導航:首頁 > 編程系統 > linux內存分頁管理機制原理

linux內存分頁管理機制原理

發布時間:2023-02-13 23:53:34

linux內核:分段和分頁的區別

首先說明內核的保護模式和是模式,在計算機剛剛啟動的時候處於實模式,在該模式下cpu產生20位的地址,然後計算機經過某種變換轉換到保護模式。保護模式下cpu產生32位的地址,也就是說從實模式到保護模式,cpu的定址空間擴大了。

在計算的發展的初期,intel 8086是16位的cpu,它只能運行在實模式下。在該模式下其寄存器是16位的,但是為了可以定址20位的地址空間,所以採用了內存的分段模式。

物理內存地址=段基址×16+偏移 這樣可以定址20位的地址空間。

關於現代計算機內存的分段機制,也是為了向下兼容的需要。單純的向下兼容或許還不夠有說服力,因為在現代cpu中產生的就是32的地址,而由分段機制產生的線性地址也是32位的。32位的地址完全可以訪問4G內存的任何一個地方,看上去分段機制好像完全沒有了作用,其實不然。在多線程,多任務的操作系統中,一個地址能否被一個進程寫入,能被什麼優先順序的進程訪問,是否允許執行這些問題有出來了。而解決這些問題需要在地址上添加一些屬性,也就是說其地址應該還是高於32位的。這時候有體現了分段機制的作用。

關於分頁機制。由分頁機制產生線性地址,加入沒有分頁,這個線性地址就是物理地址。而分頁機制就是把線性地址裝換成物理地址。關於其原因,一方面在進程產生子進程的時候,會復制內存頁,而父子進程無論是代碼數據還是產生的地址都是一樣的,這樣為創建進程提供了便利,可以不必考慮進程在內存中分布的情況而產生地址,至於父子進程的真實物理地址在哪裡,那是mmu(內存控制單元)的問題。另一方面,由於進程不知道真實的物理地址子啊什麼地方,也為操作系統提高了安全性。

⑵ Linux系統基本的內存管理知識講解

Linux系統基本的內存管理知識講解

內存是Linux內核所管理的最重要的資源之一。內存管理系統是操作系統中最為重要的部分,因為系統的物理內存總是少於系統所需要的內存數量。虛擬內存就是為了克服這個矛盾而採用的策略。系統的虛擬內存通過在各個進程之間共享內存而使系統看起來有多於實際內存的內存容量。Linux支持虛擬內存, 就是使用磁碟作為RAM的擴展,使可用內存相應地有效擴大。核心把當前不用的內存塊存到硬碟,騰出內存給其他目的。當原來的內容又要使用時,再讀回內存。

一、內存使用情況監測

(1)實時監控內存使用情況

在命令行使用「Free」命令可以監控內存使用情況

代碼如下:

#free

total used free shared buffers cached

Mem: 256024 192284 63740 0 10676 101004

-/+ buffers/cache: 80604 175420

Swap: 522072 0 522072

上面給出了一個256兆的RAM和512兆交換空間的'系統情況。第三行輸出(Mem:)顯示物理內存。total列不顯示核心使用的物理內存(通常大約1MB)。used列顯示被使用的內存總額(第二行不計緩沖)。 free列顯示全部沒使用的內存。Shared列顯示多個進程共享的內存總額。Buffers列顯示磁碟緩存的當前大小。第五行(Swap:)對對換空間,顯示的信息類似上面。如果這行為全0,那麼沒使用對換空間。在預設的狀態下,free命令以千位元組(也就是1024位元組為單位)來顯示內存使用情況。可以使用—h參數以位元組為單位顯示內存使用情況,或者可以使用—m參數以兆位元組為單位顯示內存使用情況。還可以通過—s參數使用命令來不間斷地監視內存使用情況:

#free –b –s2

這個命令將會在終端窗口中連續不斷地報告內存的使用情況,每2秒鍾更新一次。

(2)組合watch與 free命令用來實時監控內存使用情況:

代碼如下:

#watch -n 2 -d free

Every 2.0s: free Fri Jul 6 06:06:12 2007

total used free shared buffers cached

Mem: 233356 218616 14740 0 5560 64784

-/+ buffers/cache: 148272 85084

Swap: 622584 6656 615928

watch命令會每兩秒執行 free一次,執行前會清除屏幕,在同樣位置顯示數據。因為 watch命令不會卷動屏幕,所以適合出長時間的監測內存使用率。可以使用 -n選項,控制執行的頻率;也可以利用 -d選項,讓命令將每次不同的地方顯示出來。Watch命令會一直執行,直到您按下 [Ctrl]-[C] 為止。

