Ⅰ 大数据战略、管理与生态
大数据战略、管理与生态
大数据这个话题,从西到东,从IT业内到政府官员,已经火了两年,但还没有完全一致的定义。目前业界一般认同Gartner的描述,即:凡是具有“3V”特性的数据集,就是大数据。其一为Volume,极大的数据量;其二为Variety,极复杂的数据类型与数据来源;其三为VelocITy,极高的数据产生、传播,以及反应速度。
在我看来,组织决策者要跨越大数据时代的“数据鸿沟”,就需要具备大数据战略、大数据管理和大数据生态三大能力。
大数据战略:视野,观点,价值
大数据的价值已经为电商、快消、广告等多个行业的案例所证明,但挖掘出大数据的价值并不容易。我认为,企业决策者在制定大数据战略时,需要从Vision(视野)、View(观点)、Value(价值)这“新3V”入手。
第一点从视野讲,企业CEO一定要把大数据、云计算作为企业核心战略,而不能仅仅把大数据当成是企业IT管理的一个方面。要下决心投入,无论软件方面还是硬件设施。
第二是要有企业自己的观点,即收集和处理数据的策略。例如股市,大家很多时候面对同样的数据,但是对数据的处理方式是不一样的,有些人说股市下行时候投入,有些人说股市下行时候要撤出。对同样的数据,甚至同样的软件,决策方式、观点不一样,处理结果就会大大不同,这个应该成为公司决策体系的一个核心。
第三是价值,要在确定思路后,把对数据的分析,转化为能解决实际问题的执行,从而实现大数据的价值。正如马云最近所举的例子,在淘宝上比基尼卖得最好的省份是哪儿?是内蒙古和新疆,而不是人们通常会认为的海南、广东等沿海地区。大数据能帮助人们发现事物间隐藏的内在关联,但并不意味着能直接带来社会和商业价值。如果你是泳衣、防晒霜的生产商,又会制定怎样的营销策略呢?
大数据管理:简易、开放、灵活
大数据战略重要,但更重要的是如何执行,也就是大数据管理问题。也可以通过三步走的方式来解决。首先是如何获取、存储和保护数据;其二是数据丰富,即如何清洗、发现不同数据间的数据相关性;其三是数据洞察力,即通过分析、呈现与决策工具获得洞察力,并最终通过付诸行动,产生价值。
微软的大数据管理平台,有着对大数据生命周期的全方位考虑,这也是为什么我们将Hadoop等开源架构,整合到微软的大数据平台里,一方面是将Hadoop作为对非关系型数据处理的补充;另一方面是将Hadoop作为一个服务,整合到微软的公有云与私有云平台中。值得强调的是,微软不是简单地将Hadoop迁移到微软的大数据平台上,而是真正的融合,会系统地考虑其可用性、可靠性、安全性、部署的简易性与灵活性,乃至对Hadoop上工具的集成与优化。与此同时,微软也会坚持开源的原则,将在Hadoop上做的一些研发工作回馈给社区,与社区形成良性互动。
大数据生态:平台商、数据商、开发者、数据玩家
未来的大数据生态,同样会遵循最朴素的市场规则,不同角色的组织和个人,通过逐渐成熟的交换机制,各取所需——平台商提供数据交易、数据分析的场所和基本工具。
原始数据商提供自由交易的数据集;开发者提供基于数据集的应用和服务,以及定制化的分析和呈现工具;数据玩家如同股民,在市场中寻找值得投资的数据集或者机构进行投资,获得回报;现在人们炒房、炒股、炒黄金,将来或许人们会炒数据。
微软已经通过Windows Azure上的Marketplace在进行这样的尝试,目前主要针对的是商业用户,已经能将第三方解决方案提供商、服务提供商、模块提供商和最终的商业用户通过这一虚拟市场联结在一起,可以发起自由交易。在这个基础上,我们又延伸出一个数据集市,让数据集的拥有者可以把数据发布到集市上,提供很多很细致的数据集,小到电影院座位和路况,大到国家宏观经济发展数据。这就能让开发者可以通过微软的一些简单易用的API或者工具,把这些数据整合到自己的环境里,开发新的应用。
