导航:首页 > 编程知识 > 神经网络基于什么编程

神经网络基于什么编程

发布时间:2023-09-01 05:17:50

❶ 神经网络如何用单片机实现

用单片机开发神经网络应用主要考虑三个方向:
1)网络本身,神版网本质上是一组矩阵,矩阵在权单片机中的表现可以通过数组来实现;
2)输入输出,神网的应用就是把输入阵列与网络本身的矩阵点乘叉乘后算术求和,产生输出矩阵,把输入输出的算法做到单片机里也不是难事;
3)训练,神网的权值矩阵都是训练出来的,采用诸如前向或反向的算法,可以做离线也可以做在线,如果做离线就没有必要把算法实现在单片机内,PC上就可以做,然后导入矩阵即可;如果做在线则是相对较难的技术,需要在单片机上实现,对于单片机本身的资源要求也较高。

简单说,1)是基础,也最容易;1)+2)就已经是神经网络的应用了,也容易实现;1)+2)+Matlab神经网络离线训练是易于实现,且富有弹性的应用方式;1)+2)+在线训练基本上就是具备自己学习能力的机器人,这是学术界一直探索的方向。

希望能给你一些启发,研究神网对我来说已经是五六年前的过去了,还是很怀念那时候的激情,个人认为这将是二十一世纪后期最有影响力的技术之一。

❷ BP神经网络 VB

我有VC编的BP神经网络程序,没有VB的。
神经网络主要是用计算机通过编程实现模拟人脑的功能,它可以实现辨识和预测两种基本功能。你说的神经网络预测功能,这需要产品销售量的历史数据。假如说你有800组数据,其中的700组会用来作为你的训练数据,剩下的100组就作为你的测试数据。这800组数据都是由你的输入和输出数据组成,在训练数据时要将输入输出两种数据同时输入到程序中。训练完后,只将剩下的100组数据中的输入数据放入程序中,运行训练好的神经网络,预测这100组数据中的输出数据。最后进行误差分析,从而可以知道你的神经网络的预测效果。

❸ 请问高手,神经网络模型与学习算法用什么语言编程比较好JAVA 、C语言还是C++等。谢谢!

神经网络模型?不会是你的课题吧,大型算法应用(有界面),当然用C++(效率高)来写,JAVA次之(略简单)。
学习算法的精髓就用C,C++和JAVA作为高级语言打包了很多基础型的算法。

❹ 用Matlab编程BP神经网络进行预测

原理复就是:建立网络-数据归一化-训练制-预测-数据反归一化。附件是电力负荷预测的例子,可以参考。


BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

❺ 基于matlab或C#的神经网络编程

1.人工神经元( Artificial Neuron )模型

人工神经元是神经网络的基本元素,其原理可以用下图表示:


若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。

图1中的这种“阈值加权和”的神经元模型称为M-P模型( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。

❻ MATLAB神经网络编程的内容简介

《MATLAB神经网络编程》结合神经网络的概念、理论和应用,以MATLAB为平台,系统地介绍了神经网络工具箱中的前向型神经网络、局部型神经网络、反馈型神经网络、竞争型神经网络、神经网络控制的综合应用、神经网络在Simulink中的应用、神经网络的模糊控制及其自定义网络等内容。《MATLAB神经网络编程》重点是运用MATLAB神经网络工具箱介绍神经网络分析研究中的各种概念、理论、方法、算法及其实现。《MATLAB神经网络编程》内容安排合理,理论结合实际,同时作者列举了其总结的大量应用实例。《MATLAB神经网络编程》讲述的各种统计理论和方法浅显易懂,并均能在实际生活中找到应用对象。《MATLAB神经网络编程》可以作为广大在校本科生和研究生的学习用书,也可以作为广大科研人员、学者、工程技术人员的参考用书。

