❶ 64位的linux系統下,進程的地址空間是多大(32位是4g,1g內核,3g用戶)
64位的linux採用4級頁表,支持的最大物理內存為64T。
對於虛擬地址空間的劃分,將0x0000,0000,0000,0000 –回 0x0000,7fff,ffff,f000這128T地址用於用戶答空間;而0xffff,8000,0000,0000以上的128T為系統空間地址。
具體的不是一兩句能說清楚了。
❷ 64位的linux上單個進程可以使用的最大內存數量是多少
對於64位Linux允許多達128個TB單個進程的虛擬地址空間,並且能夠解決大約64 TB的物理存儲器,但版是受處理器和系權統的限制。原話:64-bit Linux allows up to 128 TB of virtual address space for indivial processes, and can address approximately 64 TB of physical memory, subject to processor and system limitations.只要你的機器有足夠的內存統統可以給你放倒。連銀河曙光都能放下你的機器肯定不在話下:)而理論值更高,一個64位的微處理器可定址存儲器16 EB(1TB=1024GB,1PB=1024TB,1EB=1024PB自己換算)。順便說一下64位的windows企業伺服器最大2TB內存。
❸ Linux關於地址空間和MMAP映射有何特點
Linux採用
虛擬
內存技術,系統中的所有進程之間以虛擬方式共享內存。對每個進程來說,它們好像都可以訪問整個系統的所有物理內存。更重要的是,即使單獨一個進程,它擁有的地址空間也可以遠遠大於系統物理內存。
進程地址空間由每個進程中的線性地址區組成,每個進程都有一個32位或64位的平坦(flat)空間,空間的具體大小取決於體系結構。「平坦」指地址空間范圍是一個獨立的連續區間。通常情況下,每個進程都有唯一的這種平坦空間,而且每個進程的地址空間之間彼此互不相干。兩個不同的進程可以在它們各自地址空間的相同地址內存存放不同的數據。但是進程之間也可以選擇共享地址空間,我們稱這樣的進程為線程。
在地址空間中,我們更為關心的是進程有權訪問的虛擬內存地址區間,比如08048000~0804c000。這些可被訪問的合法地址區間被成為內存區域(memory area),通過內核,進程可以給自己的地址空間動態地添加或減少內存區域。
進程只能訪問有效范圍內的內存地址。每個內存區域也具有相應進程必須遵循的特定訪問屬性,如只讀、只寫、可執行等屬性。如果一個進程訪問了不在有效范圍中的地址,或以不正確的方式訪問有效地址,那麼內核就會終止該進程,並返回「段錯誤」信息。
?
內存區域可以包含各種內存對象,如下:
?
可執行文件代碼的內存映射,成為代碼段(text section)。
?
可執行文件的已初始化全局變數的內存映射,成為數據段(data section)。
?
包含未初始化全局變數的零頁(也就是bss段)的內存映射。零頁是指頁面中的數據全部為0。
?
用於進程用戶空間棧的零頁的內存映射。
?
每一個諸如C庫或動態鏈接程序等共享庫的代碼段、數據段和bss也會被載入進程的地址空間。
?
任何內存映射文件。
?
任何共享內存段。
?
