⑴ 利用编程语言代码二进制转十进制算法,值得收藏的编程干货
二进制转十进制的算法:将二进制数的每一位与 2 的对应次幂相乘,然后将这些乘积相加。例如:二进制数1011转十进制,则:(12^3) + (02^2) + (12^1) + (12^0) = 8 + 0 + 2 + 1 = 11。因此,1011(二进制) = 11(十进制)。
以下是各主流编程语言的二进制转十进制算法代码范例:
Python:使用 int() 函数将二进制字符串转换为十进制整数。例如:binary_num = “1011” ;decimal_num = int(binary_num, 2);print(decimal_num) # 11。也可以使用:binary_num = “1011”;decimal_num = 0;binary_num = binary_num[::-1];for i in range(len(binary_num)):decimal_num += int(binary_num[i])*(2**i);print(decimal_num) # 11。
C:使用strtol()函数将二进制字符串转换为十进制整数。例如:#include;#include;int main() { char binary_num[] = “1011”; int decimal_num; decimal_num = strtol(binary_num, NULL, 2); printf(“%d\n”, decimal_num); return 0; }。
C++:使用stoi()函数将二进制字符串转换为十进制整数。例如:#include;int main() { std::string binary_num = “1011”; int decimal_num; decimal_num = std::stoi(binary_num, 0, 2); std::cout << decimal_num << std::endl; return 0; }。
Java:使用Integer.parseInt()函数将二进制字符串转换为十进制整数。例如:String binary_num = “1011”; int decimal_num; decimal_num = Integer.parseInt(binary_num, 2); System.out.println(decimal_num); # 11。
JavaScript:使用parseInt()函数将二进制字符串转换为十进制整数。例如:let binary_num = “1011”; let decimal_num; decimal_num = parseInt(binary_num, 2); console.log(decimal_num); # 11。
PHP:使用bindec()函数将二进制字符串转换为十进制整数。例如:$binary_num = “1011”; $decimal_num = bindec($binary_num); echo $decimal_num; # 11。
SQL:使用CAST或CONVERT函数将二进制字符串转换为十进制整数。例如:使用CAST函数:SELECT CAST(1011 AS UNSIGNED) AS decimal_num; 使用CONVERT函数:SELECT CONVERT(UNSIGNED, 1011) AS decimal_num; 注意:这里的1011是二进制字符串,在使用CAST或CONVERT函数时需要将其转换为UNSIGNED类型。
此方法在数据库查询场景下适用,具体在SQL中的运算处理可能需根据实际情况调整。
⑵ c语言有哪些算法
C语言算法
C语言作为一种编程语言,其算法与其他编程语言相似,但具体实现可能会因语言特性而异。以下是一些在C语言中常用的算法:
排序算法
排序算法是数据处理中非常基础的算法之一。在C语言中,常用的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。这些排序算法可以用于对数组、列表或其他数据结构进行排序操作。每种排序算法都有其特点和适用场景。
搜索算法
搜索算法是用于在数据结构中查找特定元素的算法。在C语言中,常见的搜索算法包括线性搜索、二分搜索等。这些算法在数据规模较大时能够提高搜索效率。
数据结构操作相关算法
C语言中,还有许多与数据结构操作相关的算法,如链表操作算法(插入、删除、遍历等)、栈操作算法、队列操作算法等。这些算法涉及到数据结构的创建、维护以及操作,是编程中非常基础且重要的部分。
数值计算相关算法
此外,还有一些数值计算相关的算法,如求解最大公约数、最小公倍数、开方等算法的C语言实现。这些算法在计算机科学及数学领域有广泛应用。
总之,C语言算法的种类繁多,涉及到数据处理、数据结构操作以及数值计算等多个方面。在实际编程过程中,根据具体需求和场景选择合适的算法,能够提高程序的效率和性能。
⑶ C语言算法有哪些 并举例和分析
算法大全(C,C++)
一、 数论算法
1.求两数的最大公约数
function gcd(a,b:integer):integer;
begin
if b=0 then gcd:=a
else gcd:=gcd (b,a mod b);
end ;
2.求两数的最小公倍数
function lcm(a,b:integer):integer;
begin
if a<b then swap(a,b);
lcm:=a;
while lcm mod b>0 do inc(lcm,a);
end;
3.素数的求法
A.小范围内判断一个数是否为质数:
function prime (n: integer): Boolean;
var I: integer;
begin
for I:=2 to trunc(sqrt(n)) do
if n mod I=0 then begin
prime:=false; exit;
end;
prime:=true;
end;
B.判断longint范围内的数是否为素数(包含求50000以内的素数表):
procere getprime;
var
i,j:longint;
p:array[1..50000] of boolean;
begin
fillchar(p,sizeof(p),true);
p[1]:=false;
i:=2;
while i<50000 do begin
if p[i] then begin
j:=i*2;
