导航:首页 > 网络数据 > 大数据银行论文

大数据银行论文

发布时间:2022-12-17 21:15:06

1. 大数据时代商业银行和客户关系管理和维护怎么写论文

由于我国《商业银行法》确立了对银行业实行严格的分业管理法律模式,银行不得经营证券、保险业务,商业银前者如与保险、证券业相关的新产品开发,创新与资本市场相关且收费较高的表外业务,这些业务是国外商业银行的高wsdxs.cn/html/touzi/20080409/15488_2.html

2. 浅谈计算机与大数据的相关论文

在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!

计算机与大数据的相关论文篇一
浅谈“大数据”时代的计算机信息处理技术

[摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。

[关键词]大数据时代;计算机;信息处理技术

在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。

一、大数据时代信息及其传播特点

自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。

大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。

二、大数据时代的计算机信息处理技术

(一)数据收集和传播技术

现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。

(二)信息存储技术

在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。

(三)信息安全技术

大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。

(四)信息加工、传输技术

在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。

结语:

在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。

参考文献

[1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107.

[2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50.

[3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI

[4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110
计算机与大数据的相关论文篇二
试谈计算机软件技术在大数据时代的应用

摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。

关键词:计算机 大数据时代 容量 准确 价值 影响 方案

1 概述

自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。

大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。

2 大数据时代的数据整合应用

自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。

企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本2.0系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。

2.1 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。

2.2 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。

3 企业信息解决方案在大数据时代的应用

企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA:

3.1 Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。

3.2 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。

3.3 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。

3.4 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。

3.5 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。

在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。

如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。

在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。

4 结束语

在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。

参考文献:

[1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009.

[2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007.

[3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994.

[4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999.

[5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000.

[6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊.

[7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02).

[8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01).
计算机与大数据的相关论文篇三
浅谈利用大数据推进计算机审计的策略

[摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。

[关键词]大数据 计算机审计 影响

前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。

一、初探大数据于CAT影响

1.1影响之机遇

大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。

1.2影响之挑战

大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。

二、探析依托于大数据良好推进CAT措施

2.1数据质量的有效保障

依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。

2.2公共数据平台的建立

依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。

2.3审计人员的强化培训

依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。

三、结论

综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。

猜你喜欢:

1. 人工智能与大数据论文

2. 大数据和人工智能论文

3. 计算机大数据论文参考

4. 计算机有关大数据的应用论文

5. 有关大数据应用的论文

3. 对银行大数据应用的一点思考

对银行大数据应用的一点思考

在《大数据时代》广为流行之时,就拜读了该书。当时的第一感觉是,大数据时代是对传统统计学的一大挑战,因为大数据的分析无需取样,直接避开了传统统计学的一大前提,也就避免了因样本取样本身带来的误差。得益于当前发达的网络技术和计算机性能,大数据时代的数据分析是全量的数据分析。我想,这也是该书为什么一经推出就如此火热并迅速推广至各行各业的原因。梳理一下近期的思路,谈一谈自己对大数据于银行业务的一点思考。

一、银行拥有得天独厚的大数据优势

看完书后的很长一段时间,我都在思索大数据的思维和方法如何运用在工作中。因为自己每天都在与大量的数据、各类的报表、不同的系统打交道,深感银行数据的全面、多样与深不可测。网上银行、手机银行、财富管理、信用卡平台等系统内的客户交易数据,核心系统、信贷系统、客户关系维护系统、计价系统等客户的基础信息,这些是多少外部咨询公司可望而不可及的数据。如此丰富的信息,如果只是让她们停留在数据阶段,真是太可惜了。虽然,我已经通过不断提升excel的操作水平来简化和分析数据,但深感其用途远远不应该只是每日通报而已。如何科学利用这些数据,并以此来推动工作开展,是自己一直在思索但总有点心有余而力不足的问题。银行的大数据,内容庞大,超出一般人的数据处理能力;大数据于银行,是新的竞争领域,是新的思路也是新的挑战,理应是新的工作重点。

二、银行大数据应用的主要方面

银行归根到底是金融服务业,产品的研发、服务的开展无疑都是为了吸引和留住客户,提升综合竞争力,而数据则是服务好客户的前提和保障。就自己浅显理解,我觉得大数据可在如下几个方面促进业务开展。

一是区域化管理。不可否认,大到国家、省份、地市,小到不同城区、不同社区、不同单位,文化差异和生活习惯是有所不同的。我们所辖的网点分布在不同的地方,如何因地制宜地推出适合当地居民的产品和政策,必须对不同片区、不同社区、不同商圈的客户进行统计分析,分析区域之间客户存在的工作、消费、生活习惯差异,寻求区域内部客户之间存在的工作、消费、生活习惯共性,以提供有针对性的营销计划,根据地域优势来分配主要的业务经办行,打造专业的队伍服务特定的人群,促成资源的合理配置。

二是差别化服务。从IT蓝图上线起,我们中行就提出了经营模式从“以产品为中心”向“以客户为中心”的转变,服务模式从“标准化服务”向“个性化服务”的转变,这些转变落实到具体工作中,就是服务形态和方法的转变。通过我行自身的各种渠道、各类系统整合客户信息,已经形成了一个基本的数据库,这个数据库里包含了客户的工作、家庭、账户、联系信息等客观数据,如果能通过借助外部平台,引入客户喜好、情绪等主观因素,则可以更加精准地判断客户的态度立场、情感倾向等,进而可以相应地分析可向客户推荐的产品、服务、定价政策,既能迎合客户的需求,又能提高营销的效率和效益,真正实现“精准化营销”。

三是风险管控。这是目前为止,我的日常工作中做得最多的。对于风险控制我们多数时候是被动的,到了贷款出现逾期才意识到借款人资金、信用出现了问题,对于这类现象首先追究的是客户经理的贷后管理工作不到位。但很多逾期的贷款客户在其资金链断裂前,其经营实体和抵押物情况等是没有太多变化的,为了尽早地发现问题,现在的贷后管理,不能仅仅局限于上门回访,而应通过系统监控和数据分析加强预警防控能力,及时地发现客户的资金异动,以便采取及时有效的措施防范风险。随着信用卡的普及,信用卡的消费和还款情况一定程度上反映了持卡人的资金实力,通过分析贷款客户的信用卡使用情况及时发现潜在风险,尽早开展贷后催收和诉讼工作,避免逾期后再催收的措手不及。