二、虛擬內存的概念

(1)Linux虛擬內存實現機制

Linux虛擬內存的實現需要六種機制的支持:地址映射機制、內存分配回收機制、緩存和刷新機制、請求頁機制、交換機制、內存共享機制。

首先內存管理程序通過映射機制把用戶程序的邏輯地址映射到物理地址,在用戶程序運行時如果發現程序中要用的虛地址沒有對應的物理內存時,就發出了請求頁要求;如果有空閑的內存可供分配,就請求分配內存(於是用到了內存的分配和回收),並把正在使用的物理頁記錄在緩存中(使用了緩存機制)。 如果沒有足夠的內存可供分配,那麼就調用交換機制,騰出一部分內存。另外在地址映射中要通過TLB(翻譯後援存儲器)來尋找物理頁;交換機制中也要用到交換緩存,並且把物理頁內容交換到交換文件中後也要修改頁表來映射文件地址。

(2)虛擬內存容量設定

也許有人告訴你,應該分配2倍於物理內存的虛擬內存,但這是個不固定的規律。如果你的物理保存比較小,可以這樣設定。如果你有1G物理內存或更多的話,可以縮小一下虛擬內存。Linux會把大量的內存用做Cache的,但在資源緊張時回收回.。你只要看到swap為0或者很小就可以放心了,因為內存放著不用才是最大的浪費。

三、使甩vmstat命令監視虛擬內存使用情況

vmstat是Virtual Meomory Statistics(虛擬內存統計)的縮寫,可對操作系統的虛擬內存、進程、CPU活動進行監視。它是對系統的整體情況進行統計,不足之處是無法對某個進程進行深入分析。通常使用vmstat 5 5(表示在5秒時間內進行5次采樣)命令測試。將得到一個數據匯總它可以反映真正的系統情況。

代碼如下:

#vmstat 5 5

procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----

r b swpd free buff cache si so bi bo in cs us sy id wa

1 0 62792 3460 9116 88092 6 30 189 89 1061 569 17 28 54 2

0 0 62792 3400 9124 88092 0 0 0 14 884 434 4 14 81 0

0 0 62792 3400 9132 88092 0 0 0 14 877 424 4 15 81 0

1 0 62792 3400 9140 88092 0 0 0 14 868 418 6 20 74 0

1 0 62792 3400 9148 88092 0 0 0 15 847 400 9 25 67 0

vmstat命令輸出分成六個部分:

⑶ Linux的內存管理機制是什麼樣的

物理內存和虛擬內存
我們知道,直接從物理內存讀寫數據要比從硬碟讀寫數據要快的多,因此,我們希望所有數據的讀取和寫入都在內存完成,而內存是有限的,這樣就引出了物理內存與虛擬內存的概念。

物理內存就是系統硬體提供的內存大小,是真正的內存,相對於物理內存,在linux下還有一個虛擬內存的概念,虛擬內存就是為了滿足物理內存的不足而提出的策略,它是利用磁碟空間虛擬出的一塊邏輯內存,用作虛擬內存的磁碟空間被稱為交換空間(Swap Space)。
作為物理內存的擴展,linux會在物理內存不足時,使用交換分區的虛擬內存,更詳細的說,就是內核會將暫時不用的內存塊信息寫到交換空間,這樣以來,物理內存得到了釋放,這塊內存就可以用於其它目的,當需要用到原始的內容時,這些信息會被重新從交換空間讀入物理內存。
linux的內存管理採取的是分頁存取機制,為了保證物理內存能得到充分的利用,內核會在適當的時候將物理內存中不經常使用的數據塊自動交換到虛擬內存中,而將經常使用的信息保留到物理內存。
要深入了解linux內存運行機制,需要知道下面提到的幾個方面:
首先,Linux系統會不時的進行頁面交換操作,以保持盡可能多的空閑物理內存,即使並沒有什麼事情需要內存,Linux也會交換出暫時不用的內存頁面。這可以避免等待交換所需的時間。
其次,linux進行頁面交換是有
條件的,不是所有頁面在不用時都交換到虛擬內存,linux內核根據」最近最經常使用「演算法,僅僅將一些不經常使用的頁面文件交換到虛擬內存,有時我們會
看到這么一個現象:linux物理內存還有很多,但是交換空間也使用了很多。其實,這並不奇怪,例如,一個佔用很大內存的進程運行時,需要耗費很多內存資
源,此時就會有一些不常用頁面文件被交換到虛擬內存中,但後來這個佔用很多內存資源的進程結束並釋放了很多內存時,剛才被交換出去的頁面文件並不會自動的
交換進物理內存,除非有這個必要,那麼此刻系統物理內存就會空閑很多,同時交換空間也在被使用,就出現了剛才所說的現象了。關於這點,不用擔心什麼,只要
知道是怎麼一回事就可以了。
最後,交換空間的頁面在使用時會首
先被交換到物理內存,如果此時沒有足夠的物理內存來容納這些頁面,它們又會被馬上交換出去,如此以來,虛擬內存中可能沒有足夠空間來存儲這些交換頁面,最
終會導致linux出現假死機、服務異常等問題,linux雖然可以在一段時間內自行恢復,但是恢復後的系統已經基本不可用了。
因此,合理規劃和設計linux內存的使用,是非常重要的.
內存的監控
作為一名linux系統管理員,監控內存的使用狀態是非常重要的,通過監控有助於了解內存的使用狀態,比如內存佔用是否正常,內存是否緊缺等等,監控內存最常使用的命令有free、top等,下面是某個系統free的輸出:
[haixigov@WEBServer ~]$ free
total used free shared buffers cached
Mem: 16402432 16360492 41940 0 465404 12714880
-/+ buffers/cache: 3180208 13222224
Swap: 8193108 264 8192844

