导航:首页 > 网络数据 > 大数据生态地图30

大数据生态地图30

发布时间:2022-12-16 15:39:23

大数据在各行各业几乎都站稳了脚跟

大数据时代的到来,改变的不仅仅是传统的商业模式,更深入到人们的生活、工作等各个环节,以及人们的传统观念之中。随着互联网的发展,信息交流也在不断加速,大数据在各行各业几乎都站稳了脚跟,特别是越来越多的政府机构与公司组织都已经把大数据应用作为了重要的一环。
大数据不仅是一场颠覆性的技术革命,更是一种思维方式、行为模式与治理理念的全方位变革。那么,大数据在社会生活中都有哪些运用与实践呢 在瞬息万变的时代,行业信息也显得愈发重要,数据猿编辑在此为您做详细解析。
大数据助推金融机构的战略转型
随着互联网特别是移动互联网的爆发式增长,未来将迎来一个大数据浪潮。在宏观经济结构调整和利率逐步市场化的大环境下,目前国内的金融机构主要表现出盈利空间收窄、业务定位亟待调整、核心负债流失等问题。而大数据技术正是能够帮助金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要手段。
国务院颁布的《推进普惠金融发展规划(2016-2020年)》中更是直接提到“鼓励金融机构运用大数据、云计算等新兴信息技术,打造互联网金融服务平台。”国内外各金融与类金融机构、互联网金融企业纷纷开始探索大数据的应用,希望大数据可以带来技术与应用上的突破,实现现有风控模型体系的升级,探索基于场景化的新消费金融市场,并提升催收效率、建设互联网深层次大面积获客能力,从而彻底提升国家金融行业的国际竞争力。
大数据提升科技管理系统升级
“在物联网产生之前,或者大的传感器产生之前,我们的采集数据来源于访谈、测量或者是记录在纸上,那个时候我们的数据量比较少,而如今,主要靠科学仪器获取大量源源不断产生的数据,数据产生的量非常大,而且复杂度非常高。”正如中国科学院计算机网络信息中心大数据部主任、CODATA中国委员会秘书长黎建辉所言,从手工记录到仪器采集,大数据正发生着翻天覆地的变化。
在智能汽车研发方面,重要的一项工作就是大数据分析。福特汽车早已把大数据应用到了公司生产的每一个环节里面,无论是商品的价格、消费者理想的汽车状态,还是公司应该生产的车型以及这种车型采购的零部件,抑或汽车应有的设计构造,福特汽车已将大数据应用深入骨髓。车联网时代的到来,让大数据应用于汽车领域越来越广泛。
大数据促进政务大数据共享进程
如今,政务大数据共享还没真正落实,有些政府部门基于风险考虑而不敢将管理数据拿出来与其他部门共享。主要原因是担心共享会带来负面影响和不利后果,要么害怕共享时暴露出本部门原有数据不真实、不精确而问责,要么认为“数据安全与保密比共享更重要”、采取封闭行为更妥当。
大数据时代的到来,给政府管理变革带来了新的契机。2015年8月国务院印发《促进大数据发展行动纲要》明确提出“推动政府数据开放共享”;2016年12月国务院通过了《“十三五”国家信息化规划》,提出要打破各种信息壁垒和“孤岛”,推动信息跨部门、跨层级共享共用。如何推动政府部门数据共享,打破信息壁垒和“数据烟囱”,优化政府管理流程和提升协同治理能力,已经成为当务之急。
大数据加速能源产业发展及商业模式创新
能源大数据理念是将电力、石油、燃气等能源领域数据进行综合采集、处理、分析与应用的相关技术与思想。不仅是大数据技术在能源领域的深入应用,也是能源生产、消费及相关技术革命与大数据理念的深度融合,将加速推进能源产业发展及商业模式创新。随着信息化的深入和两化的深度融合,大数据在石油石化行业应用的前景将越来越广阔。
大数据与能源行业的结合目前主要体现在三个行业:(1)石油天然气产业链与大数据的结合。在油气勘探开发的过程中,可以利用大数据分析的方法寻找增长点,利用大数据平台可以帮助炼油厂提高炼化效率,也可帮助下游销售挖掘消费规律,优化库存,确定最佳促销方案。(2)智能电网:利用大数据实时监测技术监测家庭用电量特征,帮助电力公司调配电力供给,为客户提供最佳用电方案。(3)风电行业:进行风电场分布式风机的在线监测,周期性及瞬时的实时数据采集和在线分析,生成警报、允许维护人员可视化和管理数据,简化大规模监测系统的部署。
大数据推动天文学、微生物研究迈入新阶段
天文学作为一个典型的大数据应用领域,同样需要通过标准化和一系列规范实现全球的天文科学数据的共享与交易。为了解决国际上天文大数据的开放、共享以及数据间的操作问题,天文学家提出了虚拟天文台的构想,这是一个通过先进的信息技术将全球范围内的研究资源无缝透明连接在一起而形成的数据密集型网络化天文研究与科普教育平台。
在谈及大数据对天文学方面的贡献时,中国科学院国家天文台信息与计算中心主任崔辰州表示,探索宇宙的奥秘,大数据正在发挥越来越重要的作用。目前,中科院微生物所正在通过研究和开发云环境下微生物数据存储和计算等一系列关键技术,形成完善的微生物数字资源体系、知识发现平台和大数据服务平台,建立具有国际影响力的微生物数据库,实现我国微生物领域数字资源建设的突破。
大数据助推国家健康医疗服务新模式
当前,随着经济社会发展和人民生活水平的提高,人民群众在健康方面的需求更加迫切和多元化,这就为健康产业和医疗服务新模式新业态构造创造了良好的生态条件,健康医疗大数据以其广泛的应用性和特殊性未来将对经济发展产生重大贡献,必将成为我国国民经济的重要支柱产业。
据悉,6月20日,国家卫生和计划生育委员会副主任金小桃透露,组建以国有资本为主体的三大健康医疗大数据集团公司主要是为了落实党中央“没有全民健康就没有全面小康”及“推进健康医疗大数据应用”的精神,落实国务院办公厅47号文件要求,推动国家健康医疗大数据应用发展。这三大集团将以国家队的形式来承担国家健康医疗大数据中心、区域中心、应用发展中心和产业园建设任务,努力为提高群众获得感、深化医改新动力和增强经济发展新动能作出新贡献。
大数据构建智能交通和推动智慧城市发展
“智能交通”概念的提出,源于日益严重的交通拥堵和出行需求的复杂多元化。但是,在交通数据资源充足的情况下,如何才能真正让数据变“活” 网络地图的智能路线规划、实时路况、路况预测是交通数据价值的最佳体现。
6月14日,WGDC2017全球地理信息开发者大会进入到第二天,网络地图开放平台总经理李志堂、主任架构师张绍文、内容生态总经理刘斌共同出席“空间大数据+智能交通峰会”,从地图大数据、人工智能导航、数据内容升维表达等角度阐述了网络地图在构建智能交通和推动智慧城市发展中的作用。
大数据让人们的生活更加方便快捷
日常生活中,大数据帮助电商平台打造更极致的用户体验,尤其是网购狂欢节,电商由于提前对消费者需求做了充分调研,因此更能抓住消费者的心理,通过大数据优化产品的质量。而方兴未艾的智慧旅游,避免了旅游旺季各大旅游景点人数太多从而降低游客的好感度,特别是网络大数据通过数据分析,及时了解景区内的状况,帮助游客合理安排出行、提供智能服务。
而据经济之声《天下财经》报道,在今年的亚洲消费电子展上,京东、苏宁等企业携大数据与人工智能,打造智慧物流产业链。伴随着电商行业的迅猛发展,消费型物流需求激增,智慧物流有望成为快递业下一个重要的突破口。这些都必将在一定程度上改变人们的生活,成为大数据带给大家最直接的福利。
技术的不断更新发展,让数据的价值被重新发现和定义,进而带来整个社会的变革。如今的大数据行业,正显示出朝气蓬勃的生命力,我们在享受这个时代赋予便利的同时,也将对其进行改变与创新。大数据,想说爱你真不容易。