三、银行大数据运用可采取的措施

有了数据,如何运用数据才是更加具有挑战性的工作。对于如何运用大数据,我觉得首先要丰富数据采集渠道,拓宽数据来源,我们掌握的客户信息多为金融信息,数据准确可靠,但缺乏客户行为方面的信息,可依托互联网、电商、微博微信等社交平台充实数据资源,以更加全面了解客户的真实需求;其次要加强内部数据的整合运用,虽然目前我们的数据多,但是数据较分散,各自为政,缺乏交叉运用,各部门各条线应加强数据的资源共享;最后是要建立和培养一支专门的数据分析队伍,整合各专业领域的员工,负责数据的采集、简化、分析和应用。在保护客户隐私的前提下,还可以委托专门的数据处理公司开发专门的程序,以利于更加方便快捷地开展各项工作。

以上是小编为大家分享的关于对银行大数据应用的一点思考的相关内容,更多信息可以关注环球青藤分享更多干货

4. 互联网金融与大数据应用论文

在中国庞大的应用市场和人群下,深入观察变化且复杂的市场,探索以大数据为基础的解决方案成为了银行提高自身竞争力的一大重要手段。大数据技术是互联网金融的一大技术支撑,通过对人们在互联网上活动信息形成的数据的收集、挖掘、整理、分析和进一步应用,来创新思维、产品、技术、风险管理和营销。而数据是互联网金融的核心,未来计算机网络互联网金融业的竞争力将取决于数据的规模、有效性、真实性以及数据分析应用的能力。

一、我国互联网金融的概况

互联网金融作为二十一世纪高新产物,是传统的金融行业与互联网时代的有机结合,利用互联网技术和信息通信技术实现资金融通、支付、投资和信息中介服务的新型金融业务模式。这种新型金融模式具有颠覆式的影响,创新型巨大改革,不仅推动了我国利率市场化的进程,甚至影响整个经济与社会发展水平。

二、互联网金融的运作模式

(一)第三方支付模式

第三方支付模式,即某些具有一定实力和信誉保障的第三方独立机构,与各大银行签约后所提供的交易支持平台。

(二)P2P模式

又称点对点信贷,即一方贷款,一方借款,通过互联网作为中间平台的新型模式。这个模式对于微型小额的'信贷以及需要紧急周转资金的创业者是一个很好的选择。

(三)众筹模式

众筹就是大众筹资,需要筹资的企业或个人通过互联网这个众筹平台运用自己独特的号召力并发挥创意,获得来自大众的资金援助。

(四)互联网金融门户

互联网金融门户的核心就是“搜索比价”的模式,采用垂直比价的方法让顾客在互联网上“货比三家”,选择自己最满意的商品。

(五)大数据金融

大数据金融就是从大量数据中提取有利用价值的信息,以云计算为基础来进行融资的模式。最具代表性的就是余额宝,用高于银行的利率吸引消费者融资,不断推动着金融业的发展与进步。

三、互联网金融中的大数据应用及意义

(一)反映市场情况:电商和统计部门通过利用大数据对指数的编制来反映市场的基本情况,有效的分析交易数据,识别出市场交易模式,帮助决策者制定高效率的套利战略。比如国家的统计局与网络、阿里巴巴等电商、电信、互联网企业签订合作协议,共同开发利用大数据。

(二)金融产品定价:金融的核心内容之一就是金融产品定价问题(尤其是金融衍生产品定价),这一直是大家关心的重要领域,其中涉及有计算和数学建模等。以信用违约互换定价为例,除了考虑违约的传染性和相关性,还要考虑违约过程的建模和估计,通常需要复杂的数学模型并且验证困难。最近一种基于大数据的解决方法即利用实际交易数据估计违约概率使其简单方便。因此大数据能为互联网金融市场提供运营平台,有效的整合互联网金融资源,,促进资源优化配置。

(三)精确营销:通过对一些场景类环境数据、朋友关系和用户经历的人文数据、位置和购物等的行为数据,建立模型进行分析,进一步细分客户。之后,可以定向推出产品并投放广告,实现精确营销。这也符合STP战略思想。大数据通过分析社交网络市场的信息, 特别关注搜索引擎中的搜索热点,从而制定投资策略,使互联网金融实现了一种新的营销模式。

(四)监管风险:互联网金融虽提高了金融效率,但也使风险呈现出许多新形式。因此需要对互联网金融活动产生的大数据进行分析,及时准确发现风险暴露,采取相应的措施加以规避、防范,提高互联网金融安全性,促进互联网金融的创新。

(五)信用:利用大数据,可以在法律和道德所容许的范围内对评估对象的静态动态信用行为进行收集、整理、分析挖掘,使人的信用立体化,进而评估个人或群体的信用,建立用户的增信模型和信用评分,打破了金融机构垄断用户信息的状况。

四、互联网金融大数据应用中存在的问题

互联网金融业本就拥有大数据,已成为自然产生大数据的重要领域,因此在互联网金融大数据应用中体现出了一些问题和挑战。

1、大数据处理速度满足不了各方的需求,体量大,噪声水平、数据来源和其他因素引起的内容和频率变化快,增加了大数据问题的复杂性。

2、大数据中含有大量的噪声信息甚至是虚假信息,出现信息过载的问题。

3、部分企业不愿公开、上传数据,造成不公开数据部门占便宜、公开数据部门吃亏的状况,形成了数据的公开、共享等方面不尽人意的局面。

4、容易泄露用户信息,造成滥用法律法规建设及滞后的现象。如商家对客户交易信息的过度营销,下载不安全的APP、用户扫描二维码支付都可能泄露个人的信息,买卖用户信息的不法交易等。

5、并非互联网金融的所有参与者都具备大数据分析的能力,数据分析挖掘能力不平衡。

五、结论

通过对互联网金融大数据的运行模式以及应用初步探究,我们发现还有很多问题等待我们去解决,严峻的考验只会让我们的路走得更稳固,金融业近些年的巨大发展和变革让我们更加坚定的去深思时代产物与新型科技的碰撞带来的丰硕成果,不断更新互联网金融时代,带领我们进入更美好的时代。

