导航:首页 > 编程知识 > 可编程逻辑器件用什么进行编译

可编程逻辑器件用什么进行编译

发布时间:2023-09-13 06:27:51

Ⅰ 什么是eda技术eda技术的核心内容是什么

EDA技术是指以计算机为工作平台,融合了应用电子技术、计算机技术、信息处理及智能化技术的最新成果,进行电子产品的自动设计。

核心内容包括数字系统的设计流程、印刷电路板图设计、可编程逻辑器件及设计方法、硬件描述语言VHDL、EDA开发工具等内容。EDA技术的出现,极大地提高了电路设计的效率和可操作性,减轻了设计者的劳动强度。

设计者在EDA软件平台上,用硬件描述语言VerilogHDL完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。



(1)可编程逻辑器件用什么进行编译扩展阅读:

EDA技术的发展:

1、80年代为计算机辅助工程(CAE)阶段。与CAD相比,CAE除了有纯粹的图形绘制功能外,又增加了电路功能设计和结构设计,并且通过电气连接网络表将两者结合在一起,实现了工程设计。CAE的主要功能是:原理图输入,逻辑仿真,电路分析,自动布局布线,PCB后分析。

2、90年代为电子系统设计自动化(EDA)阶段。

3、现代EDA技术就是以计算机为工具,在EDA软件平台上,根据硬件描述语言HDL完成的设计文件,能自动地完成用软件方式描述的电子系统到硬件系统的布局布线、逻辑仿真,直至完成对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。

4、ESDA代表了当今电子设计技术的最新发展方向,其基本特征是:设计人员按照“自顶向下”的设计方法,对整个系统进行方案设计和功能划分,系统的关键电路用一片或几片专用集成电路(ASIC)实现。

Ⅱ 现今的EDA技术都包括哪些内容,常用的软件

EDA 从EDA技术的几个主要方面的内容来看,可以理解为:EDA技术是以大规模可编程逻辑器件为设计载体,以硬件描述语言为系统逻辑描述的主要表达方式,以计算机、大规模可编程逻辑器件的开发软件及实验开发系统为设计工具,通过有关的开发软件,自动完成用软件的方式设计电子系统到硬件系统的一门新技术。可以实现逻辑编译、逻辑化简、逻辑分割、逻辑综合及优化,逻辑布局布线、逻辑仿真。完成对于特定目标芯片的适配编译、逻辑映射、编程下载等工作,最终形成集成电子系统或专用集成芯片。EDA技术是伴随着计算机、集成电路、电子系统的设计发展起来的,至今已有30多年的历程。

EDA大致可以分为三个发展阶段。20世纪70年代的CAD(计算机辅助设计)阶段:这一阶段的主要特征是利用计算机辅助进行电路原理图编辑,PCB布同布线,使得设计师从传统高度重复繁杂的绘图劳动中解脱出来。

20世纪80年代的QtE(计算机辅助工程设计)阶段:这一阶段的主要特征是以逻辑摸拟、定时分析、故障仿真、自动布局布线为核心,重点解决电路设计的功能检测等问题,使设计而能在产品制作之前预知产品的功能与性能。

20世纪90年代是EDA(电子设计自动化)阶段:这一阶段的主要特征是以高级描述语言,系统级仿真和综合技术为特点,采用“自顶向下”的设计理念,将设计前期的许多高层次设计由EDA工具来完成。

EDA是电子技术设计自动化,也就是能够帮助人们设计电子电路或系统的软件工具。该工具可以在电子产品的各个设计阶段发挥作用,使设计更复杂的电路和系统成为可能。在原理图设计阶段,可以使用EDA中的仿真工具论证设计的正确性;在芯片设计阶段,可以使用EDA中的芯片设计工具设计制作芯片的版图:在电路板设计阶段,可以使用EDA中电路板设计工具设计多层电路板。特别是支持硬件描述语言的EDA工具的出现,使复杂数字系统设计自动化成为可能,只要用硬件描述语言将数字系统的行为描述正确,就可以进行该数字系统的芯片设计与制造。有专家认为,21世纪将是EDA技术的高速发展期,EDA技术将是对21世纪产生重大影响的十大技术之一。