任何匿名的內存映射,比如由malloc()分配的內存。
進程地址空間的任何有效地址都只能位於唯一的區域,這些內存區域不能相互覆蓋。可以看到,在執行的進程中,每個不同的內存片斷都對應一個獨立的內存區域:棧、對象代碼、全局變數、被映射的文件等等。
內核使用內存描述符表示進程的地址空間。內存描述符由mm_struct結構體表示,定義在文件中,該結構包含了和進程地址空間有關的全部信息。
VMA
內存區域由vm_area_struct結構體描述,定義在文件中,內存區域在內核中也經常被稱作虛擬內存區域或者VMA。
VMA標志是一種位標志,它定義在vm_area_struct結構中(該結構中的vm_flags子域)。和物理頁的訪問許可權不同,VMA標志反映了內核處理頁面索需要遵守的行為准則,而不是硬體要求。VM_IO標志內存區域中包含對設備I/O空間的映射。該標志通常在設備驅動程序執行 mmap()函數進行I/O空間映射時才被設置,同時該標志也表示該內存區域不能被包含在任何進程的存放轉存(core mp)中。VM_RESERVED標志內存區域不能被換出,它也是在設備驅動程序進行映射時被設置。
vm_area_struct結構體中的vm_ops域指向與指定內存區域相關的操作函數表,內核使用表中的方法操作VMA。
mmap()和do_mmap():創建地址區間
內核使用do_mmap()函數創建一個新的線性地址區間。但是說給函數創建一個新VMA並不非常准確,因為如果創建的地址區間和一個已經存在的地址區間相鄰,並且它們具有相同的訪問許可權的話,那麼兩個區間將合並為一個。如果不能合並,那麼就確實需要創建一個新的VMA了。但無論哪種情況,do_mmap()函數都會將一個地址區間加入到進程的地址空間中——無論是擴展已經存在的內存區域還是創建一個新的區域。
do_mmap()函數聲明在文件中,原型如下:
unsigned long do_mmap(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flag, unsigned long offset)
在用戶空間可以通過mmap()函數調用獲取內核函數do_mmap()的功能。mmap()系統調用原型如下:
void *mmap2(void *start, size_t length,
int prot, int flags,
int fd, off_t pgoff)
do_munmap()函數從特定的進程地址空間中刪除指定地址區間,該函數在文件中聲明:
int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
系統調用munmap()給用戶空間程序提供了一種從自身地址空間中刪除指定地址區間的方法,它和系統調用mmap()的作用相反:
int munmap(void *start, size_t length)
mmap設備操作
對於驅動程序來說,內存映射可以提供給用戶程序直接訪問設備內存的能力。映射一個設備,意味著使用戶空間的一段地址關聯到設備內存上。無論何時,只要程序在分配的地址范圍內進行讀取或者寫入,實際上就是對設備的訪問。
並不是所有的設備都能進行mmap抽象。例如,串口設備和其他面向流的設備就無法實現這種抽象。mmap的另一個限制是映射都是以 PAGE_SIZE為單位的。內核只能在頁表一級處理虛擬地址;因此,被映射的區域必須是PAGE_SIZE的整數倍,而且必須位於起始於 PAGE_SIZE整數倍地址的物理內存內。如果區域的大小不是頁大小的整數倍,內核就通過生成一個稍微大一些的區域來容納它。
mmap方法是file_operations結構中的一員,並且在執行mmap系統調用時就會調用該方法。在調用實際方法之前,內核會完成很多工作,而且該方法的原型與系統調用的原型由很大區別。關於Linux命令的介紹,看看《linux就該這么學》,具體關於這一章地址3w(dot)linuxprobe/chapter-02(dot)html
文件操作聲明如下:
int (*mmap) (struct file * filp, struct vm_area_struct *vma);
其中vma參數包含了用於訪問設備的虛擬地址區間的信息。大部分工作已經由內核完成了,要實現mmap,驅動程序只要為這一地址范圍構造合適的頁表即可,如果需要的話,就用一個新的操作集替換vma->vm_ops。
有兩種建立頁表的方法:使用remap_page_range函數可一次建立所有的頁表,或者通過nopage VMA方法每次建立一個頁表。
構造用於映射一段物理地址的新頁表的工作是由remap_page_range完
❹ Linux進程虛擬地址空間的分布,以及堆和棧的區別
一、具體分布如圖所示:
二、關於堆和棧
(1)分配方式:
棧:由編譯器自動分配釋放,存放函數的參數回值,局部變數的值等。其操作方式類似於數據結構中的棧。
堆: 一般由程序員分配釋放,它的分配方式類似於鏈表。
(2)申請後系統的響應:
棧:只要所申請的空間小於棧的剩餘空間,則系統為程序分配內存,否則棧溢出。
堆:操作系統有一個記錄空閑內存地址的鏈表,當系統收到程序的申請時,遍歷該鏈表,找出第一個大於所申請空間的節點,然後將其從鏈表中刪除並分配,如果沒用完,則系統會把多餘的重新放回到鏈表中。
(3)申請大小的限制:
棧:棧答是高地址向低地址擴展的連續內存,棧的大小一般是2M;
堆:堆是低地址向高地址擴展的不連續內存,堆的大小與計算機有效的虛擬內存有關系。
(4)申請效率:
棧:由系統自動分配,速度較快;
堆:速度慢,容易產生內存碎片;
關於Linux命令的介紹,看看《linux就該這么學》,具體關於這一章地址3w(dot)linuxprobe/chapter-02(dot)html.