5. 和大数据有关的毕业论文题目

大数据只是一个时代背景,具体内容可以班忙做

6. 商业银行经营管理问题研究论文

商业银行经营管理问题研究论文

当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。下面是我整理的商业银行经营管理问题研究论文,一起来看看吧。

商业银行经营管理问题研究论文 篇1

一、商业银行经营管理存在的问题

(一)银行内控机制不健全,规避银行风险不到位

健全的银行内控机制能够有效的对银行风险进行规避,在我国近年来发生的金融事件中,都体现出我国商业银行的内控机制存在问题,造成重大损失。建立健全我国商业银行的内控机制,是银行发展的关键。大部分银行有针对自身发展特点的内控规章制度,但是这种机制在不合理的激励约束下,在支行行长的权利过大,造成相应的监督机制不能够顺利进行的情况下,在电子化控制水平较低的情况下,造成商业银行的内控机制不能够很好地发挥效果,阻碍了商业银行规避风险的能力②。

(二)经营管理的方法落后,无法满足业务需求

尽管我国的商业银行在国际影响下也实行了资产负债比例管理,但是没有很好的进行落实,很多银行都是吸收更多的存款,却忽视了成本,这与外国银行追求效益的目标所取得的效果是截然不同的。这种经营管理的落后,造成我国商业银行的经营管理机制并不健全,使得不能够很好地发挥作用,在竞争中处于不利地位。

(三)分业模式对商业银行造成限制

为了降低风险,我国商业银行实行了分页的经营模式,但是这种方式却导致了我国商业银行的发展受到了限制。这种分页的经营模式,使我国商业银行难以满足企业所需的国际水平的金融产品和业务服务,使一些企业选用外国的银行作为自己的支持后盾。

(四)员工的专业水平不高,易造成风险

银行的许多工作人员只是单纯的完成数字任务,认为只要完成了任务就能够保证银行发展。忽略了员工素质对整体的发展提高作用。

二、商业银行经营管理问题的对策

(一)建立健全适合银行发展的内控体制

在经营管理的改革中,建立健全内控体系是商业银行发展的必然趋势,对于支行行长的权利要进行适当的控制,行长要明确自己的职责,不能盲目行使权利。要强化支行的内控体制建设,通过一系列的方法使支行的内控逐渐的科学化。

(二)改变经营管理模式,提高竞争力

商业银行的根本目的是盈利,因此要在这一目标的趋势下,不断地进行经济管理体制的改革,要运用现代管理技术,加强计算机技术的运用,进行精细的分工,对银行上下进行系统的培训,提高员工的经营管理理念,增强银行的竞争能力。改变经营管理模式还要积极吸收国外的有利经验为自己所用,并且不断地进行创新③。

(三)提高员工的整体素质

要加强员工的思想教育,提高员工的素质,对于员工的岗位特点,进行系统、针对的培训,对于员工的工作银行要进行明确划分,使银行的岗位得到具体的落实,并且岗位责任有人可寻,对员工要进行奖励与约束并存的管理机制,使员工意识到工作责任心的重要性,对员工的知识技能要进行定期的检查,做到用员工之所长,谋银行之发展。

三、结语

商业银行的发展对于我国整个金融业的发展有着积极的推动作用,我国商业银行的经济管理在经济全球化的背景下,竞争能力较弱,跟不上发展的步伐。加强我国商业银行的经营管理,对于一些金融风险起到规避的作用,对于银行自身的发展以及参与国际竞争能力都有很大的提高。

商业银行经营管理问题研究论文 篇2

【摘 要】

随着移动互联网、云计算、大数据挖掘技术的不断发展,大数据在银行业领域的应用日趋深入。论文以大数据时代为背景,对大数据在商业银行中的应用现状和存在的问题进行研究。论文运用SWOT分析法对商业银行目前的优势、劣势、机遇和挑战进行分析,发现现阶段银行业在经营管理上的问题,结合大数据应用,从精准营销、客户关系管理、风险控制和用户信用管理四个方面,提出优化商业银行经营管理的策略。

【关键词】

大数据;商业银行;经营策略

1.商业银行业大数据应用的特点

2017年人民银行和银保监会分别在《中国金融业信息技术“十三五”发展规划》中提出,商业银行要引入大数据等新技术,推进大数据基础设施建设,加快推动银行业务创新,加强风险控制能力。大数据已经被提升到了国家战略高度,在银行业运用过程中取得了一定的成果[1]。

数据容量大。我国商业银行长期的业务开展,使得银行业“天然”拥有海量数据,商业银行的主要数据是围绕柜面业务系统、信贷管理系统和风险控制系统等产生结构化数据。商业银行推出的电子金融服务系统,使得一些非结构化的数据信息开始产生,包括指纹和人脸识别等。数据结构复杂,移动互联的发展促使半结构化、非结构化数据爆发式增长。数据资产化,利用价值大。商业银行在稳健经营中对数据的准确性有很高的要求,利用好银行已有的海量数据,应用在客户识别、风险识别和产品营销等不同场景下,更好地实现数据资产的增值。

2.基于大数据应用的商业银行经营策略的SWOT分析

2.1 拥有的优势(Strength)

成本控制优势。随着信息技术发展,商业银行能够实现现有业务流程的自动化,大大降低了物理网点的工作人员数量,降低了银行的运营成本。随着云计算能力的提高和技术的成熟,云计算系统中的数据均保存在“云”端,减少关于IT基础设施的建设、单位数据存储和处理的成本。

营销效率优势。商业银行通过本身的海量数据进行深度挖掘,对客户进行静态特征、行为特征、倾向预测三个层次的刻画,构建客户体系,进行营销活动的精确推送。通过分析客户上下游相互关系,了解客户间业务等往来情况,发掘新的潜在客户,确定交叉销售目标,提高了客户服务效率及营销精准度。

风险管理优势。银行在传统风险控制方面积累了丰富经验,这些为大数据挖掘、传输、存储与安全应用提供了相对成熟的基础环境。将大数据、人工智能等技术作为风控工具应用到风险控制工作,提升风险控制效率和精准度。

2.2 存在的劣势(Weakness)

业务同质化。我国商业银行盈利的主要业务是贷款业务,少有针对客户需求设计开发的特色产品。因此,大数据的应用范围可以深入其他能够盈利的业务,如银行业的中间业务。利用大数据优势,找准银行的自身业务定位,打造差异化的竞争模式。