while j<50000 do begin
p[j]:=false;
inc(j,i);
end;
end;
inc(i);
end;
l:=0;
for i:=1 to 50000 do
if p[i] then begin
inc(l);pr[l]:=i;
end;
end;{getprime}
function prime(x:longint):integer;
var i:integer;
begin
prime:=false;
for i:=1 to l do
if pr[i]>=x then break
else if x mod pr[i]=0 then exit;
prime:=true;
end;{prime}
二、图论算法
1.最小生成树
A.Prim算法:
procere prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]:=cost[v0,i];
closest[i]:=v0;
end;
for i:=1 to n-1 do begin
{寻找离生成树最近的未加入顶点k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]<min) and (lowcost[j]<>0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {将顶点k加入生成树}
{生成树中增加一条新的边k到closest[k]}
{修正各点的lowcost和closest值}
for j:=1 to n do
if cost[k,j]<lwocost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;{prim}
B.Kruskal算法:(贪心)
按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。
function find(v:integer):integer; {返回顶点v所在的集合}
var i:integer;
begin
i:=1;
while (i<=n) and (not v in vset[i]) do inc(i);
if i<=n then find:=i else find:=0;
end;
procere kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset[i]:=[i];{初始化定义n个集合,第I个集合包含一个元素I}
p:=n-1; q:=1; tot:=0; {p为尚待加入的边数,q为边集指针}
sort;
{对所有边按权值递增排序,存于e[I]中,e[I].v1与e[I].v2为边I所连接的两个顶点的序号,e[I].len为第I条边的长度}
while p>0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i<>j then begin
inc(tot,e[q].len);
vset[i]:=vset[i]+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;
2.最短路径
A.标号法求解单源点最短路径:
var
a:array[1..maxn,1..maxn] of integer;
b:array[1..maxn] of integer; {b[i]指顶点i到源点的最短路径}
mark:array[1..maxn] of boolean;
procere bhf;
var
best,best_j:integer;
begin
fillchar(mark,sizeof(mark),false);
mark[1]:=true; b[1]:=0;{1为源点}
repeat
best:=0;
for i:=1 to n do
If mark[i] then {对每一个已计算出最短路径的点}
for j:=1 to n do
if (not mark[j]) and (a[i,j]>0) then
if (best=0) or (b[i]+a[i,j]<best) then begin
best:=b[i]+a[i,j]; best_j:=j;
end;
if best>0 then begin
b[best_j]:=best;mark[best_j]:=true;
end;
until best=0;
end;{bhf}
B.Floyed算法求解所有顶点对之间的最短路径:
procere floyed;
begin
for I:=1 to n do
for j:=1 to n do
if a[I,j]>0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路径上j的前驱结点}
for k:=1 to n do {枚举中间结点}
for i:=1 to n do
for j:=1 to n do
if a[i,k]+a[j,k]<a[i,j] then begin
a[i,j]:=a[i,k]+a[k,j];
p[I,j]:=p[k,j];
end;
end;
C. Dijkstra 算法:
var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer; {pre[i]指最短路径上I的前驱结点}
mark:array[1..maxn] of boolean;
procere dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do begin
d[i]:=a[v0,i];
if d[i]<>0 then pre[i]:=v0 else pre[i]:=0;
end;
mark[v0]:=true;
repeat {每循环一次加入一个离1集合最近的结点并调整其他结点的参数}
min:=maxint; u:=0; {u记录离1集合最近的结点}
for i:=1 to n do
if (not mark[i]) and (d[i]<min) then begin
u:=i; min:=d[i];
end;
if u<>0 then begin
mark[u]:=true;
for i:=1 to n do
if (not mark[i]) and (a[u,i]+d[u]<d[i]) then begin
d[i]:=a[u,i]+d[u];
pre[i]:=u;
