『壹』 如何对图像做分类器训练matlab代码
对图像做分类器训练要建立视觉词袋来进行图像分类。该过程生成用来表示图像视觉词的直方图,通过这些直方图来训练图像分类器。下面的步骤描述如何建立图像集,建立视觉词袋,以及训练和运用图像分类器。
第一步:建立图像类别集合
将图像分割成训练子集和测试子集。利用imageDatastore函数来存储训练分类器的图像。可以利用splitEachLabel函数将图像分割成训练数据和测试数据。
读取类别图像和创建图像子集
setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource','foldernames');
分割图集成训练和测试子集。下例中,30%作为训练数据,余下的作为测试数据。
[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');
第二步:建立特征词袋
通过从每个类别的有代表性的图像中提取特征描述符,创建视觉词汇表或特征包。
通过在训练集合中提取出的特征描述符上利用k-means聚类算法,bagOfFeatures对象定义特征,视觉词汇。该算法迭代地将描述符分成k个互斥簇。由此产生的簇是紧密的,并具有相似的特性。每个集群中心代表一个特征,或一个可视词。可以基于特征检测器提取特征,也可以定义一个网格来提取特征描述符。网格方法可能丢失细节信息。因此,对不包含明显特征的图像使用网格,例如海滩等景物的图像。使用Speed up robust features(或SURF)检测器提供更大的尺度不变性。默认情况下,该算法运行“网格”方法。
该算法工作流对图像进行整体分析。图像必须有适当的标签来描述它们所代表的类。例如,一组汽车图像可以被标记为汽车。工作流不依赖于空间信息,也不依赖于标记图像中的特定对象。视觉词袋技术依赖于非局部化的检测技术。
第三步:通过视觉词袋训练图像分类器
trainImageCategoryClassifier函数返回一个图像分类器。该方法使用基于2分类支持向量机(SVM)的error-correcting output codes(ECOC)框架来训练一个多分类器。
该方法利用bagOfFeatures对象返回的视觉词袋将图像集中的图像编码成视觉词直方图。然后将视觉词直方图作为训练分类器的正负样本。
1、将训练集中的每幅图像利用bagOfFeature的encode方法进行编码。该函数检测和提取图像中的特征,然后利用最近邻算法构造每个图像的特征直方图。函数将描述符逼近聚类中心来增加直方图各bin的数值。直方图的长度取决于bagOfFeatures对象构造的出来的视觉词的数量。最终将直方图作为图像的特征向量。
2、对训练集中的每幅图像重复步骤1,建立训练数据
3、评价分类器。在测试图像集上使用imagecategoryclassifier的evaluate方法测试分类器。输出混淆矩阵可以分析预测结果。理想的分类结果是对角线上包含一个标准矩阵。不正确的分类导致出现分数值。
第四步:对图像或图像集进行分类
最后使用imageCategoryClassifier 的predeict方法对新图像进行分类来确定其类型。
『贰』 计算机视觉领域主流的算法和方向有哪些
人工智能是当下很火热的话题,其与大数据的完美结合应用于多个场景,极大的方便了人类的生活。而人工智能又包含深度学习和机器学习两方面的内容。深度学习又以计算机视觉和自然语言处理两个方向发展的最好,最火热。大家对于自然语言处理的接触可能不是很多,但是说起计算机视觉,一定能够马上明白,因为我们每天接触的刷脸支付等手段就会和计算机视觉挂钩。可以说计算机视觉的应用最为广泛。
目标跟踪,就是在某种场景下跟踪特定对象的过程,在无人驾驶领域中有很重要的应用。目前较为流行的目标跟踪算法是基于堆叠自动编码器的DLT。语义分割,则是将图像分为像素组,再进行标记和分类。目前的主流算法都使用完全卷积网络的框架。实例分割,是指将不同类型的实例分类,比如用4种不同颜色来标记4只猫。目前用于实例分割的主流算法是Mask R-CNN。
『叁』 图像识别算法都有哪些
图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。一般工业使用中,采用工业相机拍摄图片,然后再利用软件根据图片灰阶差做进一步识别处理,图像识别软件国外代表的有康耐视等,国内代表的有图智能等。另外在地理学中指将遥感图像进行分类的技术。