学大数据很不错,就业前景广阔!
但是有关大数据的岗位,通常都是有学历要求的,一般是大专/本科起步。
大数据作为一项前沿互联网技术,目前被各互联网大厂的项目部门大量需求,如视频推荐等。随着鸿蒙系统的发布,物联网时代将会催生更多大数据岗位。大数据技术在现在,以及可预见的将来,都是比较吃香的。
我国大数据发展整体上仍处于起步阶段,虽然快速发展的格局基本形成,但是在数据开放共享、以大数据驱动发展等方面都需要大量的大数据专业人才。大数据是一门交叉学科,很多大学没有为大数据单独设置专业,主要有自学和报班学习两种途径。
关于大数据专业大数据专业全称数据科学与大数据技术,是2016年我国高校设置的本科专业。有32所高校成为第二批成功申请“数据科学与大数据技术”本科新专业的高校。加上第一批成功申请该专业的北京大学、对外经济贸易大学及中南大学,目前共有35所大学获批开设大数据专业。
大数据(Bigdata)专业的学生不仅具备计算机编程、统计和数据挖掘等专业技能,还能够将这些技能应用到自己所选领域中解决问题,比如应用到社会科学、自然科学和工程学领域。所以对于这项偏技术类的专业,你学大数据是一个很好的选择。
关于薪资待遇大数据工程师待遇30~50万之间。
你可以看到,在市场需求和人才供应的不均衡下,大数据人才问题日渐严峻。
人才紧缺带来的最直观的现象就是薪酬的提升。
目前,一个大数据工程师的月薪轻松过万,一个有几年工作经验的数据分析师的薪酬在30万~50万元之间,而更顶尖的大数据技术人才则是年薪轻松超百万,成为各大互联网和IT公司争夺的对象。
因而甚至有观点认为,大数据专业正在成为求职者进入大公司的捷径。
综上所述,大专学大数据是不错的选择,如果提升一下学历和实力,今后的就业会很容易。所以,不要因为学校是大专院校就放弃学习,你只有在大学期间更努力,积累深厚的专业功底,才能在这个越来越卷的职场脱颖而出。
对于想进大厂的应届毕业生,建议考一个阿里云大数据ACP证书,市面上大数据相关的认证证书并不多,有含金量、能被市场认可的更少了,而阿里云大数据ACP认证算是其中一个。它不仅能让你的理论知识联系实际应用,更能对你的求职起到助推作用,是你找工作的一个加分项。
想了解的同学可以关注我,免费领取大数据课件。
B. 编程这个专业怎么样
学编程还是很乐观的,要不也不会有这么多人想要学习了,只是有一个大前提是,不管你学什么怎么学,都要把技术学的精深,因为专业越精深在这个行业里才能走的更远。如果你学历不高早早走上工作岗位的话,建议还是趁着年轻学编程改变生活状态吧。我整理了相关问题,一起来看看吧!
1 计算机编程专业好就业吗
数据显示,计算机编程人才持续紧缺,编程人员工资水平一路走高,学计算机编程提上了日程,对于企业来说,为了人才的争夺,会不惜一切代价提升各方面待遇,未来,计算机编程人才之争或成为一种常态。
计算机编程人才相比其他的IT类人才,软件工程师不仅薪资待遇高,坐在办公室里不用出体力,而且职场生命周期长,新技术都是在基础知识之上发展而成,懂得基础就可以研发新的软件功能。所以在职年龄越大,项目经验就越丰富,就更加受用人单位的欢迎。
2计算机编程的就业方向
PHP程序员
Processor)是一种免费的强大的服务器端脚本语言,主要目标是允PHP(Hypertext许网络开发人员快速编写动态页面,同时也被广泛应用于其他领域,如web开发并可嵌入HTML 中去,受到Web开发者的欢迎。
PHP的语法利用了C、Java和Per1,易于学习。目前PHP的应用范围已经相当广泛,尤其是在网页程式的开发上。
Python编程
Python是一门易读、易维护,并且被大量用户所欢迎的、用途广泛的语言。由于具有丰富和强大的库,又被称为胶水语言,Python极其容易上手,主要源于Python有极其简单的说明文档
Python的应用领域分为系统编程,用户图形接口,Internet脚本,组件集成,数据库编程,快速原型,数值计算和科学计算编程,游戏、图像、人工智能、XL、机器人编程
这些都是编程类目的,工作很有前景。
C. 大数据学习为什么这么火热
在互联网时代,每抄天都有海量的数据信息产生,数据的处理变得越来越复杂,大数据或者数据工作者的岗位需求激增。一句话:前景好,薪资高
高校开办“数据科学与大数据技术”专业,使大数据受到更多家长的关注,大数据也被越来越多的人重视。
“大数据”的发展已经上升为国家政策层面的战略,各地也纷纷出台政策,支持大数据产业发展,大数据工作者可以施展拳脚的领域非常广泛,从国防部、互联网创业公司到金融机构,到处需要大数据项目来做创新驱动。
大数据分析或数据处理的岗位报酬也非常丰厚,在硅谷,入门级的数据科学家的收入已经是6位数了(美元)。大数据的薪资相比其他行业高出许多,具备3~5年工作经验的开发人员年薪都可以达到30~50万元。
D. 学Python有前途么
Python(英语发音:/ˈpaɪθən/), 是一种面向对象、解释型计算机程序设计语言,由Guido van Rossum于1989年发明,第一个公开发行版发行于1991年。
