1. RockPI 4A linux內核下載與編譯
本文介紹RockPI 4A單板Debian系統Linux內核的下載和編譯方法,為後續介紹RockPI 4A單板Linux內核調試進行拋磚引玉。
一笑神腔、代碼下載
Rockpi 4A Debian版本SDK代碼下載方法:
代碼下載完成後,顯示如下瞎冊:
kernel 目錄下保存Linux內核代碼。
build 目錄下保存配置和編譯腳本。
如果RockPI 4A代碼下載失敗,提示如下:
解決方法:將下載鏈接中 https 替換成 git 。
二、內核編譯
使用代碼里的編譯腳本,編譯腳本名稱: mk-kernel.sh ,位置如下:
註:在腳本 mk-kernel.sh 中有一段代碼: source $LOCALPATH/build/board_configs.sh $BOARD ,使用腳本編譯時,必須在 build 文件夾同一級目錄。
RockPI 4A Linux內核編譯方法碰衫如下(使用...省略部分編譯輸出):
其中: rockpi4a 對應RockPI 4A單板,如果使用其它單板,需要設置不同內容。單板類型可參考 build/board_configs.sh 腳本中 case ${BOARD} in 的選項。例:
編譯出來的映像路徑:
2. 如何編譯linux內核
內核,是一個操作系統的核心。它負責管理系統的進程、內存、設備驅動程序、文件和網路系統,決定著系統的性能和穩定性。Linux作為一個自由軟體,在廣
大愛好者的支持下,內核版本不斷更新。新的內核修訂了舊內核的bug,並增加了許多新的特性。如果用戶想要使用這些新特性,或想根據自己的系統度身定製一
個更高效,更穩定的內核,就需要重新編譯內核。本文將以RedHat Linux 6.0(kernel
2.2.5)為操作系統平台,介紹在Linux上進行內核編譯的方法。
一、 下載新內核的源代碼
目前,在
Internet上提供Linux源代碼的站點有很多,讀者可以選擇一個速度較快的站點下載。筆者是從站點www.kernelnotes.org上下載
了Linux的最新開發版內核2.3.14的源代碼,全部代碼被壓縮到一個名叫Linux-2.3.14.tar.gz的文件中。
二、 釋放內核源代碼
由於源代碼放在一個壓縮文件中,因此在配置內核之前,要先將源代碼釋放到指定的目錄下。首先以root帳號登錄,然後進入/usr/src子目錄。如果
用戶在安裝Linux時,安裝了內核的源代碼,則會發現一個linux-2.2.5的子目錄。該目錄下存放著內核2.2.5的源代碼。此外,還會發現一個
指向該目錄的鏈接linux。刪除該連接,然後將新內核的源文件拷貝到/usr/src目錄中。
(一)、用tar命令釋放內核源代碼
# cd /usr/src
# tar zxvf Linux-2.3.14.tar.gz
文件釋放成功後,在/usr/src目錄下會生成一個linux子目錄。其中包含了內核2.3.14的全部源代碼。
(二)、將/usr/include/asm、/usr/inlude/linux、/usr/include/scsi鏈接到/usr/src/linux/include目錄下的對應目錄中。
# cd /usr/include
# rm -Rf asm linux
# ln -s /usr/src/linux/include/asm-i386 asm
# ln -s /usr/src/linux/include/linux linux
# ln -s /usr/src/linux/include/scsi scsi
(三)、刪除源代碼目錄中殘留的.o文件和其它從屬文件。
# cd /usr/src/linux
# make mrproper
三、 配置內核
(一)、啟動內核配置程序。
# cd /usr/src/linux
# make config
除了上面的命令,用戶還可以使用make menuconfig命令啟動一個菜單模式的配置界面。如果用戶安裝了X window系統,還可以執行make xconfig命令啟動X window下的內核配置程序。
(二)、配置內核
Linux的內核配置程序提供了一系列配置選項。對於每一個配置選項,用戶可以回答"y"、"m"或"n"。其中"y"表示將相應特性的支持或設備驅動
程序編譯進內核;"m"表示將相應特性的支持或設備驅動程序編譯成可載入模塊,在需要時,可由系統或用戶自行加入到內核中去;"n"表示內核不提供相應特
性或驅動程序的支持。由於內核的配置選項非常多,本文只介紹一些比較重要的選項。
1、Code maturity level options(代碼成熟度選項)
Prompt for development and/or incomplete code/drivers
(CONFIG_EXPERIMENTAL) [N/y/?]
如果用戶想要使用還處於測試階段的代碼或驅動,可以選擇「y」。如果想編譯出一個穩定的內核,則要選擇「n」。
1、 Processor type and features(處理器類型和特色)
(1)、Processor family (386, 486/Cx486, 586/K5/5x86/6x86, Pentium/K6/TSC, PPro/6x86MX) [PPro/6x86MX] 選擇處理器類型,預設為Ppro/6x86MX。
(2)、Maximum Physical Memory (1GB, 2GB) [1GB] 內核支持的最大內存數,預設為1G。
(3)、Math emulation (CONFIG_MATH_EMULATION) [N/y/?] 協處理器模擬,預設為不模擬。
(4)、MTRR (Memory Type Range Register) support (CONFIG_MTRR) [N/y/?]