❷ 华为大数据解决方案是什么

现在有好多公司在做大数据,不仅仅只有华为。比如北京开运联合信息技术股份有限公司大数据解决方案是要根据您所需要的行业,来定制的。

❸ 大数据专业都需要学习哪些软件啊

大数据处理分析能力在21世纪至关重要。使用正确的大数据工具是企业提高自身优势、战胜竞争对手的必要条件。下面让我们来了解一下最常用的30种大数据工具,紧跟大数据发展脚步。

第一部分、数据提取工具
Octoparse是一种简单直观的网络爬虫,可以从网站上直接提取数据,不需要编写代码。无论你是初学者、大数据专家、还是企业管理层,都能通过其企业级的服务满足需求。为了方便操作,Octoparse还添加了涵盖30多个网站的“任务模板 (Task Templates)”,操作简单易上手。用户无需任务配置即可提取数据。随着你对Octoparse的操作更加熟悉,你还可以使用其“向导模式 (Wizard Mode)”来构建爬虫。除此之外,大数据专家们可以使用“高级模式 (Advanced Mode)”在数分钟内提取企业批量数据。你还可以设置“自动云提取 (Scheled Cloud Extraction)”,以便实时获取动态数据,保持跟踪记录。

02

Content Graber

Content Graber是比较进阶的网络爬网软件,具有可用于开发、测试和生产服务器的编程操作环境。用户可以使用C#或VB.NET调试或编写脚本来构建爬虫。Content Graber还允许你在爬虫的基础上添加第三方扩展软件。凭借全面的功能,Content Grabber对于具有基本技术知识的用户来说功能极其强大。
Import.io是基于网页的数据提取工具。Import.io于2016年首次启动,现已将其业务模式从B2C转变为B2B。2019年,Import.io并购了Connotate,成为了一个网络数据集成平台 (Web Data Integration Platform)。凭借广泛的网络数据服务,Import.io成为了商业分析的绝佳选择。
Parsehub是基于网页的数据爬虫。它可以使用AJax,javaScript等等从网站上提取动态的的数据。Parsehub提供为期一周的免费试用,供用户体验其功能。
Mozenda是网络数据抓取软件,提供企业级数据抓取服务。它既可以从云端也可以从内部软件中提取可伸缩的数据。
第二部分、开源数据工具

01Knime

KNIME是一个分析平台,可以帮助你分析企业数据,发现潜在的趋势价值,在市场中发挥更大潜能。KNIME提供Eclipse平台以及其他用于数据挖掘和机器学习的外部扩展。KNIME为数据分析师提供了2,000多个模块。