数据共享程度不高。各家商业银行均拥有自己的系统,出于自身利益考虑,几乎不存在分享机制,导致大数据基础建设效率低、数据利用率低、在整体上缺乏系统性,各银行只能描绘客户在本行的交易画像,不能展示出客户的金融全貌。

2.3 拥有的机会(Opportunity)

强化优势。商业银行传统所具备的安全、稳定、诚信等优势可以通过大数据应用进一步巩固强化。在风险管理中进一步利用大数据,提高银行自身的安全性。在营销方面,不断完善客户画像,了解客户真实需求,实现精准营销。成本控制方面,随着大数据技术的不断成熟,人力成本、设备成本和运营成本也将不断降低[2]。

金融产品的创新。在大数据时代,银行业不断进行产品创新,以满足客户个性化需求。这就需要深入了解客户的核心需求,利用大数据建立数据模型,为其定制专属于消费者自己的金融产品,提升用户的体验满意度。

2.4 面临的威胁(Threat)

银行业与互联网金融企业的竞争加剧。信息技术的快速发展,促使互联网金融呈现出爆炸式的发展态势。互联网金融模式具有资金配置效率高、交易成本低、支付便捷、普惠性等特点。互联网企业加快布局金融业,对整个银行业的核心业务产生冲击,挤占了原本属于传统银行业的利润空间。

数据的安全性问题。首先,随着互联网技术的发展,数据量的大幅增加导致了数据的严重失真,大量无序低效的无用信息混进数据库形成垃圾数据,增加信息误读的风险。其次,商业银行运用云平台也伴随着一定的风险:一是网络系统与存储中心可能存在漏洞引起技术安全风险;二是海量客户信息与个人隐私信息的泄露风险。

3.基于大数据应用的商业银行经营管理优化策略

3.1 精准营销

大数据应用更强调相关关系释放出的潜在价值。商业银行拥有海量数据,可利用聚类分析,挖掘出更多数据中含有的潜在特性,帮助商业银行进行市场细分。通过大数据挖掘中的关联分析相关关系,发掘新的潜在客户,确定交叉销售目标。大数据不断推进金融产品创新。商业银行通过大数据挖掘为客户提供差异化服务和定制化价格。根据对海量数据的分析预测,建立相应策略模型,掌握客户的消费习惯和行为特征,实现创新式的营销、无缝多渠道的销售、个性化的服务[3]。

3.2 客户关系管理

商业银行业务同质化严重,客户管理十分重要。在互联网背景下,金融脱媒现象加速,碎片化金融产品抓住了市场需求,提供差异化产品的同时也剥夺了银行的客户资源。因此,运用大数据挖掘方法可以为商业银行提供更精确的客户关系管理。商业银行可以与其他行业或大数据公司形成合作关系,以获取客户出行、交易习惯等数据,进行客户信用评分,当客户提出需求时,商业银行利用人工智能进行判断。商业银行还可利用大数据更精准地预测客户流失概率,并对相应超过客户流失概率阈值的客户实行定制化客户挽留措施[4]。

3.3 风险控制

银行业作为高经营风险的行业,风险控制是其生存和发展的基础。通过大数据技术扩容传统商业银行风险管理的数据源并处理半结构化和非结构化的各类数据,构建大数据风险管控平台,全面收集客户的数据。注重内外部数据的融合,整合银行内部积累的金融信息,同时,获取外部数据或公共信息等数据,降低信息不对称程度,增强风险控制能力。建立风险管控模型,可以借鉴国内外同业的做法,设计符合实际要求的模型,根据实际情况开展训练,输入实际的数据进行模型训练和验证,合理地改进模型的配置参数,提高模型的准确度[5]。

3.4 信用管理

商业银行信用风险管理对商业银行的贷款决策具有显著影响。商业银行要构建人工和数据相结合的模式,运用大数据挖掘技术,集合内外信息资源,形成覆盖所有机构、所有客户、所有产品的实时监测分析和预警控制网络,提高信用风险预警水平。利用大数据,实现贷款业务的贷前、贷中和贷后全过程管理。强化贷前风险识别,在客户审批阶段,依托行内信用数据库、评级系统及反欺诈平台,提前对客户可能存在的违约风险进行精准判断;强化贷中审批自主化,大数据信贷审批系统以风控评分卡模型的自动审核为主,加以人工审核进行辅助的模式;强化贷后风险监测,商业银行要建立信贷投放、资产质量等多维度的信用风险日常监测指标体系。

【参考文献】

【1】韩雪峰,朱青,马文捷.商业银行应用大数据的安全风险防范研究[J].江苏商论,2017(11):88-92.

【2】齐贵柱,齐苑博.大数据时代商业银行大数据分析研究[J].财经界,2019,500(01):128-129.

【3】屈波,王玉晨,杨运森.互联网金融冲击下传统商业银行的应对策略研究--基于SWOT分析方法[J].西部金融,2015(1):41-45.

【4】严文枢.关于商业银行大数据应用的思考和探析[J].福建电脑,2014(7):68-69.

【5】信怀义.商业银行大数据的应用现状与发展研究[J].中国金融电脑,2016(8):26-28.

商业银行经营管理问题研究论文 篇3

【摘要】

在经济全球化迅速发展以及改革开放不断扩大的机遇中,我国各行各业得以迅猛发展,其中我国银行业的发展举世瞩目,取得了许多长足的进步。但是,机遇与挑战通常是并存的,在银行业场迅速发展的同时,商业银行之间的角逐也逐渐激烈起来。因此,我国商业银行也面临着许多挑战。比如,在商业银行的经营管理中,还存在着许多风险与不足,与此相关的经营管理体制也未能及时的建立健全。商业银行若是想在如此激烈的角逐占有一席之地,就必须对其管理中存在或者潜在的风险加以预测并且进行防范。本论文根据商业银行经营管理中的出现的情况进行分析,通过一些成功经验,提出对风险的预测以及防范策略。

