Ⅰ CREO2.0编程 工艺参数
有两种方法,一种实体化切除,前提是曲面开放端必须与实体完全相交,但开放端不能超过实体表面,操作方法,选择曲面,菜单栏中的编辑-实体化-激活实体化操控板中的切除。
另一种是曲面加厚切除,这种方法,只要有曲面和实体相交,便可使用,操作方法,选择曲面,菜单栏中的编辑-加厚-输入厚度数值-激活操控板中的切除,注意方向的选择。
Ⅱ MASTERCAM曲面编程
学习Mastercam 心得。
学习masterCAM和学习其它的软件一样。。首先要有学习的恒心。。
1、每天给自己一个目标该学些什么内容。。
2、当你要学习的时候请把QQ和所有聊天工具关啦,用100%的专心去学习。
3、在论坛里下的资料要去用心去看去学。。切记整天泡论坛下资料而没有实质的学习行动。
4、学习任何一个软件都是一样首先我们要有必需的专业基础知识。如机械制图其是最为重要的一个基础学科之一。
5、学CAM部分还要有一定的切削知识和加工经验(包普通机床加工经验)。
6、学习理论知识和学习实操经验同等重要,一些最为基本的学习必不可少往往初学者只注重于实例教程的学习。从而忽略啦理论。。应二者相结合。。才能达到最理想的学习效果。
7、学习masterCAM的同时不利于同时学其它的软件,因为往往同时学几个软件而出现软件应用功能混乱的局面。学软件要用单个突破的方法。
8、Sample Text切记什么都想学。结果什么都学不精。。都知皮毛。。
用Mastercam的心得,功能、技巧
一、2D铣削
Mastercam编程的特色是快捷、方便。这一特色体现在2D刀路上尤为突出。
1、Mastercam的串联非常快捷,只要你抽出的曲线是连续的。若不连续,也非常容易检查出来哪里有断点。一个简单的方法是:用分析命令,将公差设为最少,为0.00005,然后去选择看似连续的曲线,通不过的地方就是有问题的。可用曲线融接的方法迅速搞定。
总之,在Mastercam中,只要先将加工零件的轮廓边现、台阶线、孔、槽位线等等,全部搞定,接下来的cam操作就很方便了。
2、由于Mastercam的2d串联方便快速,所以不论你一次性加工的工件含有多少轮廓线,总是很容易的全部选取下来。一个特大的好处是:串联的起始处便是进刀圆弧(通常要设定进刀弧)所在处。
3、流道或多曲线加工时,往往有许多的曲线要选取,由于不需要偏置刀半径,在Mastercam中,可以用框选法一次选取
二、3D曲面挖槽:
Mastercam的开粗
1、锣铜公或公模,最好不要在工件里面下刀。Mastercam可以方便的选取一个点作为每次的下刀点,当然这个点在工件外,但也不要偏离工件太远。Mastercam的这一功能设计得非常好,提刀少,效率高,且基本上可以保证下刀点在同一点,加工比较安全。
2、若用此方式锣型腔,或铜公的低洼处,螺旋下刀很重要,螺旋下刀角度尽可能少点。铜料3到5度适宜,钢料不要超过5度,我以为最好2度。加工起来比较平稳,没什么大的噪音。
3、一个重要的设定:if all entry attempts fail请选择skip。否则,铣到底部不能螺旋或斜线下刀时,就会直插下来。
4、一个绝招:曲面挖槽时,在螺旋下刀参数栏中,将“follow boundary”打上勾。这个功能也许用到的人不多。可作用却是大大的好。它可以令刀具下到工件的最深处,且环绕式下刀,而不是直插!