大数据开发常用的编程语言有哪些

1、Python语言
如果你的数据科学家不使用R,他们可能就会彻底了解Python。十多年来,在学术界当中一直很流行,尤其是在自然语言处理(NLP)等领域。因而,如果你有一个需要NLP处理的项目,就会面临数量多得让人眼花缭乱的选择,包括经典的NTLK、使用GenSim的主题建模,或者超快、准确的spaCy。同样,说到神经网络,Python同样游刃有余,有Theano和Tensorflow;随后还有面向机器学习的scikit-learn,以及面向数据分析的NumPy和Pandas。
还有Juypter/iPython――这种基于Web的笔记本服务器框架让你可以使用一种可共享的日志格式,将代码、图形以及几乎任何对象混合起来。这一直是Python的杀手级功能之一,不过这年头,这个概念证明大有用途,以至于出现在了奉行读取-读取-输出-循环(REPL)概念的几乎所有语言上,包括Scala和R。
Python往往在大数据处理框架中得到支持,但与此同时,它往往又不是“一等公民”。比如说,Spark中的新功能几乎总是出现在Scala/Java绑定的首位,可能需要用PySpark编写面向那些更新版的几个次要版本(对Spark Streaming/MLLib方面的开发工具而言尤为如此)。
与R相反,Python是一种传统的面向对象语言,所以大多数开发人员用起来会相当得心应手,而初次接触R或Scala会让人心生畏惧。一个小问题就是你的代码中需要留出正确的空白处。这将人员分成两大阵营,一派觉得“这非常有助于确保可读性”,另一派则认为,我们应该不需要就因为一行代码有个字符不在适当的位置,就要迫使解释器让程序运行起来。
2、R语言
在过去的几年时间中,R语言已经成为了数据科学的宠儿——数据科学现在不仅仅在书呆子一样的统计学家中人尽皆知,而且也为华尔街交易员,生物学家,和硅谷开发者所家喻户晓。各种行业的公司,例如Google,Facebook,美国银行,以及纽约时报都使用R语言,R语言正在商业用途上持续蔓延和扩散。
R语言有着简单而明显的吸引力。使用R语言,只需要短短的几行代码,你就可以在复杂的数据集中筛选,通过先进的建模函数处理数据,以及创建平整的图形来代表数字。它被比喻为是Excel的一个极度活跃版本。
R语言最伟大的资本是已围绕它开发的充满活力的生态系统:R语言社区总是在不断地添加新的软件包和功能到它已经相当丰富的功能集中。据估计,超过200万的人使用R语言,并且最近的一次投票表明,R语言是迄今为止在科学数据中最流行的语言,被61%的受访者使用(其次是Python,39%)。
3、JAVA
Java,以及基于Java的框架,被发现俨然成为了硅谷最大的那些高科技公司的骨骼支架。 “如果你去看Twitter,LinkedIn和Facebook,那么你会发现,Java是它们所有数据工程基础设施的基础语言,”Driscoll说。
Java不能提供R和Python同样质量的可视化,并且它并非统计建模的最佳选择。但是,如果你移动到过去的原型制作并需要建立大型系统,那么Java往往是你的最佳选择。
4、Hadoop和Hive
一群基于Java的工具被开发出来以满足数据处理的巨大需求。Hadoop作为首选的基于Java的框架用于批处理数据已经点燃了大家的热情。Hadoop比其他一些处理工具慢,但它出奇的准确,因此被广泛用于后端分析。它和Hive——一个基于查询并且运行在顶部的框架可以很好地结对工作。

❽ 神经网络编程序用什么语言啊

一般用matlab或者scilab来编程,因为输入输出是图像的话,用矩阵计算会更方便。

阅读全文

与神经网络基于什么编程相关的资料

热点内容
诛仙62坐骑怎么升级到63 浏览:926
linux以日期查看日志记录 浏览:446
工业大数据是什么东西 浏览:881
魅族note3怎么重置网络 浏览:510
c语言程序设计模 浏览:92
儿童怎么做可编程机 浏览:603
数据计算属于什么统计学 浏览:921
07word怎么去掉标记 浏览:979
qq缓存的数据是什么 浏览:348
LED主Kv文件多少兆 浏览:856
苹果edge怎么删除下载文件 浏览:471
sas逻辑回归代码 浏览:572
用于keil下的stc器件数据库 浏览:400
新闻网站后台如何操作前台 浏览:539
在剪映app中怎么查看视频尺寸 浏览:9
linux文件成分包括 浏览:886
文件转换免费的软件 浏览:644
linuxwpsxlsx 浏览:482
小米手机怎么上移动网络连接失败怎么办 浏览:598
win10系统打开java 浏览:479

友情链接