02OpenRefine(过去的Google Refine)是处理杂乱数据的强有力工具,可用于清理、转换、链接数据集。借助其分组功能,用户可以轻松地对数据进行规范化。

03R-Programming

R大家都不陌生,是用于统计计算和绘制图形的免费软件编程语言和软件环境。R语言在数据挖掘中很流行,常用于开发统计软件和数据分析。近年来,由于其使用方便、功能强大,得到了很大普及。

04RapidMiner

与KNIME相似,RapidMiner通过可视化程序进行操作,能够进行分析、建模等等操作。它通过开源平台、机器学习和模型部署来提高数据分析效率。统一的数据科学平台可加快从数据准备到实施的数据分析流程,极大地提高了效率。
第三部分、数据可视化工具

01

Datawrapper

Microsoft PowerBI既提供本地服务又提供云服务。它最初是作为Excel附加组件引入的,后来因其强大的功能而广受欢迎。截至目前,它已被视为数据分析领域的领头羊,并且可以提供数据可视化和商业智能功能,使用户能够以较低的成本轻松创建美观的报告或BI仪表板。

02

Solver

Solver专用于企业绩效管理 (CPM) 数据可视化。其BI360软件既可用于云端又可用于本地部署,该软件侧重于财务报告、预算、仪表板和数据仓库的四个关键分析领域。

03

Qlik

Qlik是一种自助式数据分析和可视化工具。可视化的仪表板可帮助公司有效地“理解”其业务绩效。
04

Tableau Public



Tableau是一种交互式数据可视化工具。与大多数需要脚本的可视化工具不同,Tableau可帮助新手克服最初的困难并动手实践。拖放功能使数据分析变得简单。除此之外,Tableau还提供了入门工具包和丰富的培训资源来帮助用户创建报告。

05

Google Fusion Tables

Fusion Table是Google提供的数据管理平台。你可以使用它来收集,可视化和共享数据。Fusion Table与电子表格类似,但功能更强大、更专业。你可以通过添加CSV,KML和电子表格中的数据集与同事进行协作。你还可以发布数据作品并将其嵌入到其他网络媒体资源中。

06

Infogram

Infogram提供了超过35种交互式图表和500多种地图,帮助你进行数据可视化。多种多样的图表(包括柱形图,条形图,饼形图和文字云等等)一定会使你的听众印象深刻。

第四部分、情感分析工具

01

HubSpot’s ServiceHub

HubSpot具有客户反馈工具,可以收集客户反馈和评论,然后使用自然语言处理 (NLP) 分析数据以确定积极意图或消极意图,最终通过仪表板上的图形和图表将结果可视化。你还可以将HubSpot’s ServiceHub连接到CRM系统,将调查结果与特定联系人联系起来。这样,你可以识别不满意的客户,改善服务,以增加客户保留率。

02

Semantria

Semantria是一款从各种社交媒体收集帖子、推文和评论的工具。Semantria使用自然语言处理来解析文本并分析客户的态度。通过Semantria,公司可以了解客户对于产品或服务的感受,并提出更好的方案来改善产品或服务。

03

Trackur

Trackur的社交媒体监控工具可跟踪提到某一用户的不同来源。它会浏览大量网页,包括视频、博客、论坛和图像,以搜索相关消息。用户可以利用这一功能维护公司声誉,或是了解客户对品牌和产品的评价。

04

SAS Sentiment Analysis



SAS Sentiment Analysis是一款功能全面的软件。网页文本分析中最具挑战性的部分是拼写错误。SAS可以轻松校对并进行聚类分析。通过基于规则的自然语言处理,SAS可以有效地对消息进行分级和分类。

05

Hootsuit Insight

Hootsuit Insight可以分析评论、帖子、论坛、新闻站点以及超过50种语言的上千万种其他来源。除此之外,它还可以按性别和位置对数据进行分类,使用户可以制定针对特定群体的战略营销计划。你还可以访问实时数据并检查在线对话。

第五部分、数据库

01

Oracle



毫无疑问,Oracle是开源数据库中的佼佼者,功能丰富,支持不同平台的集成,是企业的最佳选择。并且,Oracle可以在AWS中轻松设置,是关系型数据库的可靠选择。除此之外,Oracle集成信用卡等私人数据的高安全性是其他软件难以匹敌的。

02

PostgreSQL

PostgreSQL超越了Oracle、MySQL和Microsoft SQL Server,成为第四大最受欢迎的数据库。凭借其坚如磐石的稳定性,它可以处理大量数据。

03

Airtable

Airtable是基于云端的数据库软件,善于捕获和显示数据表中的信息。Airtable提供一系列入门模板,例如:潜在客户管理、错误跟踪和申请人跟踪等,使用户可以轻松进行操作。

04

MariaDB

MariaDB是一个免费的开源数据库,用于数据存储、插入、修改和检索。此外,Maria提供强大的社区支持,用户可以在这里分享信息和知识。

05

Improvado

Improvado是一种供营销人员使用自动化仪表板和报告将所有数据实时地显示在一个地方的工具。作为营销和分析领导者,如果你希望在一个地方查看所有营销平台收集的数据,那么Inprovado对你再合适不过了。你可以选择在Improvado仪表板中查看数据,也可以将其通过管道传输到你选择的数据仓库或可视化工具中,例如Tableau、Looker、Excel等。品牌,代理商和大学往往都喜欢使用Improvado,以大大节省人工报告时间和营销花费。