三、3D流道的加工:
注意是3D而不是2D;是坡度较大的3D而不是较平坦的3D。
1、在Mastercam中,如果是加工较平坦的3d面的流道,运用3d曲线加工的功能最好。但如果破度较大,或者像波浪形一样。便要用投影加工的方法,将3d流道的中心线投影到面上。然后分许多次负补正的往下加工到球刀刀半径的深度。
四、关于平行铣削:
Mastercam用平行铣削加工方式的使用率最高。缺点是:有一边陡峭的地方会铣得不好。
Mastercam中有一个绝好的走刀方式,是曲面精加工中的scallop。Mastercam中的此刀路非常好用,有人反映说计算费时。但如果误差设为一个丝,计算速度也不慢,加工出来的效果已经很好了。我比较过,公差一丝和半丝锣出来的东西看起来差不多。
五、关于清角:
Mastercam清角一定要用从外向内(即角落)的方式。这在Mastercam里是预设好的
六、关于刀具的调用:
在Mastercam里,建立一把刀具的同时就设定刀具的直径、r角、转数,进给率等参数一次性设定好。以后调用此刀时,就不需要每次都设定转数,进给率了。
七、平行铣削的深度设定:
1、Mastercam里,曲面加工也能定义铣削深度,这是一个绝好的功能!
2、有些情况下,可能不想让球刀铣那么深,或者计算出来发现铣到下面的平面了,只要稍微浅一点点就可以了,在Mastercam里,就可以通过调整cut depths而得到很好的控制,保证刀具不碰到底下的平面。
八、关于平刀补正的问题:
铣曲面时,Mastercam(据说x版本的可以,但我没试过)和UG都不能将平刀作负值补正。我觉得最好的办法是编程时,将刀的实际大小减去单边负补正量*2。有人说给刀加个r角就可以负补正。这真是没有好好去研究才这样说和做的。
加r角不是不可以,但要看情况,如果斜度不大的面,可以这样做,加个尽可能小的r角;但如果是斜度较大的面,如果还用此法,则实际加工出来的尺寸与预计的尺寸会小太多,r角设得越大,则误差越大。粗公小一点还无所谓,若是后模,只怕不太好。
九、关于转数问题:
用小的刀,当然转数要高。但也不是一定给得相当的高才行,直让机床呼啦啦转得喘不过气来一般。各位能想象得到不?我用普通的机床,用自己磨的0.1的刀,能加工长、宽不到2mm的钢印浮凸字模,转数才4000转!进给率也不低,十六个凸字模只用一个小时。快不?一般人大概以为要几万转、一定要雕刻机才行吧?搞cnc编程的,好多方法要自己去发现,不要因袭别人的、流传的方法,而变得畏手畏脚,不敢去开创新的方法。
十、后处理:
Mastercam的确是大众化的软件,所以它的使用覆盖面极为广。早些年,cnc编程业如日中天的时候,有几个人不是用Mastercam?Mastercam编程快捷,后处理出来的nc程式也十分安全,值得放心使用。我搞cnc编程用过三种不同的机床,从没有一种机床因为Mastercam的后处理而发生过任何问题。除了特种机型的加工中心,一般的电脑锣都能畅通无碍的读取Mastercam产生出来的nc程式!初学者一般不用为后处理而头痛。这一点非常令人称叹!
