牌、人物等查询词的搜索热度变化趋势,掌握网民需求变化.
7、头条指数: https://index.toutiao.com/头条指数是巨量引擎云图推出的一种数据产品。
8、360指数: http://index.haosou.com360趋势是以360产品海量用户数据为基础的大数据展示平台。
Ⅶ 大数据有哪些常用的平台
大数据平台:是指以处理海量数据存储、计算和不间断流数据实时计算等场景为主的一套基础设施。
典型的包括Hadoop系列、Spark、Storm、Flink以及Flume/Kafka等集群。
Ⅷ 全面预算软件怎么和大数据结合
一般基于多维数据仓库平台搭建的全面预算软件,可将大数据和全面预算结合起来,您可以了解下。