end;
end;
until u=0;
end;
3.计算图的传递闭包
Procere Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
End;
4.无向图的连通分量
A.深度优先
procere dfs ( now,color: integer);
begin
for i:=1 to n do
if a[now,i] and c[i]=0 then begin {对结点I染色}
c[i]:=color;
dfs(I,color);
end;
end;
B 宽度优先(种子染色法)
5.关键路径
几个定义: 顶点1为源点,n为汇点。
a. 顶点事件最早发生时间Ve[j], Ve [j] = max{ Ve [j] + w[I,j] },其中Ve (1) = 0;
b. 顶点事件最晚发生时间 Vl[j], Vl [j] = min{ Vl[j] – w[I,j] },其中 Vl(n) = Ve(n);
c. 边活动最早开始时间 Ee[I], 若边I由<j,k>表示,则Ee[I] = Ve[j];
d. 边活动最晚开始时间 El[I], 若边I由<j,k>表示,则El[I] = Vl[k] – w[j,k];
若 Ee[j] = El[j] ,则活动j为关键活动,由关键活动组成的路径为关键路径。
求解方法:
a. 从源点起topsort,判断是否有回路并计算Ve;
b. 从汇点起topsort,求Vl;
c. 算Ee 和 El;
6.拓扑排序
找入度为0的点,删去与其相连的所有边,不断重复这一过程。
例 寻找一数列,其中任意连续p项之和为正,任意q 项之和为负,若不存在则输出NO.
7.回路问题
Euler回路(DFS)
定义:经过图的每条边仅一次的回路。(充要条件:图连同且无奇点)
Hamilton回路
定义:经过图的每个顶点仅一次的回路。
一笔画
充要条件:图连通且奇点个数为0个或2个。
9.判断图中是否有负权回路 Bellman-ford 算法
x[I],y[I],t[I]分别表示第I条边的起点,终点和权。共n个结点和m条边。
procere bellman-ford
begin
for I:=0 to n-1 do d[I]:=+infinitive;
d[0]:=0;
for I:=1 to n-1 do
for j:=1 to m do {枚举每一条边}
if d[x[j]]+t[j]<d[y[j]] then d[y[j]]:=d[x[j]]+t[j];
for I:=1 to m do
if d[x[j]]+t[j]<d[y[j]] then return false else return true;
end;
10.第n最短路径问题
*第二最短路径:每举最短路径上的每条边,每次删除一条,然后求新图的最短路径,取这些路径中最短的一条即为第二最短路径。
*同理,第n最短路径可在求解第n-1最短路径的基础上求解。
三、背包问题
*部分背包问题可有贪心法求解:计算Pi/Wi
数据结构:
w[i]:第i个背包的重量;
p[i]:第i个背包的价值;
1.0-1背包: 每个背包只能使用一次或有限次(可转化为一次):
A.求最多可放入的重量。
NOIP2001 装箱问题
有一个箱子容量为v(正整数,o≤v≤20000),同时有n个物品(o≤n≤30),每个物品有一个体积 (正整数)。要求从 n 个物品中,任取若千个装入箱内,使箱子的剩余空间为最小。
l 搜索方法
procere search(k,v:integer); {搜索第k个物品,剩余空间为v}
var i,j:integer;
begin
if v<best then best:=v;
if v-(s[n]-s[k-1])>=best then exit; {s[n]为前n个物品的重量和}
if k<=n then begin
if v>w[k] then search(k+1,v-w[k]);
search(k+1,v);
end;
end;
l DP
F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
实现:将最优化问题转化为判定性问题
f [I, j] = f [ i-1, j-w[i] ] (w[I]<=j<=v) 边界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
优化:当前状态只与前一阶段状态有关,可降至一维。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;
B.求可以放入的最大价值。
F[I,j] 为容量为I时取前j个背包所能获得的最大价值。
F [i,j] = max { f [ i – w [ j ], j-1] + p [ j ], f[ i,j-1] }
C.求恰好装满的情况数。
DP:
Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
if j+now<=n then inc(c[j+now],a[j]);
a:=c;
end;
2.可重复背包
A求最多可放入的重量。
F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
状态转移方程为
f[I,j] = f [ I-1, j – w[I]*k ] (k=1.. j div w[I])
B.求可以放入的最大价值。
USACO 1.2 Score Inflation
进行一次竞赛,总时间T固定,有若干种可选择的题目,每种题目可选入的数量不限,每种题目有一个ti(解答此题所需的时间)和一个si(解答此题所得的分数),现要选择若干题目,使解这些题的总时间在T以内的前提下,所得的总分最大,求最大的得分。
*易想到:
f[i,j] = max { f [i- k*w[j], j-1] + k*p[j] } (0<=k<= i div w[j])
其中f[i,j]表示容量为i时取前j种背包所能达到的最大值。
*实现:
Begin
FillChar(f,SizeOf(f),0);
For i:=1 To M Do
For j:=1 To N Do
If i-problem[j].time>=0 Then
Begin
t:=problem[j].point+f[i-problem[j].time];
If t>f[i] Then f[i]:=t;
End;
Writeln(f[M]);
End.