Ⅲ 数控编程的步骤,具体的步骤是怎样的
1、分析零件图 首先要分析零件的材料、形状、尺寸、精度、批量、毛坯形状和热处理要求等,以便确定该零件是否适合在数控机床上加工。
2、工艺处理 在分析零件图的基础上进行工艺分析,确定零件的加工方法。
3、数值计算 耕根据零件图的几何尺寸、确定的工艺路线及设定的坐标系,计算零件粗、精加工运动的轨迹,得到刀位数据。
4、编写加工程序单 根据加工路线、切削用量、刀具号码、刀具补偿量、机床辅助动作及刀具运动轨迹。
5、制作控制介质 把编制好的程序单上的内容记录在控制介质上,作为数控装置的输入信息。
6、程序校验与首件试切 编写的程序和制备好的控制介质,必须经过校验和试刀才能正式使用。
Ⅳ 数控论文 高分悬赏
第一节 数控编程基础
一、数控编程的概念
我们都知道,在普通机床上加工零件时,一般是由工艺人员按照设计图样事先制订好零件的加工工艺规程。在工艺规程中给出零件的加工路线、切削参数、机床的规格及刀具、卡具、量具等内容。操作人员按工艺规程的各个步骤手工操作机床,加工出图样给定的零件。也就是说零件的加工过程是由工人手工操作的。
数控机床却不一样,它是按照事先编制好的加工程序,自动地对被加工零件进行加工。我们把零件的加工工艺路线、工艺参数、刀具的运动轨迹、位移量、切削参数(主轴转数、进给量、吃刀量等)以及辅助功能(换刀、主轴正转、反转、切削液开、关等),按照数控机床规定的指令代码及程序格式编写成加工程序单,再把这一程序单中的内容记录在控制介质上(如穿孔纸带、磁带、磁盘、磁泡存储器),然后输入到数控机床的数控装置中,从而指挥机床加工零件。这种从零件图的分析到制成控制介质的全部过程叫数控程序的编制。
从以上分析可以看出,数控机床与普通机床加工零件的区别在于数控机床是按照程序自动进行零件加工,而普通机床要由人来操作,我们只要改变控制机床动作的程序就可以达到加工不同零件的目的。因此,数控机床特别适用于加工小批量且形状复杂精度要求高的零件。
由于数控机床要按照预先编制好的程序自动加工零件,因此,程序编制的好坏直接影响数控机床的正确使用和数控加工特点的发挥。这就要求编程员具有比较高的素质。编程员应通晓机械加工工艺以及机床、刀夹具、数控系统的性能,熟悉工厂的生产特点和生产习惯。在工作中,编程员不但要责任心强、细心,而且还能和操作人员配合默契,不断吸取别人的编程经验、积累编程经验和编程技巧,并逐步实现编程自动化,以提高编程效率。
数控编程的内容和步骤
数控编程的内容
数控编程的主要内容包括:分析零件图样,确定加工工艺过程;确定走刀轨迹,计算刀位数据;编写零件加工程序;制作控制介质;校对程序及首件试加工。
数控编程的步骤
数控编程的步骤一般如图2-1所示。
图2-1 数控编程过程
1、分析零件图样和工艺处理
这一步骤的内容包括:对零件图样进行分析以明确加工的内容及要求,选择加工方案、确定加工顺序、走刀路线、选择合适的数控机床、设计夹具、选择刀具、确定合理的切削用量等。工艺处理涉及的问题很多,编程人员需要注意以下几点:
工艺方案及工艺路线
应考虑数控机床使用的合理性及经济性,充分发挥数控机床的功能;尽量缩短加工路线,减少空行程时间和换刀次数,以提高生产率;尽量使数值计算方便,程序段少,以减少编程工作量;合理选取起刀点、切入点和切入方式,保证切入过程平稳,没有冲击;在连续铣削平面内外轮廓时,应安排好刀具的切入、切出路线。尽量沿轮廓曲线的延长线切入、切出,以免交接处出现刀痕,如图2-2所示。
a) b)
图2-2 刀具的切入切出路线
(a)铣曲线轮廓板 (b)铣直线轮廓
零件安装与夹具选择