選擇該選項,系統將生成/proc/mtrr文件對MTRR進行管理,供X server使用。
(5)、Symmetric multi-processing support (CONFIG_SMP) [Y/n/?] 選擇「y」,內核將支持對稱多處理器。
2、 Loadable mole support(可載入模塊支持)
(1)、Enable loadable mole support (CONFIG_MODULES) [Y/n/?] 選擇「y」,內核將支持載入模塊。
(2)、Kernel mole loader (CONFIG_KMOD) [N/y/?] 選擇「y」,內核將自動載入那些可載入模塊,否則需要用戶手工載入。
3、 General setup(一般設置)
(1)、Networking support (CONFIG_NET) [Y/n/?] 該選項設置是否在內核中提供網路支持。
(2)、PCI support (CONFIG_PCI) [Y/n/?] 該選項設置是否在內核中提供PCI支持。
(3)、PCI access mode (BIOS, Direct, Any) [Any]
該選項設置Linux探測PCI設備的方式。選擇「BIOS」,Linux將使用BIOS;選擇「Direct」,Linux將不通過BIOS;選擇
「Any」,Linux將直接探測PCI設備,如果失敗,再使用BIOS。
(4)Parallel port support (CONFIG_PARPORT) [N/y/m/?] 選擇「y」,內核將支持平行口。
4、 Plug and Play configuration(即插即用設備支持)
(1)、Plug and Play support (CONFIG_PNP) [Y/m/n/?] 選擇「y」,內核將自動配置即插即用設備。
(2)、ISA Plug and Play support (CONFIG_ISAPNP) [Y/m/n/?] 選擇「y」,內核將自動配置基於ISA匯流排的即插即用設備。
5、 Block devices(塊設備)
(1)、Normal PC floppy disk support (CONFIG_BLK_DEV_FD) [Y/m/n/?] 選擇「y」,內核將提供對軟盤的支持。
(2)、Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support (CONFIG_BLK_DEV_IDE) [Y/m/n/?] 選擇「y」,內核將提供對增強IDE硬碟、CDROM和磁帶機的支持。
6、 Networking options(網路選項)
(1)、Packet socket (CONFIG_PACKET) [Y/m/n/?] 選擇「y」,一些應用程序將使用Packet協議直接同網路設備通訊,而不通過內核中的其它中介協議。
(2)、Network firewalls (CONFIG_FIREWALL) [N/y/?] 選擇「y」,內核將支持防火牆。
(3)、TCP/IP networking (CONFIG_INET) [Y/n/?] 選擇「y」,內核將支持TCP/IP協議。
(4)The IPX protocol (CONFIG_IPX) [N/y/m/?] 選擇「y」,內核將支持IPX協議。
(5)、Appletalk DDP (CONFIG_ATALK) [N/y/m/?] 選擇「y」,內核將支持Appletalk DDP協議。
8、SCSI support(SCSI支持)
如果用戶要使用SCSI設備,可配置相應選項。
9、Network device support(網路設備支持)
Network device support (CONFIG_NETDEVICES) [Y/n/?] 選擇「y」,內核將提供對網路驅動程序的支持。
10、Ethernet (10 or 100Mbit)(10M或100M乙太網)
在該項設置中,系統提供了許多網卡驅動程序,用戶只要選擇自己的網卡驅動就可以了。此外,用戶還可以根據需要,在內核中加入對FDDI、PPP、SLIP和無線LAN(Wireless LAN)的支持。
11、Character devices(字元設備)
(1)、Virtual terminal (CONFIG_VT) [Y/n/?] 選擇「y」,內核將支持虛擬終端。
(2)、Support for console on virtual terminal (CONFIG_VT_CONSOLE) [Y/n/?]
選擇「y」,內核可將一個虛擬終端用作系統控制台。
(3)、Standard/generic (mb) serial support (CONFIG_SERIAL) [Y/m/n/?]
選擇「y」,內核將支持串列口。
(4)、Support for console on serial port (CONFIG_SERIAL_CONSOLE) [N/y/?]
選擇「y」,內核可將一個串列口用作系統控制台。
12、Mice(滑鼠)
PS/2 mouse (aka "auxiliary device") support (CONFIG_PSMOUSE) [Y/n/?] 如果用戶使用的是PS/2滑鼠,則該選項應該選擇「y」。
13、Filesystems(文件系統)
(1)、Quota support (CONFIG_QUOTA) [N/y/?] 選擇「y」,內核將支持磁碟限額。
(2)、Kernel automounter support (CONFIG_AUTOFS_FS) [Y/m/n/?] 選擇「y」,內核將提供對automounter的支持,使系統在啟動時自動 mount遠程文件系統。
(3)、DOS FAT fs support (CONFIG_FAT_FS) [N/y/m/?] 選擇「y」,內核將支持DOS FAT文件系統。
(4)、ISO 9660 CDROM filesystem support (CONFIG_ISO9660_FS) [Y/m/n/?]
選擇「y」,內核將支持ISO 9660 CDROM文件系統。
(5)、NTFS filesystem support (read only) (CONFIG_NTFS_FS) [N/y/m/?]
選擇「y」,用戶就可以以只讀方式訪問NTFS文件系統。
(6)、/proc filesystem support (CONFIG_PROC_FS) [Y/n/?] /proc是存放Linux系統運行狀態的虛擬文件系統,該項必須選擇「y」。
(7)、Second extended fs support (CONFIG_EXT2_FS) [Y/m/n/?] EXT2是Linux的標准文件系統,該項也必須選擇「y」。
14、Network File Systems(網路文件系統)
(1)、NFS filesystem support (CONFIG_NFS_FS) [Y/m/n/?] 選擇「y」,內核將支持NFS文件系統。
(2)、SMB filesystem support (to mount WfW shares etc.) (CONFIG_SMB_FS)
選擇「y」,內核將支持SMB文件系統。
(3)、NCP filesystem support (to mount NetWare volumes) (CONFIG_NCP_FS)
選擇「y」,內核將支持NCP文件系統。
15、Partition Types(分區類型)
該選項支持一些不太常用的分區類型,用戶如果需要,在相應的選項上選擇「y」即可。
16、Console drivers(控制台驅動)
VGA text console (CONFIG_VGA_CONSOLE) [Y/n/?] 選擇「y」,用戶就可以在標準的VGA顯示方式下使用Linux了。
17、Sound(聲音)
Sound card support (CONFIG_SOUND) [N/y/m/?] 選擇「y」,內核就可提供對音效卡的支持。
18、Kernel hacking(內核監視)
Magic SysRq key (CONFIG_MAGIC_SYSRQ) [N/y/?] 選擇「y」,用戶就可以對系統進行部分控制。一般情況下選擇「n」。
四、 編譯內核
(一)、建立編譯時所需的從屬文件
# cd /usr/src/linux
# make dep
(二)、清除內核編譯的目標文件