Ⅲ 可编程逻辑器件的具体概念是什么

可编程逻辑器件
简介
可编程逻辑器件 英文全称为:programmable logic device 即 PLD。 PLD是做为一种通用集成电路产生的,他的逻辑功能按照用户对器件编程来确定。一般的PLD的集成度很高,足以满足设计一般的数字系统的需要。这样就可以由设计人员自行编程而把一个数字系统“集成”在一片PLD上,而不必去请芯片制造厂商设计和制作专用的集成电路芯片了。
特点
PLD与一般数字芯片不同的是:PLD内部的数字电路可以在出厂后才规划决定,有些类型的PLD也允许在规划决定后再次进行变更、改变,而一般数字芯片在出厂前就已经决定其内部电路,无法在出厂后再次改变,事实上一般的模拟芯片、混讯芯片也都一样,都是在出厂后就无法再对其内部电路进行调修。
编辑本段固定逻辑与可编程逻辑
逻辑器件可分类两大类 - 固定逻辑器件和可编程逻辑器件。 一如其名,固定逻辑器件中的电路是永久性的,它们完成一种或一组功能 - 一旦制造完成,就无法改变。 另一方面,可编程逻辑器件(PLD)是能够为客户提供范围广泛的多种逻辑能力、特性、速度和电压特性的标准成品部件 - 而且此类器件可在任何时间改变,从而完成许多种不同的功能。 对于固定逻辑器件,根据器件复杂性的不同,从设计、原型到最终生产所需要的时间可从数月至一年多不等。 而且,如果器件工作不合适,或者如果应用要求发生了变化,那么就必须开发全新的设计。 设计和验证固定逻辑的前期工作需要大量的“非重发性工程成本”,或NRE。 NRE表示在固定逻辑器件最终从芯片制造厂制造出来以前客户需要投入的所有成本,这些成本包括工程资源、昂贵的软件设计工具、用来制造芯片不同金属层的昂贵光刻掩模组,以及初始原型器件的生产成本。 这些NRE成本可能从数十万美元至数百万美元。 对于可编程逻辑器件,设计人员可利用价格低廉的软件工具快速开发、仿真和测试其设计。 然后,可快速将设计编程到器件中,并立即在实际运行的电路中对设计进行测试。 原型中使用的PLD器件与正式生产最终设备(如网络路由器、DSL调制解调器、DVD播放器、或汽车导航系统)时所使用的PLD完全相同。 这样就没有了NRE成本,最终的设计也比采用定制固定逻辑器件时完成得更快。 采用PLD的另一个关键优点是在设计阶段中客户可根据需要修改电路,直到对设计工作感到满意为止。 这是因为PLD基于可重写的存储器技术--要改变设计,只需要简单地对器件进行重新编程。 一旦设计完成,客户可立即投入生产,只需要利用最终软件设计文件简单地编程所需要数量的PLD就可以了。
编辑本段可编程逻辑器件的两种类型:CPLD和FPGA
可编程逻辑器件的两种主要类型是现场可编程门阵列(FPGA)和复杂可编程逻辑器件(CPLD)。 在这两类可编程逻辑器件中,FPGA提供了最高的逻辑密度、最丰富的特性和最高的性能。 现在最新的FPGA器件,如Xilinx Virtex™系列中的部分器件,可提供八百万"系统门"(相对逻辑密度)。 这些先进的器件还提供诸如内建的硬连线处理器(如IBM Power PC)、大容量存储器、时钟管理系统等特性,并支持多种最新的超快速器件至器件(device-to-device)信号技术。 FPGA被应用于范围广泛的应用中,从数据处理和存储,以及到仪器仪表、电信和数字信号处理等。 与此相比,CPLD提供的逻辑资源少得多 - 最高约1万门。 但是,CPLD提供了非常好的可预测性,因此对于关键的控制应用非常理想。 而且如Xilinx CoolRunner™系列CPLD器件需要的功耗极低,
编辑本段PLD的优点
固定逻辑器件和PLD各有自己的优点。 例如,固定逻辑设计经常更适合大批量应用,因为它们可更为经济地大批量生产。 对有些需要极高性能的应用,固定逻辑也可能是最佳的选择。 然而,可编程逻辑器件提供了一些优于固定逻辑器件的重要优点,包括:PLD在设计过程中为客户提供了更大的灵活性,因为对于PLD来说,设计反复只需要简单地改变编程文件就可以了,而且设计改变的结果可立即在工作器件中看到。 PLD不需要漫长的前置时间来制造原型或正式产品 - PLD器件已经放在分销商的货架上并可随时付运。 PLD不需要客户支付高昂的NRE成本和购买昂贵的掩模组- PLD供应商在设计其可编程器件时已经支付了这些成本,并且可通过PLD产品线延续多年的生命期来分摊这些成本。 PLD允许客户在需要时仅订购所需要的数量,从而使客户可控制库存。 采用固定逻辑器件的客户经常会面临需要废弃的过量库存,而当对其产品的需求高涨时,他们又可能为器件供货不足所苦,并且不得不面对生产延迟的现实。 PLD甚至在设备付运到客户那儿以后还可以重新编程。 事实上,由于有了可编程逻辑器件,一些设备制造商现在正在尝试为已经安装在现场的产品增加新功能或者进行升级。 要实现这一点,只需要通过因特网将新的编程文件上载到PLD就可以在系统中创建出新的硬件逻辑。 过去几年时间里,可编程逻辑供应商取得了巨大的技术进步,以致现在PLD被众多设计人员视为是逻辑解决方案的当然之选。 能够实现这一点的重要原因之一是象Xilinx这样的PLD供应商是"无晶圆制造厂"企业,并不直接拥有芯片制造工厂,Xilinx将芯片制造工作外包给IBM Microelectronics 和 UMC这样的主要业务就是制造芯片的合作伙伴。 这一策略使Xilinx可以集中精力设计新产品结构、软件工具和IP核心,同时还可以利用最先进的半导体制造工艺技术。 先进的工艺技术在一系列关键领域为PLD提供了帮助:更快的性能、集成更多功能、降低功耗和成本等。 目前Xilinx采用先进的0.13um 低K铜金属工艺生产可编程逻辑器件,这也是业界最好的工艺之一。 例如,仅仅数年前,最大规模的FPGA器件也仅仅为数万系统门,工作在40 MHz。 过去的FPGA也相对较贵,当时最先进的FPGA器件大约要150美元。 然而,今天具有最先进特性的FPGA可提供百万门的逻辑容量、工作在300 MHz,成本低至不到10美元,并且还提供了更高水平的集成特性,如处理器和存储器。 同样重要的是,PLD现在有越来越多的知识产权(IP)核心库的支持 - 用户可利用这些预定义和预测试的软件模块在PLD内迅速实现系统功能。 IP核心包括从复杂数字信号处理算法和存储器控制器直到总线接口和成熟的软件微处理器在内的一切。 此类IP核心为客户节约了大量时间和费用 - 否则,用户可能需要数月的时间才能实现这些功能,而且还会进一步延迟产品推向市场的时间。
编辑本段PLD的编程语言
有关之前所谈到的“PAL”,若要以手工的方式来产生JEDEC档实是过于复杂,所以多半改用电脑程序(也称:计算机程序)来产生,这种程序(程序)称为“逻辑编译器,logic compiler”,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码(也称:源代码)也得用特定的编程语言(也称:程序语言、编程语言)来撰写,此称之为hardware description language(硬件描述语言),简称:HDL。 而且,HDL并非仅有一种,而是有许多种,如ABEL、AHDL、Confluence、CUPL、HDCal、JHDL、Lava、Lola、MyHDL、PALASM、RHDL等都是,但目前最具知名也最普遍使用的是VHDL与Verilog。

