Ⅰ c++中单双精度再编程中怎样确定简单通俗的来。
简单来说,单精度(single precision)浮点数精度比双精度(double precision)浮点数范围小,精度低,前者十进制有效数字7~8位,后者十进制有效数字14~15位。一般是指IEC-559/IEEE-754标准定义的二进制浮点数。
1L和2L错误,C++中有三种浮点数float、double和long double,精度(包括范围)float<=double<=long double,具体精度由实现定义。一般实现中, float即为单精度浮点数,double即为双精度浮点数。
单精度精度相对比较小,但相对来说比较快,只是在PC上有硬件浮点运算器实现时相差可能相对不明显。对于性能较低(嵌入式设备)或效率要求很高的场合(例如字形渲染),应该尽可能自定义的定点数代替浮点数,即使因为复杂性等原因而不得不用浮点数,也尽可能用单精度代替双精度(除非精度要求很高或者范围很大float放不下)。而其它情况下(效率要求一般的数值计算),用double代替float可以少关心一些精度问题。
另外,long double是长双精度(long double)浮点数,往往用软件实现(CPU中的FPU可能只支持80位二进制浮点数,不能实现长双精度浮点数的计算),可能会显著慢于float和double运算。
注意,C++中默认不加后缀的浮点常数字面量表示是double类型,加后缀f或F是float,l是double,L是long double。
浮点数算术表达式中如果有不同精度的运算数,整数会转换为浮点数,低精度运算数会隐式地转换为高精度运算数。
Ⅱ 鐢╟璇瑷缂栫▼锛岃$畻f锛坸锛夌殑鍊笺傝佹眰浠庨敭鐩樹笂杈撳叆x鐨勫硷紝绮惧害鎺у埗鍦0.001鍐咃紵
C璇瑷涓锛屼竴鑸鐢╯canf ("锛卍",&a);鏉ヨ诲彇浠庨敭鐩樹笂杈撳叆鐨勬暟瀛楋紝鍏朵腑a涓哄凡瀹氫箟鍙橀噺
鍦ㄨ緭鍑烘椂
printf(''%.3f''锛宖(x));鍙浠ヤ娇绮剧‘搴鎺у埗鍦0.001鍐
Ⅲ 鎴戠殑AI璇曢獙绮惧害瀹氫箟
鎴戠殑AI璇曢獙绮惧害瀹氫箟
绮惧害瀹氫箟绡
Accuracy measure - 鍑嗙‘搴︽祴閲
Correctness assessment - 姝g‘鎬ц瘎浼
Degree of exactness - 绮剧‘绋嬪害
Precision vs. recall - 绮惧害涓庡彫鍥炵巼
Consistency of measurements - 娴嬮噺鐨勪竴鑷存
Error margin - 璇宸鑼冨洿
Reliability of data - 鏁版嵁鐨勫彲闈犳
Precision in scientific research - 绉戝︾爺绌朵腑鐨勭簿纭搴
Statistical precision - 缁熻$簿纭搴
Precision engineering - 绮惧瘑宸ョ▼
Precision medicine - 绮惧噯鍖诲
Precision manufacturing - 绮惧瘑鍒堕
Precision agriculture - 绮惧噯鍐滀笟
Precision tools - 绮惧瘑宸ュ叿
Precision cutting - 绮剧‘鍒囧壊
Precision measurement instruments - 绮惧瘑娴嬮噺浠鍣
Precision optics - 绮惧瘑鍏夊
Precision mechanics - 绮惧瘑鏈烘
Precision machining - 绮惧瘑鍔犲伐
Precision control systems - 绮惧瘑鎺у埗绯荤粺
Precision in data analysis - 鏁版嵁鍒嗘瀽涓鐨勭簿纭搴
Precision in financial forecasting - 閲戣瀺棰勬祴涓鐨勭簿纭搴
Precision in weather prediction - 澶╂皵棰勬姤涓鐨勭簿纭搴
Precision in navigation systems - 瀵艰埅绯荤粺涓鐨勭簿纭搴
Precision in GPS technology - GPS鎶鏈涓鐨勭簿纭搴
Precision in medical diagnostics - 鍖诲﹁瘖鏂涓鐨勭簿纭搴
Precision in DNA sequencing - DNA娴嬪簭涓鐨勭簿纭搴
Precision in drug delivery - 鑽鐗╄緭閫佷腑鐨勭簿纭搴
Precision in surgical proceres - 鎵嬫湳绋嬪簭涓鐨勭簿纭搴
Precision in robotics - 鏈哄櫒浜烘妧鏈涓鐨勭簿纭搴
Precision in artificial intelligence - 浜哄伐鏅鸿兘涓鐨勭簿纭搴
Precision in computer programming - 璁$畻鏈虹紪绋嬩腑鐨勭簿纭搴
Precision in language translation - 璇瑷缈昏瘧涓鐨勭簿纭搴
Precision in image recognition - 鍥惧儚璇嗗埆涓鐨勭簿纭搴
Precision in speech synthesis - 璇闊冲悎鎴愪腑鐨勭簿纭搴
Precision in sentiment analysis - 鎯呮劅鍒嗘瀽涓鐨勭簿纭搴
Precision in recommendation systems - 鎺ㄨ崘绯荤粺涓鐨勭簿纭搴
Precision in fraud detection - 娆鸿瘓妫娴嬩腑鐨勭簿纭搴
Precision in customer segmentation - 瀹㈡埛缁嗗垎涓鐨勭簿纭搴
Precision in market research - 甯傚満鐮旂┒涓鐨勭簿纭搴
Precision in risk assessment - 椋庨櫓璇勪及涓鐨勭簿纭搴
Precision in decision making - 鍐崇瓥涓鐨勭簿纭搴
Precision in project management - 椤圭洰绠$悊涓鐨勭簿纭搴
Precision in time management - 鏃堕棿绠$悊涓鐨勭簿纭搴
Precision in communication - 娌熼氫腑鐨勭簿纭搴
Precision in problem-solving - 瑙e喅闂棰樹腑鐨勭簿纭搴
Precision in interpersonal relationships - 浜洪檯鍏崇郴涓鐨勭簿纭搴
Precision in creative expression - 鍒涢犳ц〃杈句腑鐨勭簿纭搴
Precision in athletic performance - 杩愬姩琛ㄧ幇涓鐨勭簿纭搴
Precision in musical composition - 闊充箰鍒涗綔涓鐨勭簿纭搴
Precision in artistic techniques - 鑹烘湳鎶宸т腑鐨勭簿纭搴
Precision in dance movements - 鑸炶箞鍔ㄤ綔涓鐨勭簿纭搴
Precision in culinary skills - 鐑归オ鎶宸т腑鐨勭簿纭搴
Precision in fashion design - 鏃惰呰捐′腑鐨勭簿纭搴
Precision in interior decoration - 瀹ゅ唴瑁呴グ涓鐨勭簿纭搴
Precision in architectural drawings - 寤虹瓚缁樺浘涓鐨勭簿纭搴
Precision in photography - 鎽勫奖涓鐨勭簿纭搴
Precision in painting techniques - 缁樼敾鎶宸т腑鐨勭簿纭搴
Precision in calligraphy strokes - 涔︽硶绗旂敾涓鐨勭簿纭搴
Precision in pottery shaping - 闄惰壓閫犲瀷涓鐨勭簿纭搴