# make clean
(三)、編譯內核
# make zImage
內核編譯成功後,會在/usr/src/linux/arch/i386/boot目錄中生成一個新內核的映像文件zImage。如果編譯的內核很大的
話,系統會提示你使用make bzImage命令來編譯。這時,編譯程序就會生成一個名叫bzImage的內核映像文件。
(四)、編譯可載入模塊
如果用戶在配置內核時設置了可載入模塊,則需要對這些模塊進行編譯,以便將來使用insmod命令進行載入。
# make moles
# make modelus_install
編譯成功後,系統會在/lib/moles目錄下生成一個2.3.14子目錄,裡面存放著新內核的所有可載入模塊。
五、 啟動新內核
(一)、將新內核和System.map文件拷貝到/boot目錄下
# cp /usr/src/linux/arch/i386/boot/bzImage /boot/vmlinuz-2.3.14
# cp /usr/src/linux/System.map /boot/System.map-2.3.14
# cd /boot
# rm -f System.map
# ln -s System.map-2.3.14 System.map
(二)、配置/etc/lilo.conf文件。在該文件中加入下面幾行:
default=linux-2.3.14
image=/boot/vmlinuz-2.3.14
label=linux-2.3.14
root=/dev/hda1
read-only
(三)、使新配置生效
# /sbin/lilo
(四)、重新啟動系統
# /sbin/reboot
新內核如果不能正常啟動,用戶可以在LILO:提示符下啟動舊內核。然後查出故障原因,重新編譯新內核即可。
了解更多開源相關,去LUPA社區看看吧。
3. 如何編譯Linux內核
1、大概步驟:
1、安裝開發包組
2、下載源碼文件
3、.config:准備文本配置文件
4、make menuconfig:配置內核選項
5、make [-j #]
6、make moles_install:安裝模塊
7、make install :安裝內核相關文件
安裝bzImage為/源謹敗boot/vmlinuz-VERSION-RELEASE (去boot目錄下查看)
生成initramfs文件
8、編輯grub的配置文件
2、編譯配置晌或選項
配置內核選項
支持「更新」模式進行配置: make help
(a) make config:基於命令行以遍歷的方式去配置內核中可配置的每個選項
(b) make menuconfig:基於curses的文本窗口界雹顫面
(c) make gconfig:基於GTK (GNOME)環境窗口界面
(d) make xconfig:基於QT(KDE)環境的窗口界面
支持「全新配置」模式進行配置
(a) make defconfig:基於內核為目標平台提供的「默認」配置進行配置
(b) make allyesconfig: 所有選項均回答為「yes「
(c) make allnoconfig: 所有選項均回答為"no「
3、編譯
全編譯:make [-j #]
編譯內核的一部分功能:
a) 只編譯某子目錄中的相關代碼:
# cd /usr/src/linux
# make dir/
(b) 只編譯一個特定的模塊:
# cd /usr/src/linux
# make dir/file.ko
例如:只為e1000編譯驅動:
#make drivers/net/ethernet/intel/e1000/e1000.ko
4、編譯內核
如何交叉編譯內核:
編譯的目標平台與當前平台不相同;
# make ARCH=arch_name
要獲取特定目標平台的使用幫助
# make ARCH=arch_name help
# make ARCH=arm help
5、清理刪除
在已經執行過編譯操作的內核源碼樹做重新編譯:
需要事先清理操作:
# make clean:清理大多數編譯生成的文件,但會保留config文件等
# make mrproper: 清理所有編譯生成的文件、 config及某些備份文件
# make distclean: mrproper、 patches以及編輯器備份文件
卸載內核
刪除/lib/moles/目錄下不需要的內核庫文件
刪除/usr/src/linux/目錄下不需要的內核源碼
刪除/boot目錄下啟動的內核和內核映像文件
更改grub的配置文件,刪除不需要的內核啟動列表
需要解決更多linux問題,詳情請看 http://www.linuxprobe.com/chapter-00.html
望採納
4. 如何重新編譯linux內核
因為一般電腦安裝的系統都是Windows,而整個編譯過程都需要在Linux環境下實現,所以最好是在虛擬機里安裝Linux系統來完成這一過程。我使用的虛擬機是VMware-workstation-full-v7.1.4。
然後,我們需要下載一個較高版本的Linux系統的鏡像文件,安裝在虛擬機上,作為編譯環境。我使用的是ubuntu-11.04-desktop-i386。之所以選擇較高版本,是因為它的界面比較方便用戶操作。
然後下載一個Linux內核源代碼文件,將它保存到虛擬機上新安裝的系統中去。並解壓到/usr/src目錄。我使用的是linux-2.6.36,下載低版本的原因是,小巧輕便,易於編譯。
解壓命令如下:
bzip2 -d linux-2.6.36.tar.bz2
tar -xvf linux-2.6.36.ta
修改/usr/src/linux-2.6.36/kernel/sys.c文件,在文件末尾增加一個系統調用函數。自行編寫一個簡單的程序即可,只為測試用。
修改/usr/src/linux-2.6.36/arch/x86/kernel/syscall_table_32.S,為新添加的程序配置系統調用號。
在/usr/src/linux-2.6.36/arch/x86/include/asm/unistd_32.h中配置系統調用表。
下面就是最重要的內核編譯與安裝:
首先配置編譯信息,使其生成適合當前機器的Makefile,輸入make oldconf ig。
接著還要輸入make menuconfig,在字元界面下進行必要的細微的修改。
然後要經過四步編譯過程(直接輸入命令即可):
(1)make bzImage
將內核編譯為壓縮映像,存儲在源碼根目錄下的「System.map」文件中。
(2)make moles
編譯各個模塊。
(3)sudo make moles_install
安裝模塊
(4)sudo make install
安裝內核
第(2)(3)步等待時間較長,可能需要數個小時,請耐心等待。
無報錯的話重啟進入GRUB界面,就可以看到新編譯的內核了。
按回車鍵進入我們編譯的目標內核中,用關鍵詞搜索查看新增加的系統調用「my call」是否已在內核中:
編寫測試程序,調用新添加的系統調用:
測試成功,說明系統調用添加成功,進而說明內核編譯成功!
以上的辦法你可以試一下,希望對你有所幫助。
5. 如何給linux安裝新內核
一、獲取內核源碼
二、解壓內核源碼
首先以root帳號登錄,然後進入/usr/src子目錄。如果用戶在安裝Linux時,安裝了內核的源代碼,則會發現一個linux-x.y.z的子目錄。該目錄下存放著內核x.y.z的源代碼。此外,還會發現一個指向該目錄的鏈接linux。刪除該連接,然後將新內核的源文件拷貝到/usr/src目錄中,並解壓:
#tarzxvfLinux-2.3.14.tar.gz
文件釋放成功後,在/usr/src目錄下會生成一個linux子目錄。其中包含了內核2.3.14的全部源代碼。將/usr/include/asm、/usr/inlude/linux、/usr/include/scsi鏈接到/usr/src/linux/include目錄下的對應目錄中。
#cd/usr/include
#rm-Rfasmlinux
#ln-s/usr/src/linux/include/asm-i386asm
#ln-s/usr/src/linux/include/linuxlinux