尽量选择通用、组合夹具,一次安装中把零件的所有加工面都加工出来,零件的定位基准与设计基准重合,以减少定位误差;应特别注意要迅速完成工件的定位和夹紧过程,以减少辅助时间,必要时可以考虑采用专用夹具。
编程原点和编程坐标系
编程坐标系是指在数控编程时,在工件上确定的基准坐标系,其原点也是数控加工的对刀点。要求所选择的编程原点及编程坐标系应使程序编制简单;编程原点应尽量选择在零件的工艺基准或设计基准上,并在加工过程中便于检查的位置;引起的加工误差要小。
刀具和切削用量
应根据工件材料的性能,机床的加工能力,加工工序的类型,切削用量以及其他与加工有关的因素来选择刀具。对刀具总的要求是:安装调整方便,刚性好,精度高,使用寿命长等。
切削用量包括:主轴转速、进给速度、切削深度等。切削深度由机床、刀具、工件的刚度确定,在刚度允许的条件下,粗加工取较大切削深度,以减少走刀次数,提高生产率;精加工取较小切削深度,以获得表面质量。主轴转速由机床允许的切削速度及工件直径选取。进给速度则按零件加工精度、表面粗糙度要求选取,粗加工取较大值,精加工取较小值。最大进给速度受机床刚度及进给系统性能限制。
2、数学处理
在完成工艺处理的工作以后,下一步需根据零件的几何形状、尺寸、走刀路线及设定的坐标系,计算粗、精加工各运动轨迹,得到刀位数据。一般的数控系统均具有直线插补与圆弧插补功能。对于点定位的数控机床(如数控冲床)一般不需要计算;对于加工由圆弧与直线组成的较简单的零件轮廓加工,需要计算出零件轮廓线上各几何元素的起点、终点、圆弧的圆心坐标、两几何元素的交点或切点的坐标值;当零件图样所标尺寸的坐标系与所编程序的坐标系不一致时,需要进行相应的换算;若数控机床无刀补功能,则应计算刀心轨迹;对于形状比较复杂的非圆曲线(如渐开线、双曲线等)的加工,需要用小直线段或圆弧段逼近,按精度要求计算出其节点坐标值;自由曲线、曲面及组合曲面的数学处理更为复杂,需利用计算机进行辅助设计。
3、编写零件加工程序单
在加工顺序、工艺参数以及刀位数据确定后,就可按数控系统的指令代码和程序段格
式,逐段编写零件加工程序单。编程人员应对数控机床的性能、指令功能、代码书写格式等非常熟悉,才能编写出正确的零件加工程序。对于形状复杂(如空间自由曲线、曲面)、工序很长、计算烦琐的零件采用计算机辅助数控编程。
4、输入数控系统
程序编写好之后,可通过键盘直接将程序输入数控系统,比较老一些的数控机床需要制作控制介质(穿孔带),再将控制介质上的程序输入数控系统。
5、程序检验和首件试加工
程序送入数控机床后,还需经过试运行和试加工两步检验后,才能进行正式加工。通过试运行,检验程序语法是否有错,加工轨迹是否正确;通过试加工可以检验其加工工艺及有关切削参数指定得是否合理,加工精度能否满足零件图样要求,加工工效如何,以便进一步改进。
试运行方法对带有刀具轨迹动态模拟显示功能的数控机床,可进行数控模拟加工,检查刀具轨迹是否正确,如果程序存在语法或计算错误,运行中会自动显示编程出错报警,根据报警号内容,编程员可对相应出错程序段进行检查、修改。对无此功能的数控机床可进行空运转检验。
试加工一般采用逐段运行加工的方法进行,即每揿一次自动循环键,系统只执行一段程序,执行完一段停一下,通过一段一段的运行来检查机床的每次动作。不过,这里要提醒注意的是,当执行某些程序段,比如螺纹切削时,如果每一段螺纹切削程序中本身不带退刀功能时,螺纹刀尖在该段程序结束时会停在工件中,因此,应避免由此损坏刀具等。对于较复杂的零件,也先可采用石蜡、塑料或铝等易切削材料进行试切。
三、数控编程的方法
数控编程一般分为手工编程和自动编程。
1.手工编程(Manual Programming)