【关键词】

商业银行 经营管理 风险 防范措施

一、商业银行经营管理中存在的风险

(一)银行出现的不良贷款率较高

银行经营管理中出现风险种类十分多,但是主要对银行经营造成影响的是银行资产的质量风险。而对于资产的质量起到关键性作用的.是贷款的质量,许多银行存在的风险大多是由不良贷款引发的。依据近过去几年的数据统计,我国商业银行的不良贷款率相对于国外的主要商业银行还是偏高的,因此得出不良贷款率仍旧是造成我国银行资产质量风险的主要原因之一。

对不同种类企业的还贷能力进行准确评估存在一定难度,这给银行贷款的发放与回收带来困难。对于部分经营能力较强、企业规模大并且实力相对雄厚的企业,这部分企业绝大多数已经具备上市的资格,在相关行业中具有稳定地位。因此,在商业银行放贷中十分抢手,银行也十分愿意向其发放贷款。但是,相对的一些企业经济效益并不是十分理想,对于银行的贷款不能及时返还,造成银行信贷资金的危机,使其流动性受到限制。近年来由于经济增速的下降,大量企业盈利能力降低,对于商业银行的贷款质量造成了一定不利影响。

(二)员工的综合素质不高

在银行经营管理风险中,员工是主要的操作人员。但是,由于不少员工的综合素质以及学习水平不足,也成为影响银行经营管理风险的主要因素之一。员工的总体水平是企业竞争力的直接影响因素。但是我国银行员工的综合素质还不能满足银行业务发展的需求,更有甚者,有部分员工缺乏职业道德素养,利用个人的职位谋取或者侵犯银行利益,在进行工作的同时,出现了挪用公款、贪污等违法行为,对银行业务的发展造成不利影响。其次,就是银行员工的个人工作水平以及经验不足,对经营管理岗位的需求无法满足,缺少长远发展的眼光,不能应对随时出现的风险,成为阻碍银行发展的因素。

(三)个人信用系统的不完善

在银行经营管理中存在的影响因素之一是个人信用系统的不完善。银行业务中的重要组成部分是个人信贷,为了能够让个人信贷能够及时的返还,银行一般是要对贷款人的个人信用进行审查,对于一些没有良好的个人信誉的客户,将不会同意其贷款要求。但是,从银行业务对于个人信用的审查流程来看,普遍存在的问题是,对个人信用审查的不严格以及相关的贷款信用管理体制尚未健全。如今信用系统中涉及贷款人的各种信息以及身份证明并不能对贷款人的信用情况进行真实有效的反映。个人信用系统的不完善以至于出现对贷款人的可支配资金、可抵押的资产或是其收入情况不能全面掌握,或是贷款人出现一些伪造信息的情况。个人信用系统的不完善最终导致的结果是银行的贷款不能在规定时间内及时的收回,从而对整体运转系统造成影响。

二、银行经营管理中的防范策略

(一)资产配置进行优化,降低不良贷款率

对资产配置进行优化,从而降低不良贷款率。这不仅能降低银行风险爆发的概率,还会银行业务的发展有着促进作用。首先,要提高资产的质量,就要对资本的运作水平进行提高。要对银行业务中长期贷款进行科学的设置,使银行的流动性得以保障。其次,对金融科技的创新能力进行强化,将大数据、云计算等技术运用到贷款过程中,收集、分析各类数据,使银行能够精确的了解贷款过程中各种信息,使不良贷款率降低。最后,对于出现的不良贷款采取相应的手段,对其进行约束,并且对审款、放款、贷款等流程进行严格把控,增强信用贷款的管理,推进银行经营的进步以及银行业务的发展。

(二)提高员工综合素质

员工的综合素质与银行能否顺利发展有着不可磨灭的联系,根据这一实际状况,银行应当对员工的综合素质引起重视,增强员工的综合素质,建成一支高素质、复合型人才队伍。第一,在招聘中进行严格要求,对人才的综合素质进行严格的考察与测评,既要对其专业能力进行考评,还要对其职业道德素质以及道德水平进行测评,使其能够保持对工作的热情以及在工作中能够发挥其能动性,积极的承担自己的责任。第二,对银行员工进行定期的培训,提供外出学习先进经验的机会,使其的专业知识不断更新,不断的积累先进经验。第三,在金融市场风云变幻中,银行也必将随之变动。因此,要求员工能够及时掌握市场的行情,通过对市场行情的分析开拓自己的眼界,提高员工对风险的敏感度。第四,要提高员工的综合素质水平,必须要定期的对员工进行考评,严格对其行为进行把关,有助于形成良好的学习氛围,促进员工综合素质的进步。

(三)建立健全信用系统

建立健全信用系统对推进银行经营管理有着关键性的作用,同时也是信贷业务能否良好展开的必要保障。在贷款业务的进程中,信用系统能否建立健全对贷款人的信用审查部分有着重要的推动作用。第一,银行在信贷业务中要完善信用审查环节,对其工作流程严格把关,对贷款人信息进行精确严格的问询,保证其信息的准确性。第二,在建立健全信用系统的过程中,要求银行员工在工作时,要对贷款人的信息填写进行具体的指导,并且明确的对其进行提示,要求其填写关于信用贷款的所有相关信息,包括其可抵押资产、收入来源、总体资金以及贷款资金的用途等详细信息。第三,对于贷款人填写的信息,银行后期应该进行仔细核查,并定期对其进行追踪,使信用系统的健全得以保障,从而降低潜在的信用风险。

三、结语

在经济全球化带动我国银行发展的同时,我国银行的竞争也日益激烈。在各种风险因素的影响下,银行的经营管理也存在着各种不同的风险。在商业银行经营管理中,风险的存在是不可回避的问题。因此,银行应该通过各种手段对已出现的或是潜在的风险采取解决措施或是提前预测,有效的规避风险。只有提高对风险认识的敏感度,才能对出现的风险坦然面对,继而能够使银行能够顺利发展,为我国经济发展做贡献。

;