#ln-s/usr/src/linux/include/scsiscsi
刪除源代碼目錄中殘留的.o文件和其它從屬文件。
#cd/usr/src/linux
#makemrproper
三.增量補丁
有時不需要完全重新安裝,只需打增量補丁,類似升級,在內核源碼樹根目錄運行:
patch-p1<../patch-x.y.z
四.內核源碼樹目錄:
arch:包含和硬體體系結構相關的代碼,每種平台佔一個相應基啟的目錄。和32位PC相關的代碼存放在i386目錄下,其中比較重要的包括kernel(內核核心部分)、mm(內存管理)、math-emu(浮點單元模擬)、lib(硬體相關工具函數)、boot(引導程序)、pci(PCI匯流排)和power(CPU相關狀態)。
block:部分塊設備驅動程序。
crypto:常用加密和散列演算法(如AES、SHA等),還有一些壓縮和CRC校驗演算法。
Documentation:關於內核各部分的通用解釋和注釋。
drivers:設備驅動程序,每個不同的驅動占亂明用一個子目錄。
fs:各種支持的文件系統,如ext、fat、ntfs等。
include:頭文件。其中,和系統相關的頭文件被放置在linux子目錄下。
init:內核初始化代碼(注意不是系統引導代碼)。
ipc:進程間通信的代碼。
kernel:內核的最核心部分,包括進程調度、定時器等,和平台相關的一部分代碼放在arch/*/kernel目錄下。
lib:庫文件代碼。
mm:內存管理代碼,和平台相關的一部分代碼放在arch/*/mm目錄下。
net:網路相關代碼,實現了各種常見的網路協議。
scripts:用於配置內核文件的腳本文件。
security:主要是一個SELinux的模塊。
sound:常用音頻設備的驅動程序等。
usr:實現了一個cpio。
在i386體系下,系統引導將從arch/i386/kernel/head.s開始執行,並進而轉移到init/main.c中的main()函數初始化內核。
五.配置內核
#cd/usr/src/linux
內核配置方法有三種:
(1)命令行:makeconfig
(2)菜單模式的配置界面:makemenuconfig
(3)Xwindow:makexconfig
Linux的內核配置程序提供了一系列配置選項。對於每一個配置選項,用戶可以回答"y"、"m"或"n"。其中"y"表示將相應特性的支持或設備驅動程序編譯進內核;"m"表示將相應特性的支持或設備驅動程序編譯成可載入模塊,在需要時,可由系統或用戶自行加入到內核中去;"n"表示內核不提供相應特性或驅動程序的支持。由於內核的配置選項非常多,本文只介紹一些比較重要的選項。
1、Codematurityleveloptions(代碼成熟度選項)
Promptfordevelopmentand/orincompletecode/drivers(CONFIG_EXPERIMENTAL)[N/y/?]如果用戶想要使用還處於測試階段的代碼或驅搏陪如動,可以選擇「y」。如果想編譯出一個穩定的內核,則要選擇「n」。
2、Processortypeandfeatures(處理器類型和特色)
(1)、Processorfamily(386,486/Cx486,586/K5/5x86/6x86,Pentium/K6/TSC,PPro/6x86MX)[PPro/6x86MX]選擇處理器類型,預設為Ppro/6x86MX。
(2)、MaximumPhysicalMemory(1GB,2GB)[1GB]內核支持的最大內存數,預設為1G。
(3)、Mathemulation(CONFIG_MATH_EMULATION)[N/y/?]協處理器模擬,預設為不模擬。
(4)、MTRR(MemoryTypeRangeRegister)support(CONFIG_MTRR)[N/y/?]
選擇該選項,系統將生成/proc/mtrr文件對MTRR進行管理,供Xserver使用。
(5)、Symmetricmulti-processingsupport(CONFIG_SMP)[Y/n/?]選擇「y」,內核將支持對稱多處理器。
3、Loadablemolesupport(可載入模塊支持)
(1)、Enableloadablemolesupport(CONFIG_MODULES)[Y/n/?]選擇「y」,內核將支持載入模塊。
(2)、Kernelmoleloader(CONFIG_KMOD)[N/y/?]選擇「y」,內核將自動載入那些可載入模塊,否則需要用戶手工載入。
4、Generalsetup(一般設置)
(1)、Networkingsupport(CONFIG_NET)[Y/n/?]該選項設置是否在內核中提供網路支持。
(2)、PCIsupport(CONFIG_PCI)[Y/n/?]該選項設置是否在內核中提供PCI支持。
(3)、PCIaccessmode(BIOS,Direct,Any)[Any]該選項設置Linux探測PCI設備的方式。選擇「BIOS」,Linux將使用BIOS;選擇「Direct」,Linux將不通過BIOS;選擇「Any」,Linux將直接探測PCI設備,如果失敗,再使用BIOS。
(4)Parallelportsupport(CONFIG_PARPORT)[N/y/m/?]選擇「y」,內核將支持平行口。
5、PlugandPlayconfiguration(即插即用設備支持)
(1)、PlugandPlaysupport(CONFIG_PNP)[Y/m/n/?]選擇「y」,內核將自動配置即插即用設備。
(2)、ISAPlugandPlaysupport(CONFIG_ISAPNP)[Y/m/n/?]選擇「y」,內核將自動配置基於ISA匯流排的即插即用設備。
6、Blockdevices(塊設備)
(1)、NormalPCfloppydisksupport(CONFIG_BLK_DEV_FD)[Y/m/n/?]選擇「y」,內核將提供對軟盤的支持。
(2)、EnhancedIDE/MFM/RLLdisk/cdrom/tape/floppysupport(CONFIG_BLK_DEV_IDE)[Y/m/n/?]選擇「y」,內核將提供對增強IDE硬碟、CDROM和磁帶機的支持。
7、Networkingoptions(網路選項)
(1)、Packetsocket(CONFIG_PACKET)[Y/m/n/?]選擇「y」,一些應用程序將使用Packet協議直接同網路設備通訊,而不通過內核中的其它中介協議。
(2)、Networkfirewalls(CONFIG_FIREWALL)[N/y/?]選擇「y」,內核將支持防火牆。
(3)、TCP/IPnetworking(CONFIG_INET)[Y/n/?]選擇「y」,內核將支持TCP/IP協議。
(4)TheIPXprotocol(CONFIG_IPX)[N/y/m/?]選擇「y」,內核將支持IPX協議。
(5)、AppletalkDDP(CONFIG_ATALK)[N/y/m/?]選擇「y」,內核將支持AppletalkDDP協議。
8、SCSIsupport(SCSI支持)
如果用戶要使用SCSI設備,可配置相應選項。
9、Networkdevicesupport(網路設備支持)
Networkdevicesupport(CONFIG_NETDEVICES)[Y/n/?]選擇「y」,內核將提供對網路驅動程序的支持。
10、Ethernet(10or100Mbit)(10M或100M乙太網)
在該項設置中,系統提供了許多網卡驅動程序,用戶只要選擇自己的網卡驅動就可以了。此外,用戶還可以根據需要,在內核中加入對FDDI、PPP、SLIP和無線LAN(WirelessLAN)的支持。
11、Characterdevices(字元設備)
(1)、Virtualterminal(CONFIG_VT)[Y/n/?]選擇「y」,內核將支持虛擬終端。
(2)、(CONFIG_VT_CONSOLE)[Y/n/?]
選擇「y」,內核可將一個虛擬終端用作系統控制台。
(3)、Standard/generic(mb)serialsupport(CONFIG_SERIAL)[Y/m/n/?]
選擇「y」,內核將支持串列口。
(4)、Supportforconsoleonserialport(CONFIG_SERIAL_CONSOLE)[N/y/?]
