Ⅰ 怎么设计循迹小车
1、循迹小车是一种能够自己寻找轨迹并按轨迹运动的“智能”车。本文简要记录这一电子制作过程,希望大家喜欢。有什么建议和意见,欢迎大家留言。
6、调试后,小车可以再黑色的轨道上自动循迹,制作成功。黑色轨迹可以自己做,用黑色胶布再地板上自定义轨道,小车慢悠悠的在轨道上行走。
Ⅱ 用labview编程智能循迹小车的程序思路
胶带的宽度一定的话:
四个传感器一字排列的情况最简单:
按1234号传感器命名,照在胶带上状态位为A,否则为a.
直线正常行走时,23号持续为A,14号持续为a.
分析开始右转的逻辑:
2号变a,继续直线行走,直到4号变A,根据24号间的距离和小车在这段时间内行驶的距离计算出转动角度(这就是动态平面几何问题了,自己画图解一下,注意转弯时候前后中心点的轨迹,胶带宽度是关键,得到的角度不会也不必太精确。这里我只讨论逻辑),然后以比计算结果稍大(目的是确保能让2恢复状态A)的转动角度开始转弯,等到2和3都恢复状态A,小车变回直线行走,等到2号重新变a,小车再恢复到原先的转动角度……后面一直循环就行了
直线上如果车子前进方向倾斜,和转弯一样,下面以车子向右倾斜为例分析:
会出现3号变a的情况,继续保持直线行走,直到1号变A,计算出小车在这个过程中行进距离,结合胶带宽度,1和3号间的距离,就可以算出偏离的角度然后决定转动角度。后面具体调整和过弯道一样。
然后我来吐槽为什么要用labview,你是想着拿着笔记本进行无线操控么 - -,嵌入式的labview编程现在还不成熟好吧~
Ⅲ 我想用Arino做一个寻线小车都需要哪些东西
首先必须需要有一个车底盘如4WD或者2WD,然后需要一个双H桥电机驱动器,作为动力推动小车运动,这时就需要一个Arino UNO控制器。它是毁悔整个系统的核心,需要判断前进还是后退,左转基纯还是右转。要增加寻线功能还需要至少三个红外寻线传感器,为了方便插接再加上一个Arino传感器扩展板,这样整个系统就完成了。最后装上电池,写好程序就可以纤锋正实现功能了。
Ⅳ 乐高机器人巡线抓物怎样编程
一、前言;在机器人竞赛中,“巡线”特指让机器人沿着场地中一;二、光感中心与小车转向中心;以常见的双光感巡线为例,光感的感应中心是两个光感;所以在实际操作中,一般通过程序与结构的配合,在程;三、车辆结构;巡线任务的核心是让机器人小车按照场地中画出的路线;1、前轮驱动;前轮驱动的小车一般由两个动力轮和一个万向轮构成,;2、后轮驱动;后轮驱动的小车结构和转向中心与
一、前言
在机器人竞赛中,“巡线”特指让机器人沿着场地中一条固定线路(通常是黑线)行进的任务。作为一项搭建和编程的基本功,巡线既可以是独立的常规赛比赛项目,也能成为其他比赛项目的重要技术支撑,在机器人比赛中具有重要地位。
二、光感中心与小车转向中心
以常见的双光感巡线为例,光感的感应中心是两个光感连线的中点,也就是黑线的中间位置。而小车的转向,是以其车轮连线的中心为圆心进行的。很明显,除非将光感放置于小车转向中心,否则机器人在巡线转弯的过程中,探测线路与做出反应之间将存在一定差距。而若将光感的探测中心与转向中心重合,将大幅提升搭建难度并降低车辆灵活性。因此,两个中心的不统一是实际存在的,车辆的转向带动光感的转动,同时又相互影响,造成机器人在巡线时对黑线的反应过快或者过慢,很多巡线失误由此产生。
所以在实际操作中,一般通过程序与结构的配合,在程序中加入一定的微调动作来弥补其中的误差。而精准的微调,需要根据比赛场地的实际情况进行反复调试。
三、车辆结构
巡线任务的核心是让机器人小车按照场地中画出的路线行进,因此,根据任务需要选择合适搭建方式是完成巡线任务的第一步。
1、前轮驱动
前轮驱动的小车一般由两个动力轮和一个万向轮构成,动力轮位于车头,通过左右轮胎反转或其中一个轮胎停转来实现转向,前者的转向中心位于两轮胎连线中点,后者转向中心位于停止不动的轮胎上。由于转向中心距离光感探测中心较近,可以实现快速转向,但由于机器人反应时间的限制,转向精度有限。
2、后轮驱动
后轮驱动的小车结构和转向中心与前轮驱动小车类似,由于转向中心靠后,相对于前轮驱动的小车而言,位于车尾的动力轮需要转动较大的幅度,才能使车头的光感转动同样角度。因此,后轮驱动的小车虽转向速度较慢,但精度高于前轮驱动小车。对于速度要求不高的比赛而言,一般采用后轮驱动的搭建方式。
3、菱形轮胎分布
菱形轮胎分布是指小车的两个动力轮位于小车中部,前后各有一个万向轮作为支撑。这样的结构在一定程度上可以视为前轮驱动和后轮驱动的结合产物,转向速度和精度都介于两者之间。这种结构的优势在于转向中心位于车身中部,转弯半径很小,甚至能以自身几何中心为圆心进行原地转向,适合适用于转90°弯或数格子行进等一些比较特殊的巡线线路。