Python是纯粹的自由软件, 源代码和解释器CPython遵循 GPL(GNU General Public License)协议 。
Python语法简洁清晰,特色之一是强制用空白符(white space)作为语句缩进。
Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。
Python优点
简单:Python是一种代表简单主义思想的语言。阅读一个良好的Python程序就感觉像是在读英语一样。它使你能够专注于解决问题而不是去搞明白语言本身。
易学:Python极其容易上手,因为Python有极其简单的说明文档 。
速度快:Python 的底层是用 C 语言写的,很多标准库和第三方库也都是用 C 写的,运行速度非常快。
免费、开源:Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。
高层语言:用Python语言编写程序的时候无需考虑诸如如何管理你的程序使用的内存一类的底层细节。
可移植性:由于它的开源本质,Python已经被移植在许多平台上(经过改动使它能够工作在不同平台上)。这些平台包括linux、Windows、FreeBSD、Macintosh、Solaris、OS/2、Amiga、AROS、AS/400、BeOS、OS/390、z/OS、Palm OS、QNX、VMS、Psion、Acom RISC OS、VxWorks、PlayStation、Sharp Zaurus、Windows CE、PocketPC、Symbian以及Google基于linux开发的android平台。
解释性:一个用编译性语言比如C或C++写的程序可以从源文件(即C或C++语言)转换到一个你的计算机使用的语言(二进制代码,即0和1)。这个过程通过编译器和不同的标记、选项完成。
运行程序的时候,连接/转载器软件把你的程序从硬盘复制到内存中并且运行。而Python语言写的程序不需要编译成二进制代码。你可以直接从源代码运行 程序。
在计算机内部,Python解释器把源代码转换成称为字节码的中间形式,然后再把它翻译成计算机使用的机器语言并运行。这使得使用Python更加简单。也使得Python程序更加易于移植。
面向对象:Python既支持面向过程的编程也支持面向对象的编程。在“面向过程”的语言中,程序是由过程或仅仅是可重用代码的函数构建起来的。在“面向对象”的语言中,程序是由数据和功能组合而成的对象构建起来的。
可扩展性:如果需要一段关键代码运行得更快或者希望某些算法不公开,可以部分程序用C或C++编写,然后在Python程序中使用它们。
可嵌入性:可以把Python嵌入C/C++程序,从而向程序用户提供脚本功能。
丰富的库:Python标准库确实很庞大。它可以帮助处理各种工作,包括正则表达式、文档生成、单元测试、线程、数据库、网页浏览器、CGI、FTP、电子邮件、XML、XML-RPC、HTML、WAV文件、密码系统、GUI(图形用户界面)、Tk和其他与系统有关的操作。这被称作Python的“功能齐全”理念。除了标准库以外,还有许多其他高质量的库,如wxPython、Twisted和Python图像库等等。
规范的代码:Python采用强制缩进的方式使得代码具有较好可读性。而Python语言写的程序不需要编译成二进制代码。
在精通C的前提下,学会应用python 很有好处;可你要是只会python 而对C一无所知,那当真没多大用处。要知道,python的应用需要安装python 平台,而python 平台的扩展模块几乎都是用C来实现的…………因为python 比较容易,如果是刚接触编程,可以通过python 来入门,以后在学C等等,可这样就算你会python 后,学C还是有难度。如果你先学会C,那再学python 就是信手拈来般简单。
E. 大数据专业成热门,该如何转行做大数据分析师
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,很好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
F. 大数据从事于什么工作
大数据从事的是开源工作,更倾向于“研发”,由于大数据属新兴领域,专业人才专比较缺属乏,高端人才更是企业争抢的对象。薪资上升容易,职业发展潜力巨大。
大数据职业发展的方向:大数据开发、数据分析挖掘
大数据开发
主要负责大数据的大数据挖掘,数据清洗的发展,数据建模工作。大数据数据开发工程师偏重建设和优化系统。
大数据分析师
一种偏向产品和运营,更加注重业务,主要工作包括日常业务的异常监控、客户和市场研究、参与产品开发、建立数据模型提升运营效率等;
另一种则更注重数据挖掘技术,门槛较高,需要扎实的算法能力和代码能力。同时薪资待遇也更好。