C.求恰好装满的情况数。
Ahoi2001 Problem2
求自然数n本质不同的质数和的表达式的数目。
思路一,生成每个质数的系数的排列,在一一测试,这是通法。
procere try(dep:integer);
var i,j:integer;
begin
cal; {此过程计算当前系数的计算结果,now为结果}
if now>n then exit; {剪枝}
if dep=l+1 then begin {生成所有系数}
cal;
if now=n then inc(tot);
exit;
end;
for i:=0 to n div pr[dep] do begin
xs[dep]:=i;
try(dep+1);
xs[dep]:=0;
end;
end;
思路二,递归搜索效率较高
procere try(dep,rest:integer);
var i,j,x:integer;
begin
if (rest<=0) or (dep=l+1) then begin
if rest=0 then inc(tot);
exit;
end;
for i:=0 to rest div pr[dep] do
try(dep+1,rest-pr[dep]*i);
end;
{main: try(1,n); }
思路三:可使用动态规划求解
USACO1.2 money system
V个物品,背包容量为n,求放法总数。
转移方程:
Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
for k:=1 to n div now do
if j+now*k<=n then inc(c[j+now*k],a[j]);
a:=c;
end;
{main}
begin
read(now); {读入第一个物品的重量}
i:=0; {a[i]为背包容量为i时的放法总数}
while i<=n do begin
a[i]:=1; inc(i,now); end; {定义第一个物品重的整数倍的重量a值为1,作为初值}
for i:=2 to v do
begin
read(now);
update; {动态更新}
end;
writeln(a[n]);
四、排序算法
A.快速排序:
procere qsort(l,r:integer);
var i,j,mid:integer;
begin
i:=l;j:=r; mid:=a[(l+r) div 2]; {将当前序列在中间位置的数定义为中间数}
repeat
while a[i]<mid do inc(i); {在左半部分寻找比中间数大的数}
while a[j]>mid do dec(j);{在右半部分寻找比中间数小的数}
if i<=j then begin {若找到一组与排序目标不一致的数对则交换它们}
swap(a[i],a[j]);
inc(i);dec(j); {继续找}
end;
until i>j;
if l<j then qsort(l,j); {若未到两个数的边界,则递归搜索左右区间}
if i<r then qsort(i,r);
end;{sort}
B.插入排序:
思路:当前a[1]..a[i-1]已排好序了,现要插入a[i]使a[1]..a[i]有序。
procere insert_sort;
var i,j:integer;
begin
for i:=2 to n do begin
a[0]:=a[i];
j:=i-1;
while a[0]<a[j] do begin
a[j+1]:=a[j];
j:=j-1;
end;
a[j+1]:=a[0];
end;
end;{inset_sort}
C.选择排序:
procere sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=i+1 to n do
if a[i]>a[j] then swap(a[i],a[j]);
end;
D. 冒泡排序
procere bubble_sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=n downto i+1 do
if a[j]<a[j-1] then swap( a[j],a[j-1]); {每次比较相邻元素的关系}
end;
E.堆排序:
procere sift(i,m:integer);{调整以i为根的子树成为堆,m为结点总数}
var k:integer;
begin
a[0]:=a[i]; k:=2*i;{在完全二叉树中结点i的左孩子为2*i,右孩子为2*i+1}
while k<=m do begin
if (k<m) and (a[k]<a[k+1]) then inc(k);{找出a[k]与a[k+1]中较大值}
if a[0]<a[k] then begin a[i]:=a[k];i:=k;k:=2*i; end
else k:=m+1;
end;
a[i]:=a[0]; {将根放在合适的位置}
end;
procere heapsort;
var
j:integer;
begin
for j:=n div 2 downto 1 do sift(j,n);
for j:=n downto 2 do begin
swap(a[1],a[j]);