这样的大数据生态显然是健康、可持续的。对微软、亚马逊、谷歌、VMware这样的平台商而言,专心做好底层云计算基础架构和大数据服务平台;对淘宝、中国移动、政府各部委这样的数据商来说,原本只能自己用的数据,在这个模式下可以产生更多的社会和商业价值;对Salesforce、SAP、用友、金蝶等应用开发商来说,传统的、非常困难的、非常繁琐的数据整合,现在通过这样一个集市,可以首次实现把不同应用系统产生的数据整合起来,发现价值;对数据玩家来说,能够有一个朝阳式的投资平台可供选择,且不那么容易被大机构操纵。
当数据公开、数据交易和大数据应用成为自然而然的习惯时,或许我们才可以说,大数据时代真的来临了。
Ⅱ 如果您是大数据负责人,现在需要制定公司大数据战略,您认为该战略应该包含哪些
如果我是大数据负责人,公司制定大数据战略的时候大数据应该包括消费者群体的定位、产品的优化路径、消费市场的发展动向。需要按照以下三个方面来阐述分析。
首先如果我是大数据负责人,我在制定公司大数据战略的时候会分析消费者群体的定位,这样子方便公司精确营销。
其次如果是我大数据负责人,我在制定公司大数据战略的时候会分析产品的优化路径,这样子方便产品可以更好地占领市场。
再者如果我是大数据负责人,我在制定公司大数据战略的时候会分析消费市场的发展动向,这样子可以更好地进行产业结构的优化。
大数据负责人在制定公司大数据战略的时候注意事项:
1、需要结合市场的变化来制定战略。
2、需要结合消费者的需求来制定战略。
3、需要认清发展的局势来制定战略。
Ⅲ 大数据时代下企业战略转型的方向和途径是什么
大数复据(big data),指无法在一定时间范围制内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),平台有hadoop
Ⅳ 实施大数据战略的企业有哪些特点
因此,那些成功地实施了大数据战略的企业都具备哪些主要特点呢?
建立信息中心文化
那些已经成功实施了大数据策略的企业都知道,仅仅是对海量的数据进行收集是无用的。关键在于对所有收集的重要数据信息进行正确的分析,从数据检索中找出有助于正确的经营决策的信息。成功部署了大数据策略的企业都建立了信息中心文化,企业的所有员工都充分认识到良好的分析和可视化的信息的可能性。信息可视化效果越好,您才能根据这些信息做出更好的企业决策。美国货物运输公司US
Xpress就是这方面的一个很好的例子,通过iPad,该企业所有的卡车司机都能及时的掌握所有必要的信息,及时他们仍在运输途中。整个企业围绕信息的充分利用来做出业务决定。
不断创新和保持领先的动力
大数据使得企业能够在激烈的市场竞争中保持领先的竞争优势,并不断的重新发掘企业自身。这些企业都在引领着市场。他们都是新技术的创造者和早期采用者,其创新的动力使他们在很早之前都早已经实现了大数据策略的部署。如果您想充分享受到大数据的策略的优势,您的企业最好是新技术的创造者或早期采用者,从现在起点5到10年内,大数据将成为商品。
集中式数据存储
大数据是海量的数据,每天都能够达到数百万GB甚至更多。所以,为了开始您企业大数据战略的部署,您需要首先收集大数据。大数据企业最为强大的特征之一便是他们收集一切的数据:包括社交媒体数据、工作日志数据、传感数据等。然后对这些数据进行存储,之后决定您的企业是否需要这些数据。利用Hadoop,数据信息的存储成本应该不是一种障碍,您的企业可以使用商品硬件,以非结构化和半结构化的形式保存其原始格式,这样可以在您不使用这些数据时为您节省资金。您可以存储任何您所能收集到的数据信息,并将其存储在一个集中的位置,以防止IT基础设施各自为政。