7. 以大数据为主题,写一篇1500字的文章

可参考下文9个关键字写写大数据行业2015年年终总结2015年,大数据市场的发展迅猛,放眼国际,总体市场规模持续增加,随着人工智能、物联网的发展,几乎所有人将目光瞄准了“数据”产生的价值。行业厂商Cloudera、DataStax以及DataGravity等大数据公司已经投入大量资金研发相关技术,Hadoop供应商Hortonworks与数据分析公司NewRelic甚至已经上市。而国内,国家也将大数据纳入国策。我们邀请数梦工场的专家妹子和你来聊聊2015年大数据行业九大关键词,管窥这一年行业内的发展。战略:国家政策今年中国政府对于大数据发展不断发文并推进,这标志着大数据已被国家政府纳入创新战略层面,成为国家战略计划的核心任务之一:2015年9月,国务院发布《促进大数据发展行动纲要》,大力促进中国数据技术的发展,数据将被作为战略性资源加以重视;2015年10月26日,在国家“十三五”规划中具体提到实施国家大数据战略。挑战:BI(商业智能)2015年对于商业智能(BI)分析市场来说,正由传统的商业智能分析快速进入到敏捷型商业智能时代。以QlikView、Tableau和SpotView为代表的敏捷商业智能产品正在挑战传统的IBMCognos、SAPBusinessObjects等以IT为中心的BI分析平台。敏捷商业智能产品也正在进一步细化功能以达到更敏捷、更方便、适用范围更广的目的。崛起:深度学习/机器学习人工智能如今已变得异常火热,作为机器学习中最接近AI(人工智能)的一个领域,深度学习在2015年不再高高在上,很多创新企业已经将其实用化:Facebook开源深度学习工具“Torch”、PayPal使用深度学习监测并对抗诈骗、亚马逊启动机器学习平台、苹果收购机器学习公司Perceptio……同时在国内,网络、阿里,科大讯飞也在迅速布局和发展深度学习领域的技术。共存:Spark/HadoopSpark近几年来越来越受人关注,2015年6月15日,IBM宣布投入超过3500名研究和开发人员在全球十余个实验室开展与Spark相关的项目。与Hadoop相比,Spark具有速度方面的优势,但是它本身没有一个分布式存储系统,因此越来越多的企业选择Hadoop做大数据平台,而Spark是运行于Hadoop顶层的内存处理方案。Hadoop最大的用户(包括eBay和雅虎)都在Hadoop集群中运行着Spark。Cloudera和Hortonworks将Spark列为他们Hadoop发行的一部分。Spark对于Hadoop来说不是挑战和取代相反,Hadoop是Spark成长发展的基础。火爆:DBaaS随着Oracle12cR2的推出,甲骨文以全新的多租户架构开启了DBaaS(数据库即服务Database-as-a-Service)新时代,新的数据库让企业可以在单一实体机器中部署多个数据库。在2015年,除了趋势火爆,12c多租户也在运营商、电信等行业投入生产应用。据分析机构Gartner预测,2012年至2016年公有数据库云的年复合增长率将高达86%,而到2019年数据库云市场规模将达到140亿美元。与传统数据库相比,DBaaS能提供低成本、高敏捷性和高可扩展性等云计算特有的优点。

8. 大学互联网金融选修课论文,我可不可以写:大数据背景下互联网银行是否会取代传统银行

这种论文,对题目没多大要求
但是很难展开论述,数据安全是银行的最大软肋。原因很简单,目前的网络都是控制在美国人手里。如果网络银行取代传统银行,那么所有银行的数据就都掌握在美国人手里。事实上,目前银行的数据是物理隔绝互联网的。通常用的网络数据,只是和银行交换数据

9. 大数据在银行业的应用与实践

大数据在银行业的应用

一、舆情分析

对于银行来说,舆情分析包括:银行的声誉分析、品牌分析和客户质量分析。它主要是通过分析网络社交媒体的评论,对于客户的流失情况进行预警,还可以通过对新闻热点的跟踪以及政府报道的分析,为银行提供个性化的分析场所。

二、客户信用评级

银行可以通过手机客户申请信用卡的数据,分析客户的信用程度,从而帮助业务人员做出相应的决策。

三、客户与市场洞察

银行可以通过跟踪社交媒体的评论信息,利用各种非结构化数据,对客户进行细分,改进客户的流失情况。这是银行对于市场的趋势分析。

四、运营优化

银行通过大数据平台对各种历史数据进行保存和管理,同时可以对系统日志进行维护、预测系统故障,从而提升系统的运营效率。

五、风险与欺诈分析

主要包括财务风险分析、贷款风险分析、各种反洗钱和欺诈调查和实时欺诈分析等内容。所谓财务风险分析是分析信用风险和市场风险产生的数据;贷款风险分析是从媒体或者社会公众信息中提取企业客户和潜在客户的信息。提高对于风险的预测能力和预警能力;反洗钱与欺诈调查是提取犯罪记录的信息;实时欺诈分析则是对大量的欺诈数据进行分析。

银行数据架构规划

随着银行业务的扩展,可以对数据进行架构规划。大数据的数据架构规划可以采用Hadoop技术,即通过与节后或数据进行关联,进一步拓展对非结构化数据的处理。其数据源包括结构化数据、半结构化数据和非结构化数据。半结构化数据和非结构化数据通过网络爬虫的方式来搜集,再经过内容管理处理,将数据进行结构化处理,然后可以将内容管理处理得出的数据信息存放到基础数据存储中。这是基于HDFS存放的非结构化数据。

大数据为银行创造的价值

当银行客户与银行产生交易,会产生大量的数据,这些数据具有大量的业务价值,为银行进行有针对性的营销创造了机会。

在大部分的应用中,随着数据量指数级的增长,特别是一些非结构化数据的快速增长,大量的数据导致分析时间增长,传统的商业智能已经无法满足需求,阻碍了业务的发展,以FineBI为代表的新型BI的涌现,无论在数据处理量和速度上都相比传统BI有突破性的进步。

在很长的一段时间内,银行的大部分业务是建立在客户和银行的交易过程中的,但是为了能更好地为客户服务,光靠依赖这些数据是不够的。随着技术的进步,银行可以通过很多途径来搜集客户的资料。从而进行有针对性的营销。

随着互联网技术的发展,客户可以通过电子渠道对银行业务发表看法或者购买银行产品。这些操作都是为增强对于客户的了解,降低信息的不对称性。

目前来说,在利率市场化的趋势下,存款的稳定性降低,存贷款的利差收窄,数据分析已经逐渐成为银行实现核心业务价值的重要手段。金融脱媒会导致大量客户的流失和客户忠诚度的降低。银行作为“支付中介”的地位开始动摇,客户对于银行服务的要求越来越高。