❺ linux 64位系統每個進程擁有多大的虛擬內存
1、每個進程都有獨立的虛擬地址空間,進程訪問的虛擬地址並不是真正的物理地址;
2、虛擬地址可通過每個進程上的頁表(在每個進程的內核虛擬地址空間)與物理地址進行映射,獲得真正物理地址;
3、如果虛擬地址對應物理地址不在物理內存中,則產生缺頁中斷,真正分配物理地址,同時更新進程的頁表;如果此時物理內存已耗盡,則根據內存替換演算法淘汰部分頁面至物理磁碟中。
❻ 求教64位Linux的內核和用戶地址空間
我們都知道,32位的Linux中,0x00000000-0xBFFFFFFFFF 這3GB是分配給用戶空間的
0xC00000000-0xFFFFFFFFFF 這1GB是分配給內核空間的。對於64位的Linux,用戶空間和內核空間的分界線在:0xffffffff80000000。前面的(小的)是用戶空間,後面(大的)的是內核空間。
❼ Linux進程內存管理
對於包含MMU的處理器而言,Linux系統提供了復雜的存儲管理系統,使得進程所能訪問的內存達到4GB。在Linux系統中,進程的4GB內存空間被分為兩個部分——用戶空間與內核空間。用戶空間的地址一般分布為0~3GB(即PAGE_OFFSET,在Ox86中它等於OxC0000000),這樣,剩下的3~4GB為內核空間,用戶進程通常只能訪問用戶空間的虛擬地址,不能訪問內核空間的虛擬地址。用戶進程只有通過系統調用(代表用戶進程在內核態執行)等方式才可以訪問到內核空間。
每個進程的用戶空間都是完全獨立、互不相乾的,用戶進程各自有不同的頁表。而內核空間是由內核負責映射,它並不會跟著進程改變,是固定的。內核空間的虛擬地址到物理地址映射是被所有進程共享的,內核的虛擬空間獨立於其他程序。
Linux中1GB的內核地址空間又被劃分為物理內存映射區、虛擬內存分配區、高端頁面映射區、專用頁面映射區和系統保留映射區這幾個區域。
對於x86系統而言,一般情況下,物理內存映射區最大長度為896MB,系統的物理內存被順序映射在內核空間的這個區域中。當系統物理內存大於896MB時,超過物理內存映射區的那部分內存稱為高端內存(而未超過物理內存映射區的內存通常被稱為常規內存),內核在存取高端內存時必須將它們映射到高端頁面映射區。Linux保留內核空間最頂部FIXADDR_TOP~4GB的區域作為保留區。
當系統物理內存超過4GB時,必須使用CPU的擴展分頁(PAE)模式所提供的64位頁目錄項才能存取到4GB以上的物理內存,這需要CPU的支持。加入了PAE功能的Intel Pentium Pro及以後的CPU允許內存最大可配置到64GB,它們具備36位物理地址空間定址能力。
由此可見,對於32位的x86而言,在3~4GB之間的內核空間中,從低地址到高地址依次為:物理內存映射區→隔離帶→vmalloc虛擬內存分配器區→隔離帶→高端內存映射區→專用頁面映射區→保留區。
❽ LINUX允許每個進程有多大的線性地址空間
用戶空間佔用從0x00000000到0xBFFFFFFF共3GB的線性地址空間,每個進程都有一個獨立的3GB用戶空間,所以用戶空間由每個進程獨有,但是內核線程沒有用戶空間,因為它不產生用戶空間地址。另外子進程共享(繼承)父進程的用戶空間只是使用與父進程相同的用戶線性地址到物理內存地址的映射關系,而不是共享父進程用戶空間。運行在用戶態和內核態的進程都可以訪問用戶空間。
❾ linux0.11內核中每個進程的線性地址空間為什麼是64m
應該是每當新建一個進程後,在線性地址空間中代碼段和數據段的大小被設置成了64MB(嗯,記得是這樣,好久沒看了,記不太清)