❹ 大数据改变世界的五种方式

大数据改变世界的五种方式
随着电脑科技的发展,计算能力不再是像以前那样的“奢侈品”。现在的我们就彷如畅泳在一个巨大的数据水库,而这个数据库包罗万象:从繁忙时段一个明尼苏达州小镇的表现至在也门成功使用无人飞机轰炸的可能性。大数据的到来意味着公司,机构以及政府等可以同过收集,挖掘并利用这些庞大的数据区完成神奇的事情。
让我们看看神奇的大数据如何改变世界:
1.数据化身致命武器:
信息作为大数据时代最有效最具杀伤力的武器同时也正在被大量用于该时代的军备竞赛,但现今的军事技术数据来源正受限于卫星,无人飞行旗以及更多传统方式得到的数据。美国国防部启动一项名为XDATA的方案,其作为奥巴马政府发布的大数据倡议的一部分主要致力于以2.5亿美元研发一个分析大数据的系统。随着越来越多的有效运算,美军能够将PB级的数据运用到尖端优势上,例如让无人轰炸机变得前所未有的智能以及致命。
2.拯救地球:
除了让捕食者无人机更有威力和增加零售利润外,大数据更能造福世界。以开源的大数据平台Google Earth引擎为例,研究人员可利用它绘制出第一张莫斯科森林的高分辨率的地图。如果仅利用传统的电脑计算方法绘制需要3年时间,对比之下使用Google Earth仅需一天时间。
像这种大规模的数据集合能够让人类在系统层面上理解生态危机。我们知道越多地球生态系统以及天气形态变化数据,就越容易模型化未来环境的变迁,因而也能够在我们力所能及的时候去阻止不好的转变发生。
3.预测购物趋势:
消费者的购物趋势能够在以前的购物记录大数据挖掘中得出,销售公司不论大少均有可能预测到你需要买什么,他们甚至比你自己更懂你。因而从消费者当前购物数据中从大数据中能够获得大利润。网上零售商如亚马逊正在大量收集我们的购物以及网上购物数据,甚至线下零售商也开始紧跟这一趋势着手收集消费者的消费数据。一些聪明的公司看准这点,以RetailNext为例,它是为Brookstone 以及American Apparel等公司提供购物者浏览以及购物时的录像记录。 RetailNext将一个购买者在店铺移动的轨迹转化为上万数据点,就可以得到购物者在店内浏览商品的移动过程,停留点以及其与销售的相关性。
4.加速科学研究发展速度:
一直以来数据都是科学发现的支柱,现在由于大数据的发展以及高运算力的支持,科研步伐也正飞速向前。
以人类历史上科学成就指标性的 人类基因组计划为例,当时花费达30亿美元,耗时13年才完成大约含25000个基因的人类基因组测序及分析。若应用当代先进的数据收集分析方法,使用一个如U盘大小的装置区完成这项工作仅需几小时就足矣,其花费也仅仅是1000美元。
5.大数据导致更大的隐私威胁:
你也许只是从大“据”考虑,但是这句格言不再像以前一样好用了。若说大数据与广度攸关是正确无误的,但是深度对大数据来说也是同等重要的。
网络巨头如Facebook和Google不单单积累了广度上的数据—大量的用户(FB拥有9.55亿用户),他们对深度上的数据–用户(使用网络的)数据也了如指掌。譬如,他们知道你搜索的内容,你点击了什么页面以及你认识什么人。最大的网络大鳄拥有足以让他们无所不知的大量的数据。
在这里的技术力量,文化进步和利润的相交之处,有一件事是确定的:数据越大责任越大(蜘蛛侠中枪)。