Ⅳ 如何使用大数据技术为企业创造更大的价值
大家好,我是Lake,专注大数据技术、互联网科技见解、程序员经验分享
作为一名大数据工程师,我来说下我的想法。如何使用大数据技术为企业创造更大的价值?这里有两个注重点,一个是大数据技术,一个是为企业创造价值。目前大数据在不同的应用场景,可以分为很多不同种类的技术,比如数据的离线计算有 Hadoop、Spark,存储方面有HBASE、HDFS、MongoDB、JanusGraph,消息中间件有 Kafka、MetaQ,实时计算有Storm、Flink、Spark Streaming等等。这么多大数据技术,怎么样为企业创造出更大的价值呢,我认为有一下几点:
保证线上业务稳定性
目前很多企业最底层都用到大数据相关技术,如何保证线上业务稳定成为大数据技术最重要的一件事情。线上业务不稳定会直接影响到消费者的使用,尤其是涉及到交易相关的业务更是重中之重。线上业务的稳定性不能受到大数据集群抖动而产生影响,打个比方,线上订单交易链路在最底层使用到了HBase 数据库,但HBase集群突然 Down掉之后,那么线上用户突然不能够进行下单和支付了,这对于公司来说,直接就影响到公司的交易额和利润,这种情况是公司绝对无法容忍的。
所以你能够保证公司所使用大数据技术集群资源越稳定,那么对于线上业务的稳定运行就越有保证,通过对大数据集群稳定性进行保障,进一步提升消费者的使用体感,这就是你的价值。
更好的降低大数据集群机器资源消耗
更好的降低公司大数据集群机器的资源消耗,提升公司集群资源的使用率,进一步压榨机器的性能也为公司带来了价值。公司每台机器,说实话,都需要从外进行采购,这消耗的就是公司的资金。如果你能在现有的机器上,满足更多的业务,而不只是单纯的购买机器水平扩展来满足业务,这样会进一步帮助公司节约资金。公司的最终目的也是为了盈利,你帮公司降低了机器的购买,这也是为公司节约了一笔很大的成本。
大数据技术创新
大数据技术发展到了一定程度,就需要自己通过技术创新,来满足公司一些更为复杂的业务场景。通过技术创新,带动业务发展。比如图数据库的出现,使得公司能够使用图数据库来构建用户的社交网络图,通过构建的社交网络图可以快速了解到用户的关注、用户的粉丝、和用户兴趣相同的用户有哪些。哪些用户是信息传播关键点等等,通过大数据技术的创新,知道更多潜藏在大数据底层的商业信息价值,从而帮助公司上层更好的做战略规划。同时,也可以通过技术创新,变革整个公司的技术架构,使用新的技术来满足未来公司战略的发展,最直接的例子,就是阿里云。
总结 总体来说,大数据如何为公司创造更大的价值,我认为可以从提升大数据集群的稳定性入手,更好的保证公司线上业务的稳定和运行。其次,可以更好的压榨和节约公司的大数据集群相关的机器资源,从而减少公司机器方面的采购成本。最后,就是通过大数据技术创新,通过技术来驱动业务的发展,当然这也是最难的一点,如果你能做到通过某种大数据技术的创新使得公司战略方面业务的成功,那么你的价值对于公司来说,将是无法估量的。
Ⅵ 《企业的大数据战略》pdf下载在线阅读全文,求百度网盘云资源
《企业的大数据战略》([荷] 马克·冯·里吉门纳姆)电子书网盘下载免费在线阅读
链接: https://pan..com/s/1lhU25BYEGctunQ6RqzgeQA
书名:企业的大数据战略
作者:[荷] 马克·冯·里吉门纳姆
译者:盛杨燕
出版社:浙江人民出版社
出版年份:2017-5-1
页数:260
内容简介:
据估计,我们现在每两天产生的数据,相当于人类文明伊始至2003年所产生的数据的总和。而且,随着几乎所有的一切事物都被数字化,人们预计可用数据量将每两年翻一番。大数据能让企业制定更好的决策,从而提高效率、节约成本、增加收入。但是许多企业还没有认识到它的好处……即便认识到了,也许还不知道如何利用。