選擇「y」,內核可將一個串列口用作系統控制台。
12、Mice(滑鼠)
PS/2mouse(aka"auxiliarydevice")support(CONFIG_PSMOUSE)[Y/n/?]如果用戶使用的是PS/2滑鼠,則該選項應該選擇「y」。
13、Filesystems(文件系統)
(1)、Quotasupport(CONFIG_QUOTA)[N/y/?]選擇「y」,內核將支持磁碟限額。
(2)、Kernelautomountersupport(CONFIG_AUTOFS_FS)[Y/m/n/?]選擇「y」,內核將提供對automounter的支持,使系統在啟動時自動mount遠程文件系統。
(3)、DOSFATfssupport(CONFIG_FAT_FS)[N/y/m/?]選擇「y」,內核將支持DOSFAT文件系統。
(4)、ISO9660CDROMfilesystemsupport(CONFIG_ISO9660_FS)[Y/m/n/?]
選擇「y」,內核將支持ISO9660CDROM文件系統。
(5)、NTFSfilesystemsupport(readonly)(CONFIG_NTFS_FS)[N/y/m/?]
選擇「y」,用戶就可以以只讀方式訪問NTFS文件系統。
(6)、/procfilesystemsupport(CONFIG_PROC_FS)[Y/n/?]/proc是存放Linux系統運行狀態的虛擬文件系統,該項必須選擇「y」。
(7)、Secondextendedfssupport(CONFIG_EXT2_FS)[Y/m/n/?]EXT2是Linux的標准文件系統,該項也必須選擇「y」。
14、NetworkFileSystems(網路文件系統)
(1)、NFSfilesystemsupport(CONFIG_NFS_FS)[Y/m/n/?]選擇「y」,內核將支持NFS文件系統。
(2)、SMBfilesystemsupport(tomountWfWsharesetc.)(CONFIG_SMB_FS)
選擇「y」,內核將支持SMB文件系統。
(3)、NCPfilesystemsupport(tomountNetWarevolumes)(CONFIG_NCP_FS)
選擇「y」,內核將支持NCP文件系統。
15、PartitionTypes(分區類型)
該選項支持一些不太常用的分區類型,用戶如果需要,在相應的選項上選擇「y」即可。
16、Consoledrivers(控制台驅動)
VGAtextconsole(CONFIG_VGA_CONSOLE)[Y/n/?]選擇「y」,用戶就可以在標準的VGA顯示方式下使用Linux了。
17、Sound(聲音)
Soundcardsupport(CONFIG_SOUND)[N/y/m/?]選擇「y」,內核就可提供對音效卡的支持。
18、Kernelhacking(內核監視)
MagicSysRqkey(CONFIG_MAGIC_SYSRQ)[N/y/?]選擇「y」,用戶就可以對系統進行部分控制。一般情況下選擇「n」。
六、編譯內核
(一)、建立編譯時所需的從屬文件
#cd/usr/src/linux
#makedep
(二)、清除內核編譯的目標文件
#makeclean
(三)、編譯內核
#makezImage
內核編譯成功後,會在/usr/src/linux/arch/i386/boot目錄中生成一個新內核的映像文件zImage。如果編譯的內核很大的話,系統會提示你使用makebzImage命令來編譯。這時,編譯程序就會生成一個名叫bzImage的內核映像文件。
(四)、編譯可載入模塊
如果用戶在配置內核時設置了可載入模塊,則需要對這些模塊進行編譯,以便將來使用insmod命令進行載入。
#makemoles
#makemodelus_install
編譯成功後,系統會在/lib/moles目錄下生成一個2.3.14子目錄,裡面存放著新內核的所有可載入模塊。
七、啟動新內核
(一)、將新內核和System.map文件拷貝到/boot目錄下
#cp/usr/src/linux/arch/i386/boot/bzImage/boot/vmlinuz-2.3.14
#cp/usr/src/linux/System.map/boot/System.map-2.3.14
#cd/boot
#rm-fSystem.map
#ln-sSystem.map-2.3.14System.map
(二)、配置/etc/lilo.conf文件。在該文件中加入下面幾行:
default=linux-2.3.14
image=/boot/vmlinuz-2.3.14
label=linux-2.3.14
root=/dev/hda1
read-only
(三)、使新配置生效
#/sbin/lilo
(四)、重新啟動系統
#/sbin/reboot
新內核如果不能正常啟動,用戶可以在LILO:提示符下啟動舊內核。然後查出故障原因,重新編譯新內核即可。
6. Linux內核編譯的具體操作過程及注意問題
你好,樓主:
1、配置.config文件,將你要編譯的配置XXX_config准備好,使用make XXX_config來進行配置;
2、這時你就可以在內核根目錄下進行make menuconfig來使用圖形界面配置內核選項,配置後保存即可;
3、最後只需要使用make或者make uImage生成相應的鏡像即可。
注意問題多在config這里,如果配置時報錯,可嘗試make clobber來清除原來的依賴關系。
7. 如何編譯linux版本
編譯安裝內核
下載並解壓內核
解壓內核:tar xf linux-2.6.XX.tar.xz
定製內核:make menuconfig
參見makefile menuconfig過程講解
編譯內核和模塊:make
生成內核模塊和vmlinuz,initrd.img,Symtem.map文件
安裝內核和模塊:sudo make moles_install install
復制模塊文件到/lib/moles目錄下、復制config,vmlinuz,initrd.img,Symtem.map文件到/boot目錄、更新grub
其他命令:
make mrprobe:命令的作用是在每次配置並重新編譯內核前需要先執行「make mrproper」命令清理源代碼樹,包括過去曾經配置的內核配置文件「.config」都將被清除。即進行新的編譯工作時將原來老的配置文件給刪除到,以免影響新的內核編譯。
make dep:生成內核功能間的依賴關系,為編譯內核做好准備。
幾個重要的Linux內核文件介紹
config
使用make menuconfig 生成的內核配置文件,決定將內核的各個功能系統編譯進內核還是編譯為模塊還是不編譯。
vmlinuz 和 vmlinux
vmlinuz是可引導的、壓縮的內核,「vm」代表「Virtual Memory」。Linux 支持虛擬內存,不像老的操作系統比如DOS有640KB內存的限制,Linux能夠使用硬碟空間作為虛擬內存,因此得名「vm」。vmlinuz是可執行的Linux內核,vmlinuz的建立有兩種方式:一是編譯內核時通過「make zImage」創建,zImage適用於小內核的情況,它的存在是為了向後的兼容性;二是內核編譯時通過命令make bzImage創建,bzImage是壓縮的內核映像,需要注意,bzImage不是用bzip2壓縮的,bzImage中的bz容易引起誤解,bz表示「big zImage」,bzImage中的b是「big」意思。 zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip壓縮的。它們不僅是一個壓縮文件,而且在這兩個文件的開頭部分內嵌有gzip解壓縮代碼,所以你不能用gunzip 或 gzip –dc解包vmlinuz。 內核文件中包含一個微型的gzip用於解壓縮內核並引導它。兩者的不同之處在於,老的zImage解壓縮內核到低端內存(第一個640K),bzImage解壓縮內核到高端內存(1M以上)。如果內核比較小,那麼可以採用zImage 或bzImage之一,兩種方式引導的系統運行時是相同的。大的內核採用bzImage,不能採用zImage。 vmlinux是未壓縮的內核,vmlinuz是vmlinux的壓縮文件。