❺ “大数据”的根本是为了价值创造

“大数据”的根本是为了价值创造

前面什么是“大数据”我就很快的过一下,我们看到了“大数据”的一些想法。更重要的是我们怎么看待“大数据”,怎么影响到业务模式的变革,我们也会提到一些案例,我们看到我们的客户在整个“大数据”的变革中会做一些什么东西。在当中最重要的,刚刚吴老师也提到,不但是获取数据,而是如何用它,不管是组织、流程、能力各方面怎么做很好的准备,怎样去挖掘这样的一个机会。
首先刚才大家也提到了,现在进入到了一个“大数据”的时代,如果大家看我们这里做了一个很快的统计,在全球几百个主要的媒体上面,看到在一些标题,或者是在一些主要的段落里面,谈到“大数据”的这个字的话,其实十年前就已经开始有了,但那时候还不是太多。其实在比如说2005、2007年的时候,看最火的字可能是电子商务,看得更加多。2001年时候看到的最多的字是云计算。看最近两三年,“大数据”就突然间增长的非常快了。当然不是说电子商务、云计算已经落后了,这些还是经常看到的自眼,但“大数据”会看到非常高的比例。
“大数据”刚才大家都谈到了一些不同的定义,“大数据”是什么东西,刚才也提到了,其实十多年前、二十多年前,我们就已经会挖掘客户的信息了,会做分析了。但是究竟“大数据”和以前有什么不一样?首先在量上面,是海量的数据,是本来一些的方法、工具,这些是分析不了的,是做不了的,这个量是非常多的。给大家一个概念,现在世界上所有的数据,90%是在过去两年产生出来的,所以你会看到,我们的时间再过一年的话,信息量的增长完全是一个爆炸性的增长。比如说另外一个,可能刚才谈到视频分享网站,有人做过一个统计,比如说你现在坐在一个电脑面前一直看这个视频的话,可能需要一两千年才能够看完。这些数据量这么多,当中对你有用的不一定会太多,怎么挖掘海量的数据,这个量是一个很大的重要的一点。
除了以外,另外一点就是现在不同种类的数据,以前的话,可能在网上你看到了一些文字的资料,现在找东西的话,你会找图片,会找不同的视频,有时候还会有很多不同的模式,比如说你的PUO这些东西,或者是其他的很多不同的种类的信息,这个也越来越多。
其实很多时候,刚才已经提到了,我们要分析,客户分析的数据不但是分析自己的数据,很多时候是要把怎么样和外部的数据结合起来。比如说大家一直可能会谈到沃尔玛,怎么样挖掘沃尔玛自己的客户,他买了什么东西,对未来会买什么东西做一个预期,或者是对未来的什么折扣感兴趣。但是有一个有趣的事情,沃尔玛不但看自己的数据,还会把这些数据和天气的数据放在一起看。比如说下雨的时候哪些货品要多做一点,或者是有台风的时候,客户会来多买什么东西。把不同种类的数据和不同来源的数据做一个很好的分析的话,这个也是“大数据”时代的一个挑战。
另外一点,在媒体里面常常谈到的“大数据”是实时,这个是很重要的,不但是量、种类,要实时的应对,比如说十年前客户做调研和客户细分,需要两三个月的时间来做分析,来做出结果怎么服务好客户。但是现在客户的需要已经不一样了,怎么实时给出应对是重要的一点。
其实我们对“大数据”的理解也有一定的定义,就刚才提到的,其中首先一点是怎么样收集,怎么样去分析,怎么样去理解这些大数据,这当然是很重要的一部分,这里面很重要的一点,不单单是获取,因为我们常常看到一些客户可能觉得浪费时间,外面有那么多的数据,怎么多拿一点进来,但是更加重要的是你有没有这个能力,怎么用这个数据,这个能力非常重要。
这里面提到两个另外的点,一个是“大数据”不是为了获取分析来做,更重要的一点是对于公司价值的创造,如果到最终这个数据你拿到了很多,分析了很多的数据,根本影响不了你的业务的话,这个也没有什么意思,所以价值创造是根本的一点。在这个过程中,我们相信“大数据”对业务的模式是一个很大的变革。所以我们在后面也会提到。
这里面我们随便看不同行业里面的经验。今天早上和一些同事聊的时候,大家也在谈,其实“大数据”究竟对什么行业有最大的影响呢?其实我觉得这个问题是很难回答的。因为我们看到很多客户一直问我们“大数据”对他们有什么影响,电子商务对他们有什么影响。这里面不单单是消费者的公司,或者是B2B的公司,或者是医药的种种的公司,主要是看怎么应用“大数据”,一方面是他们的数据量,数据的来源越来越多了。还有就是刚才提到的,就是怎么和外部的数据结合起来,做到对你业务有价值的帮助。现在价值创造往往上上亿美元的收入,或者是成本方面的增长。
刚刚提到其实不同的行业里面会有不同的应用,这一页是我们几个月之前做的,这上面可能有一些还没有做“大数据”的公司现在已经开始做了,这个变化是非常快的。举一个例子,一个保险(放心保)方面的,过去可能看不同人的年龄,以前开汽车有没有遇到过意外,然后决定你的保险要付多少钱。现在是有一个仪器放你车里面,看你开车是否安全,这个就可以给不同客户更加个性化的定价。这个就是一个“大数据”的应用。另外一种,我觉得也很有趣的例子,大家知道现在是欧债危机,很多政府都遇到了这样的挑战,比如说意大利政府,意大利政府不但是考虑有没有人逃税,不但是要看报上来的数据,在法律允许的情况下,结合了很多消费的帐单、电话费的帐单,比如说你有没有去外地旅游等等,你没有那么高的收入,为什么可以有这么高的消费,把这些数据和他们报上来的收入比较,发现20%纳税人是高风险的逃税人。这个也是一个“大数据”的应用,不但是在业务里面、商业里面,也在政府里面,很多行业里面都会有不同的应用。
这里面谈一下背景,因为很多客户常常问我们,什么叫做商业模式,我们有没有一个好的定义。这个也是我们很多客户比较接受和认可的定义。商业模式,在这里面有两个大的方面,一个是价值主张,比如说从所提供的产品服务究竟是什么东西,目标客户群是谁,收入的模式,比如说定价、商业模式怎么样在里面赚钱的,收入是怎么样来的,这也是一部分,我们叫做价值主张。