《企业的大数据战略》用通俗易懂的语言深度解析大数据的7大特征、8大事实、7大趋势,360度剖析大数据落地的18个行业,明确7种最重要的大数据岗位,分享30余个领先企业的成功经验,为大中小企业提供了构建大数据战略和关键大数据能力的清晰路线图。
《企业的大数据战略》也探讨了亚马逊、苹果、耐克、迪士尼、壳牌、沃尔玛、摩根士丹利、洲际酒店等知名企业利用大数据战略获益的做法,揭示了如何利用大数据的力量为企业服务。
作者简介:
全球顶尖大数据影响力人物之一,一站式大数据商店Datafloq创始人,荷兰Data Donderdag大数据论坛联合发起人,旨在通过连接全球大数据市场上的所有利益相关者,打造一个大数据生态系统。
既是洞悉趋势的大数据战略家,也是思想深刻的著名演说家,在大数据、区块链、物联网和颠覆性创新方面拥有丰富的经验,为大中小企业制定大数据战略提供建议。
Ⅶ 企业如何运用大数据战略快速发展
运用大数据战略实践的关键问题不是数据规模或高精尖技术,而是如何利用数据迅速产生价值,如何用数据改变企业的经营管理方式。企业越早从数据中洞察事实,并据此快速做出行动越早受益。这其中关键问题的确不是数据的大小,而是如何利用数据迅速产生价值。
一、用数据为经营管理提供帮助
信息化时代市场竞争进一步加剧,企业的运作越来越复杂,充满了各种风险和不确定性,企业核心能力的主要差异越来越体现在各个细节之中。若仍依靠定性和数据统计简单分析,凭经验大致判断问题形成改进方案的做法,难以在现代市场竞争中取得优势地位。用数据建模的方式自动识别问题并采取行动,可以更好地为企业经营管理服务。未来的金融竞争一定会比拼数据建模能力,若不尽快在精准营销、风险识别、产品个性化定价等方面开展数据建模实践,就很难形成相应的核心竞争力。
二、数据应用要面向解决企业问题
企业为迎接数据时代的到来,需要建立一支数据分析队伍,并设置独立的部门。他们的职责任务就是用数据帮助寻找和解决企业经营管理中存在的问题,提升企业的核心竞争能力。
数据专业人员由于专业特点的局限,对业务知识掌握和理解存在缺陷。数据人员要主动学习业务知识,尝试在某一局部用数据发现和解决业务问题,然后与业务人员交流讨论,看是否能够对业务有些帮助。数据应用先不要涉及解决复杂的问题,避免起步阶段迟迟无法打开局面。最好从解决简单问题做起,可以考虑直接引入其他外部公司的成功实践,迅速产生实际成果,让大家快速看到数据应用带来的成效。
三、面向问题收集和管理数据
传统金融行业因为过去IT资源相对昂贵,本着节省开销的考虑,只记录与金融交易相关的数据,这造成其数据所覆盖的范围较窄,难以支撑大规模的数据应用。
现代IT技术降低了IT成本,同时随着数据应用带来价值的提升,各金融企业扩大数据收集范围和粒度的意识普遍提高,为更大规模和更加深入的数据应用创造了条件。
四、确定数据的拥有者
企业会产生大量数据,不同业务单元和部门所产生的数据不同,数据使用的情况也不同,很可能会形成企业内的数据交叉使用。为避免内部的数据使用冲突造成数据的混乱,就需要明确各数据的主人,赋予其管理数据的责任和权利。数据拥有者要管理保护好自己的数据,同时要考虑如何让这些数据产生更大的价值。
五、共享数据平台支持服务
数据应用需要配套的软硬件环境支持,需要在企业内建设一套共享的数据应用平台环境,并安排专业团队提供服务支持。
大数据工作的重点不是数据规模或高精尖技术,而在于用数据改变企业的经营管理方式。企业越早从数据中洞察事实,并据此快速做出行动越早受益。不要将资源投放在建设豪华的设备环境和队伍上面,不用先准备大规模数据,只要开始实践就会有收获。
Ⅷ 大数据 引发企业管理变革