initrd.img
initrd是「initial ramdisk」的簡寫。initrd一般被用來臨時的引導硬體到實際內核vmlinuz能夠接管並繼續引導的狀態。比如initrd- 2.4.7-10.img主要是用於載入ext3等文件系統及scsi設備的驅動。如果你使用的是scsi硬碟,而內核vmlinuz中並沒有這個 scsi硬體的驅動,那麼在裝入scsi模塊之前,內核不能載入根文件系統,但scsi模塊存儲在根文件系統的/lib/moles下。為了解決這個問題,可以引導一個能夠讀實際內核的initrd內核並用initrd修正scsi引導問題,initrd-2.4.7-10.img是用gzip壓縮的文件。initrd映象文件是使用mkinitrd創建的,mkinitrd實用程序能夠創建initrd映象文件,這個命令是RedHat專有的,其它Linux發行版或許有相應的命令。這是個很方便的實用程序。具體情況請看幫助:man mkinitrd
System.map是一個特定內核的內核符號表,由「nm vmlinux」產生並且不相關的符號被濾出。
下面幾行來自/usr/src/linux-2.4/Makefile:
nm vmlinux | grep -v '(compiled)|(.o$$)|( [aUw] )|(..ng$$)|(LASH[RL]DI)' | sort > System.map
在進行程序設計時,會命名一些變數名或函數名之類的符號。Linux內核是一個很復雜的代碼塊,有許許多多的全局符號, Linux內核不使用符號名,而是通過變數或函數的地址來識別變數或函數名,比如不是使用size_t BytesRead這樣的符號,而是像c0343f20這樣引用這個變數。 對於使用計算機的人來說,更喜歡使用那些像size_t BytesRead這樣的名字,而不喜歡像c0343f20這樣的名字。內核主要是用c寫的,所以編譯器/連接器允許我們編碼時使用符號名,而內核運行時使用地址。 然而,在有的情況下,我們需要知道符號的地址,或者需要知道地址對應的符號,這由符號表來完成,符號表是所有符號連同它們的地址的列表。
Linux 符號表使用到2個文件: /proc/ksyms 、System.map 。/proc/ksyms是一個「proc file」,在內核引導時創建。實際上,它並不真正的是一個文件,它只不過是內核數據的表示,卻給人們是一個磁碟文件的假象,這從它的文件大小是0可以看 出來。然而,System.map是存在於你的文件系統上的實際文件。當你編譯一個新內核時,各個符號名的地址要發生變化,你的老的System.map 具有的是錯誤的符號信息,每次內核編譯時產生一個新的System.map,你應當用新的System.map來取代老的System.map。
雖然內核本身並不真正使用System.map,但其它程序比如klogd, lsof和ps等軟體需要一個正確的System.map。如果你使用錯誤的或沒有System.map,klogd的輸出將是不可靠的,這對於排除程序故障會帶來困難。沒有System.map,你可能會面臨一些令人煩惱的提示信息。 另外少數驅動需要System.map來解析符號,沒有為你當前運行的特定內核創建的System.map它們就不能正常工作。 Linux的內核日誌守護進程klogd為了執行名稱-地址解析,klogd需要使用System.map。System.map應當放在使用它的軟體能夠找到它的地方。執行:man klogd可知,如果沒有將System.map作為一個變數的位置給klogd,那麼它將按照下面的順序,在三個地方查找System.map: /boot/System.map 、/System.map 、/usr/src/linux/System.map
System.map也有版本信息,klogd能夠智能地查找正確的映象(map)文件。
makefile menuconfig過程講解
當我們在執行make menuconfig這個命令時,系統到底幫我們做了哪些工作呢?這裡面一共涉及到了一下幾個文件我們來一一探討
Linux內核根目錄下的scripts文件夾
arch/$ARCH/Kconfig文件、各層目錄下的Kconfig文件
Linux內核根目錄下的makefile文件、各層目錄下的makefile文件
Linux內核根目錄下的的.config文件、arch/$ARCH/configs/下的文件
Linux內核根目錄下的 include/generated/autoconf.h文件
1)scripts文件夾存放的是跟make menuconfig配置界面的圖形繪制相關的文件,我們作為使用者無需關心這個文件夾的內容
2)當我們執行make menuconfig命令出現上述藍色配置界面以前,系統幫我們做了以下工作:
首先系統會讀取arch/$ARCH/目錄下的Kconfig文件生成整個配置界面選項(Kconfig是整個linux配置機制的核心),那麼ARCH環境變數的值等於多少呢?它是由linux內核根目錄下的makefile文件決定的,在makefile下有此環境變數的定義:
SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \
-e s/arm.*/arm/ -e s/sa110/arm/ \
-e s/s390x/s390/ -e s/parisc64/parisc/ \
-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
-e s/sh[234].*/sh/ )
..........
export KBUILD_BUILDHOST := $(SUBARCH)
ARCH ?= $(SUBARCH)
CROSS_COMPILE ?=
或者通過 make ARCH=arm menuconfig命令來生成配置界面
比如教務處進行考試,考試科數可能有外語、語文、數學等科,這里我們選擇了arm科可進行考試,系統就會讀取arm/arm/kconfig文件生成配置選項(選擇了arm科的卷子),系統還提供了x86科、milps科等10幾門功課的考試題
3)假設教務處比較「仁慈」,為了怕某些同學做錯試題,還給我們准備了一份參考答案(默認配置選項),存放在arch/$ARCH/configs/目錄下,對於arm科來說就是arch/arm/configs文件夾:
此文件夾中有許多選項,系統會讀取哪個呢?內核默認會讀取linux內核根目錄下.config文件作為內核的默認選項(試題的參考答案),我們一般會根據開發板的類型從中選取一個與我們開發板最接近的系列到Linux內核根目錄下(選擇一個最接近的參考答案)
4).config
假設教務處留了一個心眼,他提供的參考答案並不完全正確(.config文件與我們的板子並不是完全匹配),這時我們可以選擇直接修改.config文件然後執行make menuconfig命令讀取新的選項。但是一般我們不採取這個方案,我們選擇在配置界面中通過空格、esc、回車選擇某些選項選中或者不選中,最後保存退出的時候,Linux內核會把新的選項(正確的參考答案)更新到.config中,此時我們可以把.config重命名為其它文件保存起來(當你執行make distclean時系統會把.config文件刪除),以後我們再配置內核時就不需要再去arch/arm/configs下考取相應的文件了,省去了重新配置的麻煩,直接將保存的.config文件復制為.config即可.