Ⅳ FPGA等可编程逻辑器件设计流程是怎么样的

通常可将FPGA/CPLD设计流程归纳为以下7个步骤,这与ASIC设计有相似之处。 1.设计输入。Verilog或VHDL编写代码。 2.前仿真(功能仿真)。设计的电路必须在布局布线前验证电路功能是否有效。(ASCI设计中,这一步骤称为第一次Sign-off)PLD设计中,有时跳过这一步。 3.设计编译(综合)。设计输入之后就有一个从高层次系统行为设计向门级逻辑电路设转化翻译过程,即把设计输入的某种或某几种数据格式(网表)转化为软件可识别的某种数据格式(网表)。 4.优化。对于上述综合生成的网表,根据布尔方程功能等效的原则,用更小更快的综合结果代替一些复杂的单元,并与指定的库映射生成新的网表,这是减小电路规模的一条必由之路。 5.布局布线。 6.后仿真(时序仿真)需要利用在布局布线中获得的精确参数再次验证电路的时序。(ASCI设计中,这一步骤称为第二次Sign—off)。 7.生产。布线和后仿真完成之后,就可以开始ASCI或PLD芯片的投产

阅读全文

与可编程逻辑器件用什么进行编译相关的资料

热点内容
如何用网络打普通电话 浏览:463
linux进程打开的文件 浏览:134
新购u盘无法储存文件 浏览:553
5s要不要升级ios93 浏览:926
小米手机助手怎么关闭自动升级 浏览:24
外星人能不能升级到win10系统盘 浏览:652
加入java信任站点 浏览:486
好用的急救知识app 浏览:524
什么是网络适配器驱动文件名 浏览:717
吉林文件箱多少钱 浏览:113
ae模板版本 浏览:204
手机qq步数功能在哪里 浏览:721
c程序设计04737 浏览:403
女孩什么年龄学编程 浏览:976
安庆如何做网络营销推广 浏览:620
什么是数据标准化 浏览:708
aecc三维功能实例视频教程 浏览:719
iphone6s静音键用法 浏览:560
油卡盒子APP是什么公司名下的 浏览:597
怪物猎人wp文件夹什么意思 浏览:108

友情链接