从零件图样分析、工艺处理、数值计算、编写程序单、程序输入至程序校验等各步骤均由人工完成,称为手工编程。对于加工形状简单的零件,计算比较简单,程序不多,采用手工编程较容易完成,而且经济、及时,因此在点定位加工及由直线与圆弧组成的轮廓加工中,手工编程仍广泛应用。但对于形状复杂的零件,特别是具有非圆曲线、列表曲线及曲面的零件,用手工编程就有一定的困难,出错的机率增大,有的甚至无法编出程序,必须采用自动编程的方法编制程序。
自动编程(Automatic Programming)
自动编程是利用计算机专用软件编制数控加工程序的过程。它包括数控语言编程和图形交互式编程。
数控语言编程,编程人员只需根据图样的要求,使用数控语言编写出零件加工源程序,送入计算机,由计算机自动地进行编译、数值计算、后置处理,编写出零件加工程序单,直至自动穿出数控加工纸带,或将加工程序通过直接通信的方式送入数控机床,指挥机床工作。
数控语言编程为解决多坐标数控机床加工曲面、曲线提供了有效方法。但这种编程方法直观性差,编程过程比较复杂不易掌握,并且不便于进行阶段性检查。随着计算机技术的发展,计算机图形处理功能已有了极大的增强,“图形交互式自动编程”也应运而生。
图形交互式自动编程是利用计算机辅助设计(CAD)软件的图形编程功能,将零件的几何图形绘制到计算机上,形成零件的图形文件,或者直接调用由CAD系统完成的产品设计文件中的零件图形文件,然后再直接调用计算机内相应的数控编程模块,进行刀具轨迹处理,由计算机自动对零件加工轨迹的每一个节点进行运算和数学处理,从而生成刀位文件。之后,再经相应的后置处理(postprocessing),自动生成数控加工程序,并同时在计算机上动态地显示其刀具的加工轨迹图形。
图形交互式自动编程极大地提高了数控编程效率,它使从设计到编程的信息流成为连续,可实现CAD/CAM集成,为实现计算机辅助设计(CAD)和计算机辅助制造(CAM)一体化建立了必要的桥梁作用。因此,它也习惯地被称为CAD/CAM自动编程。其详细内容见第四节。
四、程序的结构与格式
每种数控系统,根据系统本身的特点及编程的需要,都有一定的程序格式。对于不同的机床,其程序格式也不尽相同。因此,编程人员必须严格
Ⅳ 如何着手学习CNC数控编程如何入门如何精通
一、数控的英文CNC,中文翻译是计算机数字控制的意思,这里最关键的提到控制,控制什么呢?控制如何切削。切削什么呢?金属为主。
所以初学者要想学好cnc数控就要求三种技能:
1.金属切削
作为编程员,对于金属材料的了解还是很有必要的。最起码在编程过程中要知道铣刀对材料的特性、发热、过载、转速、每层下刀深度等,需要技能有:金属材料,铣刀材料和种类。
要知道这把刀切削这块金属材料应该给什么样的转速。每分种可以跑多少毫米,每层能加工多深。
2.控制部分 (编程部分)
这部分是纯软件问题,也是重点问题。如何切削,想好了,分析透了,就要软件去控制,产生想要的切削方式。选择好要加工的曲面或实体后有很多值依次设置好,如深度控制,从Z高加工到多高,每层加工多深,层与层之间如何提起刀具,加工范围控制等。
这部分就是软件,命令学完了,就可以了,这是固定的,想学的都可以学会。顺便提到,可惜中国这么大的市场。找不到完整这样分析的书。很多书只是告诉你这里输入多少,那里输入多少,下一步,下一步,OK。所以好多想学好cnc数控编程的人会买一些书来看,但是就是学不下去,更不用说要学会了。因为书上的东西都是好皮毛的,只能做一个简单的入门了解。这个时候建议去一些正规的数控培训机构。
3.加工工艺部分