这种结构最初应用于RCX机器人足球上,居中的动力源可以让参赛选手为机器人安装更多的固定和防护装置,以适应比赛中激烈的撞击,具有很好的稳定性。而对于NXT机器人而言,由于伺服电机的形状狭长不规律,将动力轮位于车身中部的做法将大幅提升搭建难度,并使车身重心偏高,降低转弯灵活性。
4、四轮驱动
四轮驱动的小车四个轮胎都有动力,能较好地满足一些比赛中爬坡任务的需要。小车的转向中心靠近小车的几何中心,因此能进行原地转弯运动,具有较好的灵活性,特别适用于转90°弯或数格子行进等任务一些比较特殊的巡线线路。虽然与后轮驱动小车相比,转向中心比较靠前,转向精度较小,但四轮驱动小车没有万向轮,转弯需要靠四个轮胎同时与地面摩擦,加大转弯的阻力,因而转弯精度应介于菱形轮胎分布的小车和后轮驱动小车之间。
四轮驱动的小车最大优势在于具有普遍适应性,熟练掌握此结构的参赛选手能在参加FLL工程挑战赛、WRO世界机器人奥林匹克等一些比较复杂的比赛中占据一定优势。
四、编程方案
1、单光感巡线
单光感巡线是巡线任务中最基础的方式,在行进过程中,光感在黑线与白色背景间来回晃动,因此,这种巡线只能用两侧电机交替运动的方式前进,行进路线呈“之”字形。这种巡线方式结构简单易于掌握,但由于只有一个光感,对无法在完成较为复杂的巡线任务(如遇黑线停车、识别线路交叉口等),且速度较慢。
基本思路:光感放置于黑线的左侧,判黑则左轮不动右轮前进,判白则右轮不动左轮前进,如此交替循环。参考程序如下图:
2、单光感巡线+独立光感数线
在很多比赛中,机器人需要做的不仅仅是沿着黑线行进,还需要完成一些其他任务,如在循迹路线上增加垂直黑线要求停车、放置障碍物要求躲避等内容。此时,单光感巡线已不能满足要求。下面以要求定点停车为例,简要介绍单光感巡线+独立光感数线的编程模式。
基本思路:在此任务中要求在垂直黑线处停车,则需要跳出单光感巡线的循环程序体系,可以通过设置循环程序的条件实现这一功能。由于程序的设定,负责巡线的3号光感在行进时始终位于黑线的左侧,不会移动到黑线右侧的白色区域,因此在黑线右侧设置一个光感(4号)专门负责监视行进过程中黑
线右侧的区域,当此光感判黑时,即可判断出小车行进到垂直黑线处,于是终止单光感巡线的循环程序,执行规定的停车任务,然后向前行进一小段距离驶过垂直黑线,继续单光感巡线任务。参考程序如下图:
上述程序只适用于停车一次的需要,在实际比赛中需以定点停车、蔽障任务为基点,将巡线赛道划分为若干个小段依次设定程序,或采用两重循环的程序,重复执行巡线→→定点停车任务:
3、双光感巡线
双光感巡线是机器人竞赛中最常见的巡线模式,两个光感分别位于黑线两侧,以夹住黑线的方式行进。根据两个光感读取的数值不同,可以将光感的探测结果分为左白右黑、左黑右白、双白和双黑四种情况,根据这四种探测结果,分别执行右转、左转、直行和停车四种动作的程序命令。由于这种方法能让两个电机同时工作,机器人运动的速度较快,同时采取两个光敏监测黑线,精度也有所提高。
基本思路:使用两重光感分支程序叠加,为四种探测结果设定与之对应的程序反应,形成循环程序结构,参考程序如下图:
Ⅳ 51智能小车寻迹路线,怎么编程让小车按原路返回
接循迹用的光电传感器,用单片机判断,驱动电机执行。传感器越多越好。
以比较奇葩的单路传感器为例,0驱动左轮,1驱动右轮,就可以沿黑线一侧摇摆前进。这么简单的判断都可以不用单片机,呵呵。
Ⅵ 如何让编程小车走曲线 .baidu.com
1. 可以使用传感器--红外对管,安装在小车的前方,通过检测的红外对管的信号判断小车应该走的方向(这种方法要在路面上贴上黑条);
2. a 将整个小车所要走的路面进行抽象化,抽冲哪象为一个二维度的坐标系,小车相当于一个质点,散拦码
b 小车要走的曲线在坐标系上拟衡基定坐标(x,y),
c 计算小车(x0,y0)与(x,y)的相对坐标,再求出角度ɑ(让小车朝着下一个坐标前进),
d 坐标点越多曲线越光滑,小车走起来就是曲线了。
Ⅶ 小车巡线关键是什么
小车巡线关键是寻迹小车,在不需要人为遥控的情况下,可以自己通过寻找不同于白色背景下的黑色线条前行,着素质教育的越来越被重视,很多学校都举消塌行了电子竞赛,不少喜欢电子电路的同学都把巡线小车作为电子竞赛项目参赛,所以学习巡线小车电路是非常有用的。
小车巡线是指由单片机控制的,可以修改程锋乱序的,在程序的控制下,能够自由移动,自动完成特定功能的小车,它可以集计算机技术,软件编程,自动控制,传感器技术,机械结构于一体,是学习信息技术,机器人的最佳载体。
小车巡线的原理是什银桥档么
巡线小车的巡线原理是利用光线传感器检测前方的地面颜色,然后做出调整,保持一直行驶在黑线上就像开车一样,是通过控制方向盘来调整保持车不偏离道路的。