大数据 引发企业管理变革
大数据带来新一轮信息革命的同时,掀起了一场管理革命,在经营管理层面上给企业带来诸多变化。
目前,国内大数据已基本具备发展土壤:企业数据从数量和多样性上有质的提升,数据价值得到较高认同。本文尝试以大型国企(央企)为研究对象,探索大数据对企业管理变革的影响及企业的应对之策,希望对企业大数据管理和利用有所裨益。
大数据引发企业管理变革
从理论角度来讲,之所以说大数据掀起企业管理变革,背后有两个密切关联的因素。
一是大数据的本质与管理的核心因素高度契合。一般认为,管理最核心的因素之一是信息搜集与传递,而大数据的内涵和实质在于大数据内部信息的关联、挖掘,由此发现新知识、创造新价值。两者在这一特征上具有高度契合性,甚至可以说大数据就是企业管理的又一种工具。因为对于任何企业,信息即财富,从企业战略着眼,利用大数据,充分发挥其辅助决策的潜力,可以更好地服务企业发展战略。
二是大数据由资源到资产的转变。大数据时代,数据在各行业渗透,渐渐成为企业战略资产。拥有数据的规模、质量直接决定了企业的核心竞争力以及市场洞察力,也影响着企业的战略调整,数据意味着巨大的投资回报。
央企大数据管理机遇与挑战并存
大数据发展对不同行业、发展阶段及规模的国有企业有着不同影响。特别是大型央企,在利用大数据方面起点相对较高,受益更大。对于央企来说,大数据对其经营管理意味着什么?
第一,机遇方面。一是体现在信息化建设投入上。大型央企有实力对企业的信息技术进行投资,应用较先进的技术,保障企业数据有效管理和利用。此外,国有企业管理延续性较强,总体较稳定。二是体现在顶层设计上。大型央企在大数据管理的顶层设计上具有优势,可以对企业数据化管理进行系统规划。三是体现在政策优势及人才队伍上。
第二,面临的挑战。一是信息体系建设十分迫切。一般大型国有企业数据量庞大,从信息挖掘层面讲,这需要合理的技术搭配。此外,从组织结构来说,大数据对信息技术部门与业务部门之间的密切配合提出了更高要求。二是注意信息安全防范。三是人才储备不足,对相关数据挖掘分析人才的吸引力和培养水平有待提高。
央企开展大数据管理的探索与展望
如何开展大数据管理?对于国内央企来说,要有一条符合自身发展特点的大数据管理路径,在信息化建设中,打造“数据化企业”。
第一,做好大数据资产的筛选和评估。对国内央企来说,这分为事前和事后两个阶段。事前是从思想上重视大数据对企业的影响,将数据作为企业的核心资源来看待。事后是要在企业内部对大数据进行从资源到资产的筛选,对什么样的大数据可以成为资产进行评估。
第二,集约开展顶层设计、系统规划。大型央企下属单位众多,企业管理结构不同,情况相对复杂。要发挥系统优势,必须对数据化进行统一科学设计,避免重复建设、各行其是、互不兼容,充分发挥信息技术对数据分析的作用。
第三,强化数据管理,重视数据安全。在数据管理上,央企可以结合现有企业信息化建设,将企业数据管理推向纵深。数据管理事关企业核心竞争力和战略目标,必须有战略高度。数据收集和管理要“广撒网”,发挥各部门的协同效应。不仅要关注综合性数据和关键数据,而且要关注基础数据,要深度利用、挖掘数据。同时,要特别重视数据安全,从技术和制度层面保障数据安全。
第四,优化内部运营模式,加强外部合作。央企应确立面向客户的价值服务导向,针对需求,重新制定、优化企业的制度、流程,增加数据收集、管理和分析环节,设计适应市场竞争的商业模式和内部运营模式。要加强与外部的合作。与外部企业、科研院所、行业协会等机构进行交流合作,实现数据技术、资源和平台互补。同时,加强上下游产业链相关企业的数据管理合作,在数据收集、分析、共享方面开展互助。
以上是小编为大家分享的关于大数据 引发企业管理变革的相关内容,更多信息可以关注环球青藤分享更多干货