所谓工艺,就是如何加工,怎么加工的问题,当熟悉了刀具对材料的切削能力,了解了软件能控制,接下来就是怎么样切削才好的问题。比如想切削(加工)一个模具(零件)的一个平面或者一个角落,怎么走刀才走的更光,会不会碰到底部的圆角,加工出来漂亮不漂亮,会不会有余量切削不到,等等。对这种分析要有具备实际加工经验的师傅以工作经验对个个形状的情况逐个分析。真正学好数控核心在第三步,工艺分析。工艺部分也是数控加工中的重点与难点部分。这部分是最能体现一个技术员的技术水平与经验的环节。也是工资待遇多少的一个秤杆。技术好的,经验丰富的,能解决生产问题的,工资待遇自然就高。在中国,特别在深圳,一个加工工艺技术好的编程技术员,工艺可以达到8000-15000这个阶段。
总之,初学者要想学好cnc数控编程,以上三点必不可少。其实,以上三点只是总的学习方向,其中所包含的东西太多了,涉及到技术的东西也太多了。与其痛苦地看书本,不如找个正规的培训机构系统地学习与提高一下。
Ⅵ mastercam2017高速曲面加工参数如何预设定
mastercam2017高速曲面加工参数按热成形公式计算,计算出的坯料内孔尺寸d需根量生产螺旋轴来设定。根据查询相关资料信息显示,在符合加工工艺要求的前提下,选取及优化MasterCAM的曲面加工参数,既满足加工精度,又提高加工效率。
Ⅶ 如何将绘制好的模具型腔让proe自动编程,要能在数控机床上加工的
Pro/ENGINEER 软件的使用技巧 建立适合自己的运行环境 在 Pro/ENGINEER 软件中通过建立合适的 config.pro 文件,可以建立标准的 Pro/ENGINEER 软件运行环境和非常个性化的运行环境,以提高使用效率,尤其是合理的使用 mapkey ,建立指令组合可减少选择菜单的时间。 如使零件上色( shade ),只要在 config.pro 文件中加入 mapkey $ F4#VIEW ; #VIEW ; #COSMETIC ; #SHADE ; #DISPLAY ; #DONE-RETURN ;按 F4 刍就能完成上色的指令,减少选菜单的时间,提高使用效率。从此类推可完成任意指令的组合。 注意: pro/E/text 目录下 config.pro 在启动 pro/E 自动调入,统管整个运行环境,工作目录下 config.pro 只对本目录。 建立标准零件库 利用 Pro/ENGINEER 软件的参数化功能或指令编程技术,建立本单位常用的标准零件库, 减少重复建模时间,提高设计效率。 注意精度( Accuracy )的设置 在模具设计时产生的种种问题可以通过提高精度(给一个较小的 Accuracy 数值)来解决。 在实体建模时有些有 Geom Check 的特征也可通过提高精度来解决。但精度越高, Regeneration 零件的时间会越长。 倒角的技巧 ⑴倒角应在拔模斜度完成后才进行,若先完成倒角,之后与倒角关联的曲面可能无法完成拔模具斜度的设计。 ⑵在进行某些实体倒角时,倒角面可在屏幕显示,但无法完成倒角,这时将 Attachment Type 的选项中选择 Make Surface 可产生倒角曲面,在将产生倒角曲面相合并( Merge ) , 用合并后产生的曲面切( Cut out )实体就可生成所需的实体。 注意 Geom Check 的提示,在造型阶段应尽量消除有 Geom Check 的特征,否则在模具设计和加工时可能会有问题。 合理使用曲面同实体的混合造型技术 有些造型是无法用单一实体特征完成的,可用曲面造型技术完成有关的造型,在用 Protrusion 中的 Use Quit 指令将曲面转换成实体,或用 Cut 中的 Use Quit 指令在实体中切出曲面的形状。 