5)經過以上兩步,我們可以正確的讀取、配置我們需要的界面了,那麼他們如何跟makefile文件建立編譯關系呢?當你保存make menuconfig選項時,系統會除了會自動更新.config外,還會將所有的選項以宏的形式保存在Linux內核根目錄下的 include/generated/autoconf.h文件下
內核中的源代碼就都會包含以上.h文件,跟宏的定義情況進行條件編譯。
當我們需要對一個文件整體選擇如是否編譯時,還需要修改對應的makefile文件,例如:
我們選擇是否要編譯s3c2410_ts.c這個文件時,makefile會根據CONFIG_TOUCHSCREEN_S3C2410來決定是編譯此文件,此宏是在Kconfig文件中定義,當我們配置完成後,會出現在.config及autconf中,至此,我們就完成了整個linux內核的編譯過程。
最後我們會發現,整個linux內核配置過程中,留給用戶的介面其實只有各層Kconfig、makefile文件以及對應的源文件。
比如我們如果想要給內核增加一個功能,並且通過make menuconfig控制其聲稱過程
首先需要做的工作是:修改對應目錄下的Kconfig文件,按照Kconfig語法增加對應的選項;
其次執行make menuconfig選擇編譯進內核或者不編譯進內核,或者編譯為模塊,.config文件和autoconf.h文件會自動生成;
最後修改對應目錄下的makefile文件完成編譯選項的添加;
最後的最後執行make命令進行編譯。
Kconfig和Makefile
Linux內核源碼樹的每個目錄下都有兩個文檔Kconfig和Makefile。分布到各目錄的Kconfig構成了一個分布式的內核配置資料庫,每個Kconfig分別描述了所屬目錄源文檔相關的內核配置菜單。在執行內核配置make menuconfig時,從Kconfig中讀出菜單,用戶選擇後保存到.config的內核配置文檔中。在內核編譯時,主Makefile調用這 個.config,就知道了用戶的選擇。這個內容說明了,Kconfig就是對應著內核的每級配置菜單。
假如要想添加新的驅動到內核的源碼中,要修改Kconfig,這樣就能夠選擇這個驅動,假如想使這個驅動被編譯,則要修改Makefile。添加新 的驅動時需要修改的文檔有兩種(如果添加的只是文件,則只需修改當前層Kconfig和Makefile文件;如果添加的是目錄,則需修改當前層和目錄下 的共一對Kconfig和Makefile)Kconfig和Makefile。要想知道怎麼修改這兩種文檔,就要知道兩種文檔的語法結構,Kconfig的語法參見參考文獻《【linux-2.6.31】kbuild》。
Makefile 文件包含 5 部分:
Makefile 頂層的 Makefile
.config 內核配置文件
arch/$(ARCH)/Makefile 體系結構 Makefile
scripts/Makefile.* 適用於所有 kbuild Makefile 的通用規則等
kbuild Makefiles 大約有 500 個這樣的文件
頂層 Makefile 讀取內核配置操作產生的.config 文件,頂層 Makefile 構建兩個主要的目標:vmlinux(內核映像)和 moles(所有模塊文件)。它通過遞歸訪問內核源碼樹下的子目錄來構建這些目標。訪問哪些子目錄取決於內核配置。頂層 Makefile 包含一個體系結構 Makefile,由 arch/$(ARCH)/Makefile 指定。體系結構 Makefile 文件為頂層 Makefile 提供了特定體系結構的信息。每個子目錄各有一個 kbuild文件和Makefile 文件來執行從上層傳遞下來的命令。kbuild和Makefile文件利用.config 文件中的信息來構造由 kbuild 構建內建或者模塊對象使用的各種文件列表。scripts/Makefile.*包含所有的定義/規則,等等。這些信息用於使用 kbuild和 Makefile 文件來構建內核。Makefile的語法參見參考文獻《【linux-2.6.31】kbuild》。
參考文獻
【linux-2.6.31】內核編譯指南.pdf
【linux-2.6.31】kbuild.pdf
Linker script in Linux.pdf
linux內核的配置機制及其編譯過程
Linux內核編譯過程詳解
Linux Kconfig及Makefile學習
8. linux編譯內核步驟
一、准備工作
a) 首先,你要有一台PC(這不廢話么^_^),裝好了Linux。
b) 安裝好GCC(這個指的是host gcc,用於編譯生成運行於pc機程序的)、make、ncurses等工具。
c) 下載一份純凈的Linux內核源碼包,並解壓好。
注意,如果你是為當前PC機編譯內核,最好使用相應的Linux發行版的源碼包。
不過這應該也不是必須的,因為我在我的Fedora 13上(其自帶的內核版本是2.6.33.3),就下載了一個標準的內核linux-2.6.32.65.tar.xz,並且順利的編譯安裝成功了,上電重啟都OK的。不過,我使用的.config配置文件,是Fedora 13自帶內核的配置文件,即/lib/moles/`uname -r`/build/.config
d) 如果你是移植Linux到嵌入式系統,則還要再下載安裝交叉編譯工具鏈。
例如,你的目標單板CPU可能是arm或mips等cpu,則安裝相應的交叉編譯工具鏈。安裝後,需要將工具鏈路徑添加到PATH環境變數中。例如,你安裝的是arm工具鏈,那麼你在shell中執行類似如下的命令,假如有類似的輸出,就說明安裝好了。
[root@localhost linux-2.6.33.i686]# arm-linux-gcc --version
arm-linux-gcc (Buildroot 2010.11) 4.3.5
Copyright (C) 2008 Free Software Foundation, Inc.