另外一方面是在运营模式方面,比如说在整个的价值链当中,怎么控制这个价值链,或者我们在价值链的哪个部分去玩,其中组织的架构,也会影响到商业模式,最终也有成本的模型、成本了模式。我们对于商业模式的变革,商业模式的改造里面,定义在这六个模式里面至少有两个是在改变,才叫做商业模式的改变。比如说你只是改变了目标客户群,其他没有什么改的,这个只是客户群的改变,如果只是多了一点服务和产品,在其他方面也没有改的话,这个也不是根本的商业模式的改变。但是我们后面谈到例子中就会看到,很多客户在运用“大数据”的时候,有两方面的改变和影响,这个就是根本上的商业模式的变革。
“大数据”如何影响到商业模式的变革。这里面有几个大的方面,首先是数据的来源,根据提到数据越来越多,在中间怎么样影响总体的经济链,或者是总体价值链。右边是结果了,刚才提到,可能是六个方面影响我们的商业模式。但是如果大家看一下左边的数据方面,其实数据来源,或者是量越来越多,这个当然是一个很重要的一点,但是刚才吴老师和殷总也提到,获取数据的成本,或者是储存数据的成本越来越低,这个是使得大家愿意越来越多的使用“大数据”。但是更加重要的是要有越来越先进的分析工具,来帮助大家做这些分析,不然的话,如果还是用十年前,十五年前的工具,虽然数据多了很多很多,但是也做不住很好的结果。比如说我们自己内部,过去5年也建立了一个团队,专门看地理方面的数据,全球不同地方的地理数据,比如说中国国内,什么地方有餐厅,什么地方有零售店,其实现在有很好的数据做分析的,十几年前没有这样的数据库,现在有了,我们也有这样的能力。我们也有团队,比如说看全球零售方面的数据分析。比如说几年前我们用很简单的工具来做分析,因为数据少,很容易做。而现在我们自己的咨询公司也会建立这样的能力。
最后当然是客户他们,这些消费者也很愿意的和大家分享这些数据,当然在隐私这些方面可能还是一定的挑战,但是对于他们来说,他们贡献的这种数据,获得了这种便利,比如说在亚马逊上面可以提供书的建议,或者我到沃尔玛里面,有特价的折扣给我,比较个性化,这些是他们比较愿意用他们的数据来换取一些价值。这些种种方面就是为什么现在数据越来越多,怎么样影响到业务模式的变革。
在当中,我们一会儿会谈到比较大的一点,就是中间谈到怎么样真正的影响价值链。比如说现在有了那么多的数据,而且流通性那么好的话,大大增加了在交易、客户、产业之间的透明度。其中还谈到了交易成本都有一定的降低。比如说以前一家公司要做针对性的营销的话,以前可能是很难做的,以前做营销,打一个广告,面对很大的受众,但是不一定很有针对性。而现在用比较低的成本,你有了这个能力,有了这个数据,就可以给客户很个性化的优惠和产品。这个以前是不可能发生的。
在价值链不同部分的规模变革,或者是客户的期望值,这个也是很重要的部分,为什么这些公司要根本的改善业务模式,很重要的一点是客户的期望值在改变。大家觉得现在有那么多的数据,我只看到竞争对手做了那么多的东西,但是我们对于公司的期望会越来越高。
刚才谈到业务模式的六大方面。
我在这里面就不多提这些例子了,我后面会比较仔细的谈在企业和“大数据”当中怎么样去竞争。
在这个方面,首先我们很多时候当客户在看这个问题的时候,会从几个大的方面看。其中最重要的,就是最上面的,就是整个他们对“大数据”方面的整体的定位,或者是战略是怎么样的。这个是很重要的。刚才也说了,不是为了获取数据而获取数据,不是为了分析数据而分析数据,最终希望你怎么样去使用,这个在你的业务里面是希望达到什么样的效果,这个是很重要的一点。这个整体的方向,高层、领导层方面的一些大力的资源方面的支持之外,下面我们会从几个大的纬度看。
第一个,怎么样利用这些数据。这是很重要的部分。数据的用途在哪里。
第二个,我们叫做数据的引擎,其实就是数据基础的建设。
第三个,生态的系统,整个生态系统怎么样去看。
这里面很快把每一点说一下。首先在上面怎么样利用这个数据,我们这里面看到两个大的方面,一个是在机会方面,一个是信任方面。机会方面就是要了解用这些数据会达到什么目的,会有什么样的机会,比如说要挖掘一点对业务方面的洞察,还是希望对整个公司的流程有更加好的完善,更加好的改进呢,还是说你希望给客户提供一些新的产品,以前可能是没有办法提供的,比如说你本来有不同的业务,本来是独立的提供业务,现在不同单元可以分享提供业务,提供新的数据。怎么样利用这些数据,就是要看机会方面,有哪些机会。第二方面叫做信任。这里面其实有两大部分,一个是刚才提到的数据是不是也愿意的提供一些数据给你,就是说让你获得一定的便利,获得一定的优惠,然后客户能够信任你,让你收集这样的数据。另外一部分就是你怎么样建立这个形象,就是在整个的过程中,客户愿意给你,但是慢慢的你要建立一个可信任的形象,就是大家觉得给你这个信息是安全的,就是这个信任。所以怎么样利用和获取信任是很重要的部分。
第二个部分是数据的引擎。第一个是在技术方面,怎么样建立这个平台,这个当然很重要。右边是组织的架构,内部的话,你的组织需要什么样的能力,需要什么样的人才,比如说组织架构,比如说刚才殷总提到在一个公司里面有一个CBO,除了这个之外,有一群人在总部,可能对“大数据”分析比较了解。但是在每一个业务单元里面,是不是也要有人确定这些数据怎么用,怎么获取这些数据,日常和客户的沟通过程中,怎么收集和利用这些数据,这也是很重要的一点。这个是第二个部分。
第三个部分是数据的生态系统了,其实看到了很多的公司,他们不单单是看自己的数据,他们是很好的怎么样确保和他们整个生态系统,或者是第三方的伙伴,他们怎么样分享这些数据,这个总体来说是非常重要的一部分。所以很多时候,我们在过去好几年做了有上百个不同行业的“大数据”的项目之后,总结出来我们客户常常遇到的问题,可能都是这样,很多时候客户一开始来谈的时候,可能都谈上面的机会,究竟什么是大数据,给我们什么样的机会,但是他们慢慢了解之后,知道了这个还不是最大的问题,有了系统和做分析的人,这些都OK了,但是更多是在组织、流程、生态系统方面是更加的挑战。