模具设计 ⑴使用拔模斜度检查( Info → Srf Analysis → Draft Check )功能可检查模具有无倒扣。 ⑵建立分型面时若要实用实体表面,应尽量 Copy → Suef&bnd ,一次完成所需的曲面,不 要用 → Indiv surfs 的方式拷贝曲面,再将曲面合并( Merge )成所需曲面的方式。 单位转换的技巧 在有些情况下将单位为英寸的文件转换成单位为毫米的文件时,用 Seu up → Units → Length 菜单下 Same Size 指令时不能完成转换,这时应选用 Same Dims 完成转换,再用 Set up → Shrinkage 指令用计算缩水的方法将零件放大 25.4 倍,完成英寸到毫米的转换。 零件的数控加工指令编程 ⑴建立加工刀具及加工参数库 建立本单位常用刀具及加工参数库在进行数控加工指令编程时直接从数据库中提取有 关的刀具及加工参数可大大缩短编程时间。 ⑵在曲面加工时尽量使用 Mill Molding 指令方便选择加工曲面,提高加工效率。 ⑶适当调整 Cut_angle 的数值,有时能消除过切现象。 ⑷设定加工参数时将 Circ_interpolation 中的可选项选为 Point _ only ,将加工数据用直接 方式输出,将园弧加工转化成直线加工,能消除数控加工园弧的错误。 ⑸合理使用材料移出 (Material removal) 指令,能给加工仿真提供更多的方便及提高速度。 快速生成电极三维图的方法 ⑴利用装配中 cut out 功能可非常快的产生型腔、型芯的整体电极图。 ⑵利用整体电极图形用 cut 的功能可产生局部电极图。 电极加工时火花位 ( 放电间隙 ) 的处理方法 ⑴用球形及倒角刀具加工,可直接在加工参数 ( Stock allow ) 中给定负余量。 ⑵使用直柄 ( Flat Endmill ) 时给定一个大于火花位置的倒角就可解决。
Ⅷ 数控编程代码
给你提供常用的G和M代码,希望对你有帮助
G00
快速定位
G01
直线插补
G02
顺圆插补
G03
逆圆插补
G04
定时延时
G22
程序循环开始
G80
程序循环结束
G26
X、Z轴返回参考点
G27
X轴返回参考点
G29
Z轴返回参考点
G32
Z轴攻牙循环
G33
螺纹切削
G74
端面深孔加工循环
G75
(内、外圆)切槽循环
G90
内、外圆柱面循环
G92
螺纹切削循环
G94
内、外圆端(锥)面切削循环
M00
暂停
M02
程序结束,回参考点
M03
主轴顺时针方向
M04
主轴逆时针方向
M05
主轴停止
M10
工件夹紧
M11
工件松开
M20
程序结束循环加工
M30
程序结束回参考点,关主轴,关冷却液
M8
冷却开
M9
冷却关
Ⅸ 四轴加工中心和三轴的有什么不同怎么编程
一、区别如下:
1、结构不同
三轴立式数控加工中心是三条不同方向直线运动的轴,分别是上下、左右和前后,上下的方向是主轴,可以高速旋转;四轴立式加工中心是在三轴的基础上增加了一个旋转轴,即水平面可以360度旋转,不可以高速旋转。
2、使用范围不同
三轴加工中心加工中心使用最为广泛,三轴加工中心能进行简单的平面加工,而且一次只能加工单面,三轴加工中心可以很好的加工、铝制、木质、消失模等材质。
四轴加工中心的使用较三轴加工中心少一些,它通过旋转可以使产品实现多面的加工,大大提高了加工效率,减少了装夹次数。尤其是圆柱类零件的加工多方便。并且可以减少工件的反复装夹,提高工件的整体加工精度,利于简化工艺,提高生产效率。缩短生产时间。
二、编程方法:
1、分析零件图样
根据零件图样,通过对零件的材料、形状、尺寸和精度、表面质量、毛坯情况和热处理等要求进行分析,明确加工内容和耍求,选择合适的数控机床。