在这种情况下,银行需要通过大数据深入全名了解客户的基本信息,提升业务运行的效率,逐步提高客户的体验。通过对大数据的加工以及挖掘,可能为银行带来极大的效益,特别是商业银行。

对于银行来说,风险管控和用户营销是未来最重要的两个方向。而对客户的信用评分是实现这两个方向的重要条件之一。信用评分是根据申请人的申请信息和证明材料,帮助业务员作出决策,降低坏账率。

比如:我们可以根据大数据的分析和查询,有针对性地为客户提供理财产品建议和提醒,同时通过对大数据的分析和挖掘,来评估客户的信用风险和资金偿还能力,降低了银行的各种风险。

10. 大数据论文

大数据论文【1】大数据管理会计信息化解析

摘要:

在大数据时代下,信息化不断发展,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

同时也面临着一些问题。

本文通过分析管理会计信息化的优势和应用现状以及所面临的的问题,以供企业在实际工作中对这些问题的控制和改善进行参考和借鉴。

关键词:

大数据;管理会计信息化;优势;应用现状;问题

在这个高速发展的信息时代,管理会计的功能已经由提供合规的信息不断转向进行价值创造的资本管理职能了。

而管理会计的创新作为企业管理创新的重要引擎之一,在大数据的时代下,管理会计的功能是否能够有效的发挥,与大数据的信息化,高效性、低廉性以及灵活性等特点是密不可分的。

一、大数据时代下管理会计信息化的优势及应用现状

在大数据时代下,管理者要做到有效地事前预测、事后控制等管理工作,在海量类型复杂的数据中及时高效的寻找和挖掘出价值密度低但是商业价值高的信息。

而管理会计信息化就能够被看做是大数据信息系统与管理会计的一个相互结合,可以认为是通过一系列系统有效的现代方法,

不断挖掘出有价值的财务会计方面的信息和其他非财务会计方面的综合信息,随之对这些有价值的信息进行整理汇总、分类、计算、对比等有效的分析和处理,

以此能够做到满足企业各级管理者对各个环节的一切经济业务活动进行计划、决策、实施、控制和反馈等的需求。

需要掌控企业未来的规划与发展方向就能够通过预算管理信息化来实现;需要帮助管理者优化企业生产活动就能够通过成本管理信息化对

供产销一系列流程进行监控来实现;需要对客观环境的变化进行了解以此帮助管理者为企业制定战略性目标能够通过业绩评价信息化来实现。

(一)预算管理信息化

在这个高速发展的信息时代下,预算管理对于企业管理而言是必不可少的,同时对企业的影响仍在不断加强。

正是因为企业所处的环境是瞬息万变,与此同此,越来越多的企业选择多元化发展方式,选择跨行业经营的模式,经营范围的跨度不断增大。

这就需要企业有较强的市场反应能力和综合实力,对企业的预算管理提出了新的发展挑战要求。

虽然不同企业的经营目标各不相同,但对通过环境的有效分析和企业战略的充分把握,从而进行研究和预测市场的需求是如出一辙的。

企业对需求的考量进而反应到企业的开发研发、成本控制以及资金流安排等各个方面,最终形成预算报表的形式来体现企业对未来经营活动和成果的规划与预测,

从而完成对企业经营活动事后核算向对企业经营活动全过程监管控制的转变。

然而从2013国务院国资委研究中心和元年诺亚舟一起做的一项针对大型国有企业的调研结果中得出,仅仅有4成的企业完成了预算管理的信息化应用,

大型的国有企业在预算管理信息化应用这方面的普及率都不高,足以说明我国整体企业的应用情况也不容乐观。

所以从整体上来讲,预算管理信息化的应用并未在我国企业中获得广泛的普及。

(二)成本管理信息化

企业由传统成本管理企业向精益成本管理企业转换是企业发展壮大的必然选择。

而基于大数据信息系统能够为企业提供对计划、协调、监控管理以及反馈等过程中各类相关成本进行全面集成化管理。

而进行成本管理的重中之重就是对企业价值链进行分析以及对企业价值流进行管理。

企业能够通过成本管理信息化对有关生产经营过程中的原材料等进行有效地信息记录及进行标示,并结合在财务信息系统中产生的单独标签,

使与企业有关的供应商、生产经营过程和销售等的过程全都处于企业的监控。

以此企业可以做到掌握生产经营的全过程,即能够通过财务信息系统实时了解到原材料的消耗,产品的入库及出库等一切企业生产经营活动。

同时,结合价值链的分析和价值流管理,企业通过将生产过程进行有效地分解,形成多条相互连接的价值链,运用信息化手段对企业的

每条价值链的成本数进行有效的追踪监管和综合分析,以此为基础为企业提出改进方案,并使用历史成本进行预测,达到减少企业的不需要的损失及浪费,最终达到优化生产经营过程。