在其中,我这里准备了两个例子,一个是谷歌,大家也是比较知道的,在运用数据方面是一个比较大、比较领先的公司。在当中会看到我也会从刚才提到的六个方面,怎么样使用数据,里面是怎么样挖掘不同的机会,怎么样得到客户的信任。第二个方面是数据引擎方面、平台方面、组织方面是怎么样做的,最后是怎么样参与生态系统,建立和不同伙伴的关系。
谷歌也很有战略,看到了很多大家还没有看到的机会,他们很早的时候就已经先做了,这个也是客户里面现在比较大的改变,现在有很多东西你要尝试的,因果关系你还没有看到很清楚,但是看到了关联性,虽然看不到因果关系,但是看到了就要尝试。谷歌是比较领先的一个。在当中会看到,在数据用途方面,比如说左边这里,他们常常有很多不同的应用,不管是地图,不管是在其他方面,比如说视频种种方面,有很多不同的应用,有上百种不的应用,就一直在试。它的数据库并不一定有很多,可能是有单一的数据库,在这个数据库里面可以让你做很多不一样的东西,这个就是客户在想的,其实更加重要的不是要获取更加多的数据,其实很多时候客户已经有太多的数据了,甚至有时候他们觉得自己的数据不够,一定要到外面找,其实他们没有想清楚自己的数据怎么用,单一的数据库已经可以让你做很多不同的东西出来,让你尝试不同的东西。
另外一方面,和客户怎么建立信任,比如说一个方面,客户要慢慢的、很快的感受到他们在这些数据方面里面获得的一些好处在哪里。另外一方面,他们收集了这些数据,谷歌这方面做得挺好的,比如说社会责任、社会形象、捐款,这方面他们做得也是很多的,这是为公司建立起比较正面的形象,这方面让客户觉得和你分享这些数据,你也是比较可信的公司。在怎么获取,怎么使用方面,其实很多客户是会考虑非常清楚的。
第二个方面是数据引擎,在整个基础建设方面。首先是技术方面,技术方面我当然不是懂很多。首先是要有统一的自己的数据库,然后在当中扩充性也是比较大的,刚才提到,拿了那么多的数据,怎么把数据库扩充、扩容,这个是非常重要的一点。另外一点是在组织方面,比如说这里面提到,当然你需要一些,我们这里说到数据的工程师,在很多公司里面,这个量不一定很多的,不是一家公司可能有上万人,就要有几百个这样的数据工程师,很多时候有十几个人的小的团队,但是能力都是比较强的,知道怎么进行数据挖掘,怎么把系统建立起来,这个是非常重要的一点。另外一个是在当中右下角,吴老师提到的一点,不是说要根因这方面的东西,其实他们挖掘这个东西的时候,最重要是看关联性,两个动作有一定的关联,然后就知道要去尝试这个东西,然后慢慢的看究竟为什么有这个原因,这个是和传统做一些商业决定是很不一样的。
对生态系统,这个也都不用说了,这里面比如说谷歌通过参与不同生态系统里面,和很多第三方伙伴一起来合作。有一些,比如说上面的是整个搜索的生态系统,下面可能地图也有生态系统,不同里面,和不同的很多人在合作,在工作。
后面我很快的说另外一个例子,这个是宝洁。也是从刚才的六个纬度看一下,怎么使用这些数据,基础怎么建立起来,最终怎么样建立很好的生态系统。这个是刚才提到的上面的三角形,对于大数据整体的战略和定位是怎么样的,可以看到在过去可能几十年的历程中,很多时候,比如说七八十年代、八九十年代,不但是宝洁,很多公司都在想生产力怎么提升,流程怎么做得更加好,或者是比较根本的业务方面的东西,但是会看到在过去几年,有很多大的投入,都是在“大数据”、运用电子商务的机会等,在公司的高层是有很大的决心要做这个工作。所以你会看到,在数据的用途方面是有很多不同的例子,这里面只是有几个例子而已。第一个是在社交媒体方面,其实有一些不单单是他自己的数据,还有外部的数据,他们进行分析,分析之后看到不同客户群的趋势,客户在看什么品牌。后来看到了一个客户很认同的品牌,买了进来这个品牌,然后客户增加了10倍,这个是很重要的一部分。
第二部分是流感方面的药,刚刚第一个是谈到客户端的数据,第二个是在库存上,怎么样提供给零售商足够的库存。这个药可能30%的存货的机会,就是你买这个产品,很多时候是70%的时间是缺货的,但是慢慢经过所有数据的挖掘,就把线下的库存做得更加好了,所以会看到是不同纬度来做“大数据”。第三个方面是怎么挖掘这些“大数据”。每一天收到的电邮,或者是服务中心收到的电话大概是15万个,每天都挖掘这些信息,这些人打电话进来到底是问什么问题,发邮件来到底是问什么东西,把这些理念灌输到不同的业务单元里面。右边也是,要给消费者一个很有信任的感觉,大家才会比较信任的愿意分享和让你使用这些数据。
另外总体的引擎,左边谈到了平台,前面谈的比较多的是技术平台方面,但是也很重要的一个,就是在管理的平台上怎么样去做。比如说这里面提到一个例子,首先要有统一的数据展示的方式,每周一全球的经理开会,就是要把统一数据库里面的发现、展示做一定的使用和研究。然后影响力,在大数据的分析等方面都为高层做很透明的信息平台。
在右边,就整体的组织方面,首先是很清晰的,在集团领导的层面,他们把重要性放得最高的,刚才听到,过去可能是流程提升、效率优化等,现在“大数据”和电子商务这块最重要,这个是组织方面。
刚才也提到,在中央,在集团的层面有一个小的团队,这些可能都是最聪明的PHD、MBA,然后让他们主导在数据方面的战略,是同一时间不但是在集团的层次,在不同业务层面,有专门人谈数据挖掘和谈“大数据”的。
最后是生态系统,虽然以为宝洁是很大的公司,他们有很多的资源和数据,但是要看到和外部,不管是零售商还是经销商,有很多方面的配合是他们要做的。内部有很多的合资公司,怎么样把他们的系统、数据和零售商等做一个联系,这是很重要的一点。右边也是有一些,和主要的合作伙伴,比如说谷歌,还有零售终端,比如说沃尔玛等,这些也是要分析的合作的伙伴。整个的生态系统里面,究竟要做什么东西,这个也是很重要的,不是有了数据就可以了,最重要的是要把生态系统打造起来。