此步骤内容包括:
1)确定该零件应安排在哪类或哪台机床上进行加工。
2)采用何种装夹具或何种装卡位方法。
3)确定采用何种刀具或采用多少把刀进行加工。
4)确定加工路线,即选择对刀点、程序起点(又称加工起点,加工起点常与对刀点重合)、走刀路线、程序终点(程序终点常与程序起点重合)。
5)确定切削深度和宽度、进给速度、主轴转速等切削参数。
2、确定工艺过程
在分析零件图样的基础上,确定零件的加工工艺(如确定定位方式、选用工装夹具等)和加工路线(如确定对刀点、走刀路线等),并确定切削用量。工艺处理涉及内容较多,主要有以下几点:
1)加工方法和工艺路线的确定 按照能充分发挥数控机床功能的原则,确定合理的加工方法和工艺路线。
2)刀具、夹具的设计和选择 数控加工刀具确定时要综合考虑加工方法、切削用量、工件材料等因素,满足调整方便、刚性好、精度高、耐用度好等要求。数控加工夹具设计和选用时,应能迅速完成工件的定位和夹紧过程,以减少辅助时间。
并尽量使用组合夹具,以缩短生产准备周期。此外,所用夹具应便于安装在机床上,便于协调工件和机床坐标系的尺寸关系。
3)对刀点的选择 对刀点是程序执行的起点,选择时应以简化程序编制、容易找正、在加工过程中便于检查、减小加工误差为原则。
对刀点可以设置在被加工工件上,也可以设置在夹具或机床上。为了提高零件的加工精度,对刀点应尽量设置在零件的设计基准或工艺基准上。
4)加工路线的确定 加工路线确定时要保证被加工零件的精度和表面粗糙度的要求;尽量缩短走刀路线,减少空走刀行程;有利于简化数值计算,减少程序段的数目和编程工作量。
5)切削用量的确定 切削用量包括切削深度、主轴转速及进给速度。切削用量的具体数值应根据数控机床使用说明书的规定、被加工工件材料、加工内容以及其它工艺要求,并结合经验数据综合考虑。
6)冷却液的确定 确定加工过程中是否需要提供冷却液、是否需要换刀、何时换刀。
由于数控加工中心上加工零件时.工序十分集中.在一次装夹下,往往需要完成粗加工、半精加工和精加工。在确定工艺过程时要周密合理地安排各工序的加工顺序,提高加工精度和生产效率。
3、数值计算
数值计算就是根据零件的几何尺寸和确定的加工路线,计算数控加工所需的输入数据。一般数控系统都具有直线插补、圆弧插补和刀具补偿功能。对形状简单的零件(如直线和圆弧组成的零件)的轮廓加工,计算几何元素的起点、终点,圆弧的圆心、两元素的交点或切点的坐标值等。
对形状复杂的零件(如非圆曲线、曲面组成的零件),用直线段或圆弧段通近,由精度要求计算出节点坐标值。这种情况需要借助计算机,使用相关软件进行计算。
4、编写加工程序
在完成工艺处理和数学处理工作后,应根据所使用机床的数控系统的指令、程序段格式、工艺过程、数值计算结果以及辅助操作要求,按照数控系统规定的程序指令及格式要求,逐段编写零件加工程序。
编程前,编程人员要了解数控机床的性能、功能以及程序指令,才能编写出正确的数控加工程序。
5、程序输入
把编写好的程序,输入到数控系统中,常用的方法有以下两种:
1)在数控铣床操作面板上进行手工输入;
2)利用DNC(数据传输)功能,先把程序录入计算机,再由专用的CNC传输软件.把加工程序输入数控系统.然后再调出执行.或边传输边加工。
6、程序校验
编制好的程序,必须进行程序运行检查。加工程序一般应经过校验和试切削才能用于正式加工。可以采用空走刀、空运转画图等方式以检查机床运动轨迹与动作的正确性。
在具有图形显示功能和动态模拟功能的数控机床上或CAD/CAM软件中,用图形模拟刀具切削工件的方法进行检验更为方便。但这些方法只能检验出运动轨迹是否正确,不能检查被加工零件的加工精度。