虽然成本管理信息化是企业发展的一个重要趋势,以大数据信息技术为基础的信息系统可以使得企业完成全面的成本管理,给企业的成本管理带来了巨大的推动力。

然而信息化在成本控制方面的实施效果并不是很理想。

(三)业绩评价信息化

业绩评价是对企业财务状况以及企业的经营成果的一种反馈信息,当企业的绩效处于良好状态,代表企业的发展状况良好,

也反映了企业现阶段人才储备充足,发展处于上升期,由此企业定制扩张战略计划。

而当企业的绩效不断减少,代表企业的发展状况在恶化,也反映了企业的人才处在流失状态,企业在不断衰退,此时企业应该制定收缩战略计划。

企业进行业绩评价信息化的建设,通过对信息系统中的各类相关数据进行综合分析,有效地将对员工的业绩评价与企业的财务信息、顾客反馈、学习培训等各方面联系在一起。

对于企业而言,具备一套完善且与企业自身相适应的业绩评级和激励体系是企业财务信息系统的一个重要标志,也是企业组织内部关系成熟的一种重要表现。

然而,如今对于具备专业的业绩评价信息化工具平衡分卡等在企业的发展过程中并未得到广泛的应用。

其中最大的原因应该是对业绩评价的先进办法对于数据信息的要求比较简单,通常可以由传统方式获得。

所以,现如今能够完全将业绩评价纳入企业信息系统,并能够利用业绩评价信息化来提高企业管理效率的企业数量并不多。

二、大数据时代下管理会计信息化存在的主要问题

(一)企业管理层对管理会计信息化不重视

我国企业管理层对企业管理会计信息化建设存在着不重视的问题。

首先,对管理会计信息化概念和建设意义没有正确的认识,有甚至由于对于企业自身的认识不够充分,会对管理会计信息化的趋势产生了质疑和抵触心理。

再者,只有在一些发展较好的企业中进行了管理会计信息化的建设工作及应用,但是,企业应用所产生的效果并不是很理想,进而促使管理会计信息化在企业的发展速度缓慢。

(二)管理会计信息化程度较低

大数据时代下,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

但是,由于管理会计在我国受重视程度不够,企业在进行管理会计信息化建设的过程中对与软件的设计和应用也要求较高,所以与管理会计信息化建设相关的基础建设还相对较落后。

(三)管理会计信息化理论与企业经管机制不协调

虽然随着国家政策鼓励和扶持,很多行业的不断涌现出新的企业,企业数量不断增多,但是由于这些企业在规模以及效益等方面都存在着较大的差距,同时在管理决策方面也产生了显著地差别。

很多企业在发展的过程中并没有实现真正的权责统一,产生了管理层短视行为,没有充分考虑企业的长远利益等管理水平低下的问题。

三、管理会计信息化建设的措施

(一)适应企业管理会计信息化发展的外部环境

企业在进行管理会计信息化建设时,要结合企业所处的外部环境进行全方面的规划和建设。

在企业进行规划和建设时,国家的法律法规等相关政策占据着十分重要的位置,需要对市场经济发展的相关法律法规进行充分理解和考虑,为企业管理会计信息化建设提供好的法律环境。

管理会计信息化系统的正常运转要求企业处于相对较好的环境之中,以此充分发挥出其应有的作用。

(二)管造合适的管理会计信息化发展内部环境

企业管理会计信息化的良好发展要求企业能够提供良好的内部环境。

树立有效推进企业管理会计信息化建设的企业文化,企业文化作为企业股东、懂事、管理层以及每个员工的价值观念体现,

有利于各级员工都能够正确认识到管理会计信息化建设的重要性,接受管理会计信息化的价值取向。

再者,企业要储备足够的管理会计人才,为管理会计信息化的建设提供源源不断的血液。

同时,为企业管理会计信息化建设提供强大的资金保障。

最后,对企业内部控制体系不断完善,为企业创造长足的生命力,为管理会计信息化赖以生存的环境。

(三)开发统一的企业信息化管理平台

在大数据时代下,信息化不断发展,对于企业而言,会同时使用多种不同的信息系统进行组合使用,并且这种情况在未来也可能将持续下去,企业需要建立综合统一的企业信息化管理平台。

四、结束语

管理会计信息化已经成为企业发展的重要趋势。

同时也面对着一些问题。

因此,相应的措施和不断地完善和改进是必不可少的,以此才能够促进管理会计信息化的不断发展。

作者:李瑞君 单位:河南大学

参考文献:

[1]冯巧根.

管理会计的理论基础与研究范式[J].

会计之友,2014(32).

[2]张继德,刘向芸.

我国管理会计信息化发展存在的问题与对策[J].

会计之友,2014(21).

[3]韩向东.

管理会计信息化的应用现状和成功实践[J].

会计之友,2014(32).

大数据论文【2】大数据会计信息化风险及防范

摘要:

随着科学技术的不断进步和社会经济的不断发展,大数据时代的发展速度加快,同时也推动着会计信息化的发展进程,提高了企业会计信息化工作的效率和质量,资源平台的共享也大大降低了会计信息化的成本。

但大数据时代下会计信息化的发展也存在一定的风险。

本文将会对大数据时代下会计信息化中所存在的风险给予介绍,并制定相应的防范对策,从而使大数据时代在避免给会计

信息化造成不良影响的同时发挥其巨大优势来促进会计信息化的发展进程。

关键词:

大数据时代;会计信息化;风险;防范

前言

近年来经济全球化进程不断加快,经济与科技的迅猛发展,我国在经历了农业、工业和信息时代以后终于踏入了大数据时代。

大数据是指由大量类型繁多、结构复杂的数据信息所组成的`数据集合,运用云计算的数据处理模式对数据信息进行集成共享、

交叉重复使用而形成的智力能力资源和信息知识服务能力。

大数据时代下的会计信息化具有极速化、规模性、智能性、多元化、和即时高效等特点,这使得会计从业人员可以更方便快捷的使用数

据信息,并在降低经济成本的同时有效实现资源共享,信息化效率逐渐增强。

但同时大数据时代下的会计信息化也面临着风险,应及时有效地提出防范对策,以确保会计信息化的长久发展。

一、大数据时代对会计信息化发展的影响

(一)提供了会计信息化的资源共享平台

进入大数据时代以来,我国的科学技术愈加发达,会计信息化也在持续地走发展和创新之路,网络信息资源平台的建立使数据与信息资源可以共同分享,平台使用者之间可以相互借鉴学习。

而最为突出的成就便是会计电算化系统的出现,它改变了传统会计手工做账的方式,实现了记账、算账和报账的自动化模式,

提高了会计数据处理的正确性和规范性,为信息化管理打下基础,推进了会计技术的创新和进一步发展。

但是“信息孤岛”的出现证明了会计电算化并没有给会计信息化的发展带来实质性的变化。

阅读全文

与大数据银行论文相关的资料

热点内容
增加目录word 浏览:5
提取不相邻两列数据如何做图表 浏览:45
r9s支持的网络制式 浏览:633
什么是提交事务的编程 浏览:237
win10打字卡住 浏览:774
linux普通用户关机 浏览:114
文件夹的相片如何打印出来 浏览:84
mpg文件如何刻录dvd 浏览:801
win10edge注册表 浏览:309
cad图形如何复制到另一个文件中 浏览:775
sim文件在手机上用什么打开 浏览:183
ubunturoot文件夹 浏览:745
手机文件误删能否恢复数据 浏览:955
照片文件名中的数字代表什么 浏览:44
cs6裁切工具 浏览:235
数据库超过多少数据会卡 浏览:858
CAD落图文件 浏览:125
怎样翻译文件内容 浏览:679
戴尔r910安装linux 浏览:69
有线电视升级失败 浏览:560

友情链接