sift(1,j-1);
end;
⑷ 编程语言都有哪些算法
(一)基本算法 : 1.枚举 2.搜索: 深度优先搜索 广度优先搜索 启发式搜索 遗传算法 (二)数据结构的算法 (三)数论与代数算法 (四)计算几何的算法:求凸包 (五)图论 算法: 1.哈夫曼编码 2.树的遍历 3.最短路径 算法 4.最小生成树 算法 5.最小树形图 6.网络流 算法 7.匹配算法 (六)动态规划 (七)其他: 1.数值分析 2.加密算法 3.排序 算法 4.检索算法 5.随机化算法
希望采纳
⑸ C语言 参加 NOIP 要学哪些算法
C语言学习中,参加NOIP(全国青少年信息学奥林匹克竞赛)需要掌握多种算法,这些算法对于提高编程能力至关重要。
首先,排序算法是基础中的基础,包括快速排序、选择排序、冒泡排序、堆排序、二叉排序树和桶排序。掌握这些算法能够帮助你理解数据结构的基本操作。
其次,搜索算法也是非常重要的。你需要学习深度优先搜索(DFS)和广度优先搜索(BFS),并理解剪枝技术。在复习BFS时,可以顺便复习哈希表的使用,这有助于优化你的搜索效率。
关于树,你需要掌握树的遍历方法,包括二叉树和二叉排序树。了解二叉排序树的查找、生成和删除过程,以及堆(二叉堆和堆排序)的原理。Trie树也是一种有趣的树形结构,可以用来解决字符串匹配等问题。
图论也是NOIP中的一个重要部分。你需要了解最小生成树、最短路径、计算图的传递闭包等概念。连通分量是图论中的一个关键概念,掌握并查集技术可以帮助你更好地解决这类问题。此外,还需要了解拓扑排序、关键路径、哈密尔顿环、欧拉回路等概念。
动态规划是另一种重要的算法,包括线性动规、区间动规和树形动规。掌握这些方法可以让你更好地解决许多问题。
分治法是另一种重要的算法,它可以帮助你将复杂问题分解为多个子问题来解决。理解分治法的概念和应用能够提高你的编程能力。
此外,贪心算法也是NOIP中需要掌握的一种算法,它可以帮助你快速找到最优解。
位运算是一种高效的编程技巧,可以用来进行优化。了解位运算的基本操作,如位与、位或、位异或等,可以帮助你提高程序效率。
最后,数学与程序设计的结合也是NOIP中需要掌握的一项技能。通过数学知识,你可以更好地理解算法和数据结构,并提高编程能力。
NOIP的考试内容虽然不完全按照大纲来,但多做一些题总是没错的。你可以访问www.tyvj.cn和www.rqnoj.cn等网站来刷题,提高自己的编程水平。
⑹ 软件编程经常用到的算法都有哪些
常用的算法很多,但是对不同的编程语言来说,编程思路都是差不多的 给你几个例子【ps:编程语言C#】 //非不拉器数列 int[] a = new int [20]; for(int i=0;i<20;i++) { if((i==0)||(i==1)) a[i]=1; else a[i]=a[i-1]+a[i-2]; } foreach(int j in a) Console.Write(j+" "); Console.ReadLine(); //素数 int i,j,n; for(i=1;i<=100;i++) { n= Convert.ToInt32(Math.Sqrt(i)) ; for(j=2;j<=n;j++) if(i%j==0) break; if(j>n) Console.Write(i+" "); } //杨辉三角 int i; int j; int[ ,] arry=new int [10,10]; arry[0, 0] = 1; arry[1, 0] = 1; arry[1, 1] = 1; for ( i = 2; i < 10; i++) { for ( j = 1; j < i ; j++) { arry[i, j] = arry[i - 1, j - 1] + arry[i - 1, j]; } arry[i, 0] = 1; arry[i, i] = 1; } for ( i = 0; i < 10;i++ ) { for (j = 0; j <= i; j++) { Console.Write(arry[i, j] + " "); } Console.WriteLine(); }
希望采纳
⑺ 数学建模需要掌握哪些编程语言和技术
数学建模应当掌握的十类算法及所需编程语言:
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)。
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)。
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现)。
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)。
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)。
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)。
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)。
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。