This is free software; see the source for ing conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
註:arm的工具鏈,可以從這里下載:回復「ARM」即可查看。
二、設置編譯目標
在配置或編譯內核之前,首先要確定目標CPU架構,以及編譯時採用什麼工具鏈。這是最最基礎的信息,首先要確定的。
如果你是為當前使用的PC機編譯內核,則無須設置。
否則的話,就要明確設置。
這里以arm為例,來說明。
有兩種設置方法():
a) 修改Makefile
打開內核源碼根目錄下的Makefile,修改如下兩個Makefile變數並保存。
ARCH := arm
CROSS_COMPILE := arm-linux-
注意,這里cross_compile的設置,是假定所用的交叉工具鏈的gcc程序名稱為arm-linux-gcc。如果實際使用的gcc名稱是some-thing-else-gcc,則這里照葫蘆畫瓢填some-thing-else-即可。總之,要省去名稱中最後的gcc那3個字母。
b) 每次執行make命令時,都通過命令行參數傳入這些信息。
這其實是通過make工具的命令行參數指定變數的值。
例如
配置內核時時,使用
make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
編譯內核時使用
make ARCH=arm CROSS_COMPILE=arm-linux-
注意,實際上,對於編譯PC機內核的情況,雖然用戶沒有明確設置,但並不是這兩項沒有配置。因為如果用戶沒有設置這兩項,內核源碼頂層Makefile(位於源碼根目錄下)會通過如下方式生成這兩個變數的值。
SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \
-e s/arm.*/arm/ -e s/sa110/arm/ \
-e s/s390x/s390/ -e s/parisc64/parisc/ \
-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
-e s/sh[234].*/sh/ )
ARCH?= $(SUBARCH)
CROSS_COMPILE ?=
經過上面的代碼,ARCH變成了PC編譯機的arch,即SUBARCH。因此,如果PC機上uname -m輸出的是ix86,則ARCH的值就成了i386。
而CROSS_COMPILE的值,如果沒配置,則為空字元串。這樣一來所使用的工具鏈程序的名稱,就不再有類似arm-linux-這樣的前綴,就相當於使用了PC機上的gcc。
最後再多說兩句,ARCH的值還需要再進一步做泛化。因為內核源碼的arch目錄下,不存在i386這個目錄,也沒有sparc64這樣的目錄。
因此頂層makefile中又構造了一個SRCARCH變數,通過如下代碼,生成他的值。這樣一來,SRCARCH變數,才最終匹配到內核源碼arch目錄中的某一個架構名。
SRCARCH := $(ARCH)
ifeq ($(ARCH),i386)
SRCARCH := x86
endif
ifeq ($(ARCH),x86_64)
SRCARCH := x86
endif
ifeq ($(ARCH),sparc64)
SRCARCH := sparc
endif
ifeq ($(ARCH),sh64)
SRCARCH := sh
endif
三、配置內核
內核的功能那麼多,我們需要哪些部分,每個部分編譯成什麼形式(編進內核還是編成模塊),每個部分的工作參數如何,這些都是可以配置的。因此,在開始編譯之前,我們需要構建出一份配置清單,放到內核源碼根目錄下,命名為.config文件,然後根據此.config文件,編譯出我們需要的內核。
但是,內核的配置項太多了,一個一個配,太麻煩了。而且,不同的CPU架構,所能配置的配置項集合,是不一樣的。例如,某種CPU的某個功能特性要不要支持的配置項,就是與CPU架構有關的配置項。所以,內核提供了一種簡單的配置方法。
以arm為例,具體做法如下。
a) 根據我們的目標CPU架構,從內核源碼arch/arm/configs目錄下,找一個與目標系統最接近的配置文件(例如s3c2410_defconfig),拷貝到內核源碼根目錄下,命名為.config。
注意,如果你是為當前PC機編譯內核,最好拷貝如下文件到內核源碼根目錄下,做為初始配置文件。這個文件,是PC機當前運行的內核編譯時使用的配置文件。
/lib/moles/`uname -r`/build/.config
這里順便多說兩句,PC機內核的配置文件,選擇的功能真是多。不編不知道,一編才知道。Linux發行方這樣做的目的,可能是想讓所發行的Linux能夠滿足用戶的各種需求吧。
b) 執行make menuconfig對此配置做一些需要的修改,退出時選擇保存,就將新的配置更新到.config文件中了。
注
9. 如何編譯Linux內核
編譯linux內核步驟:
1、安裝內核
如果內核已經安裝(/usr/src/目錄有linux子目錄),跳過。如果沒有安裝,在光碟機中放入linux安裝光碟,找到kernel-source-2.xx.xx.rpm文件(xx代表數字,表示內核的版本號),比如RedHat linux的RPMS目錄是/RedHat/RPMS/目錄,然後使用命令rpm -ivh kernel-source-2.xx.xx.rpm安裝內核。如果沒有安裝盤,可以去各linux廠家站點或者www.kernel.org下載。
2、清除從前編譯內核時殘留的.o 文件和不必要的關聯
cd /usr/src/linux
make mrproper
3、配置內核,修改相關參數,請參考其他資料
在圖形界面下,make xconfig;字元界面下,make menuconfig。在內核配置菜單中正確設置個內核選項,保存退出
4、正確設置關聯文件
make dep
5、編譯內核
對於大內核(比如需要SCSI支持),make bzImage
對於小內核,make zImage
6、編譯模塊
make moles
7、安裝模塊
make moles_install
8、使用新內核
把/usr/src/linux/arch/i386/boot/目錄內新生成的內核文件bzImage/zImage拷貝到/boot目錄,然後修改/etc/lilo.conf文件,加一個啟動選項,使用新內核bzImage/zImage啟動。格式如下:
boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt
timeout=50
linear
default=linux-new ### 告訴lilo預設使用新內核啟動linux ###
append="mem=256M"
image=/boot/vmlinuz-2.2.14-5.0
label=linux
read-only
root=/dev/hda5
image=/boot/bzImage(zImage)
label=linux-new
read-only
root=/dev/hda5
保留舊有的啟動選項可以保證新內核不能引導的情況,還可以進入linux進行其他操作。保存退出後,不要忘記了最重要的一步,運行/sbin/lilo,使修改生效。
9、重新生成ram磁碟
如果您的系統中的/etc/lilo.conf沒有使用了ram磁碟選項initrd,略過。如果您的系統中的/etc/lilo.conf使用了ram磁碟選項initrd,使用mkinitrd initrd-內核版本號,內核版本號命令重新生成ram磁碟文件,例如我的Redhat 6.2:
mkinitrd initrd-2.2.14-5.0 2.2.14-5.0
之後把/etc/lilo.conf中的initrd指向新生成的initrd-2.2.14-5.0文件:
initrd=/boot/initrd-2.2.14-5.0
ram磁碟能使系統性能盡可能的優化,具體參考/usr/src/linux/Documents/initrd.txt文件
10、重新啟動,OK!
10. Linux內核配置與編譯相關流程
linux內核配置與編譯相關流程1、清除臨時文件、中間文件和配置文件
make
clean
不刪除配置文件。
make
mrproper
make
distclean
刪除編輯的backup文件、補丁文件等2、確定目標系統的軟硬體配置情況,比如CPU的類型,網卡的型號,所需要支持的網路協議。3、使用命令配置內核
make
config
基於文本模式的交互配置。
make
menuconfig
基於文本模式的菜單配置。
make
oldconfig
使用已有的配置文件(.config),但是會詢問新增的配置選項。
make
xconfig
圖形化的配置(需要安裝圖形化系統)。4、編譯內核
make
zImage
make
bzImage
區別:在X86平台上,zImage只能用於小雨512k內核。如果需要獲取詳細編譯信息,則在後面加上V=1.
編譯好的內核位於arch/<cpu>/boot/目錄下。
5、編譯內核模塊
make
moes
6、安裝內核模塊
make
moes_install
將編譯好的內核模塊從內核源代碼目錄到/lib/moes下。7、製作
init
ramdisk
mkinitrd
$initrd-$version
-$version內核安裝(X86)1、cp
arch/X86/boot/bzImage
/boot/vmliuz
-$version2、cp
$initrd
/boot/3、修改etc/grub.conf
或
/etc/lilo.conf$version為所編譯的內核版本號。