❻ 下一代百度地图,正在让数据的价值爆发

大数据的价值越来越明显,但是长期以来公众一直认为大数据仅仅只能提升效率而已。但实际上随着时间的推移,大数据的作用开始变得更加多元,而其价值逐渐开始释放。

当前,大数据的智能化生产、数据开放共享、挖掘数据多元价值正在成为大数据行业增长的全新能力,也正在为行业带来更大的想象空间。

在商业层面,网络地图则联合了万达、王府井百货尝试了LBS场景营销,通过创新的方式帮助万达和王府井百货更加精准地引流注册会员。此外,网络地图大数据还能够具有商业预测、分析价值,例如网络地图的大数据选址能力,以及此前通过苹果旗舰店的排队数据,成功预测其销售额下降。网络曾表示自己掌握的大数据还可以用来预测中国的其他经济指标,这些功能对于需要及时获取可靠数据来做出决策的市场参与者和政府机构来说具有重要价值。

所以数据的价值并非是单一的,而是极为复合,而随着不断的增长,还有着更多维的价值潜力。

结语:

随着大数据的不断扩充,其价值也越来越大。而智能化生产数据、数据开放共享以及挖掘数据多元价值,将会成为其增长的全新焦点。网络地图此次的生态大会,则给了行业非常好的启示。

作者微信公众号:“首席发言者”

❼ 常用的大数据工具有哪些

1. 开源大数据生态圈
Hadoop HDFS、Hadoop MapRece, HBase、Hive 渐次诞生,早期Hadoop生态圈逐步形成。
开源生态圈活跃,版并免费,但Hadoop对技术要求权高,实时性稍差。

2. 商用大数据分析工具
一体机数据库/数据仓库(费用很高)

IBM PureData(Netezza), Oracle Exadata, SAP Hana等等。

数据仓库(费用较高)
Teradata AsterData, EMC GreenPlum, HP Vertica 等等。

数据集市(费用一般)
QlikView、 Tableau 、国内永洪科技Yonghong Data Mart 等等。

前端展现
用于展现分析的前端开源工具有JasperSoft,Pentaho, Spagobi, Openi, Birt等等。
用于展现分析商用分析工具有Cognos,BO, Microsoft, Oracle,Microstrategy,QlikView、 Tableau 、国内永洪科技Yonghong Z-Suite等等。

❽ 大数据平台是什么什么时候需要大数据平台如何建立大数据平台

首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。

Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。

Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。

Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。

Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。

Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。

Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。

Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。

Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。

Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。

Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。

Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

阅读全文

与大数据生态地图30相关的资料

热点内容
网站字体阴影特效代码 浏览:187
g10刀轨铣内腔该如何编程 浏览:295
泰剧用哪个app 浏览:503
iphone4豆瓣fm 浏览:921
锤子的数据转移都转移什么 浏览:230
iphone4开机提示连接itunes 浏览:359
苹果的风扇app怎么下载 浏览:161
仙剑历代发行版本 浏览:266
cmp文件夹 浏览:473
公众号小程序源代码 浏览:178
众心彩票是个什么APP 浏览:815
电脑如何连接蓝牙网络 浏览:793
筛选后如何计算复杂数据 浏览:287
如何把不同品牌的手机数据导出 浏览:393
日历数据库表的设计 浏览:761
代码如何快速做金字塔数据 浏览:775
文件异地同步软件 浏览:383
微信网页版自动登录 浏览:370
excel如何分开男女数据 浏览:883
帝豪gl怎么打开u盘文件夹在哪里 浏览:477

友情链接