我們解釋下輸出結果中每個選項的含義:
首先是第一行:
 total:物理內存的總大小。
 used:已經使用的物理內存多小。
 free:空閑的物理內存值。
 shared:多個進程共享的內存值。
 buffers/cached:磁碟緩存的大小。
第二行Mem:代表物理內存使用情況。
第三行(-/+ buffers/cached):代表磁碟緩存使用狀態。
第四行:Swap表示交換空間內存使用狀態。
free命令輸出的內存狀態,可以通過兩個角度來查看:一個是從內核的角度來看,一個是從應用層的角度來看的。

從內核的角度來查看內存的狀態
就是內核目前可以直接分配到,不需要額外的操作,即為上面free命令輸出中第二行Mem項的值,可以看出,此系統物理內存有16G,空閑的內存只有41940K,也就是40M多一點,我們來做一個這樣的計算:
16402432-16360492=41940

其實就是總的物理內存減去已經使用的物理內存得到的就是空閑的物理內存大小,注意這里的可用內存值41940並不包含處於buffers和cached狀態的內存大小。

如果你認為這個系統空閑內存太小,那你就錯了,實際上,內核完全控制著內存的使用情況,linux會在需要內存的時候,或在系統運行逐步推進時,將buffers和cached狀態的內存變為free狀態的內存,以供系統使用。

從應用層的角度來看系統內存的使用狀態
也就是linux上運行的應用程序可以使用的內存大小,即free命令第三行「(-/+ buffers/cached)」的輸出,可以看到,此系統已經使用的內存才3180208K,而空閑的內存達到13222224K,繼續做這樣一個計算:
41940+(465404+12714880)=13222224

過這個等式可知,應用程序可用的物理內存值是Mem項的free值加上buffers和cached值之和,也就是說,這個free值是包括
buffers和cached項大小的,對於應用程序來說,buffers/cached佔有的內存是可用的,因為buffers/cached是為了提
高文件讀取的性能,當應用程序需要用到內存的時候,buffers/cached會很快地被回收,以供應用程序使用。

buffers與cached的異同

Linux
操作系統中,當應用程序需要讀取文件中的數據時,操作系統先分配一些內存,將數據從磁碟讀入到這些內存中,然後再將數據分發給應用程序;當需要往文件中寫
數據時,操作系統先分配內存接收用戶數據,然後再將數據從內存寫到磁碟上。然而,如果有大量數據需要從磁碟讀取到內存或者由內存寫入磁碟時,系統的讀寫性
能就變得非常低下,因為無論是從磁碟讀數據,還是寫數據到磁碟,都是一個很消耗時間和資源的過程,在這種情況下,linux引入了buffers和
cached機制。

buffers與cached都是內存操作,用來保存系統曾經打開過的文件以及文件屬性信息,這樣當操作系統需要讀取
某些文件時,會首先在buffers與cached內存區查找,如果找到,直接讀出傳送給應用程序,如果沒有找到需要數據,才從磁碟讀取,這就是操作系統
的緩存機制,通過緩存,大大提高了操作系統的性能。但buffers與cached緩沖的內容卻是不同的。

buffers是用來緩沖塊設
備做的,它只記錄文件系統的元數據(metadata)以及 tracking in-flight
pages,而cached是用來給文件做緩沖。更通俗一點說:buffers主要用來存放目錄裡面有什麼內容,文件的屬性以及許可權等等。而cached
直接用來記憶我們打開過的文件和程序。

為了驗證我們的結論是否正確,可以通過vi打開一個非常大的文件,看看cached的變化,然後再次vi這個文件,感覺一下兩次打開的速度有何異同,是不是第二次打開的速度明顯快於第一次呢?
接著執行下面的命令:
find /* -name *.conf
看看buffers的值是否變化,然後重復執行find命令,看看兩次顯示速度有何不同。
Linux操作系統的內存運行原理,很大程度上是根據伺服器的需求來設計的,例如系統的緩沖機制會把經常使用到的文件和數據緩存在cached
中,linux總是在力求緩存更多的數據和信息,這樣再次需要這些數據時可以直接從內存中取,而不需要有一個漫長的磁碟操作,這種設計思路提高了系統的整
體性能。
交換空間swap的使用
雖然現在的內存已經變得非常廉價,但是swap仍然有很大的使用價值,合理的規劃和使用swap分區,對系統穩定運行至關重要。Linux下可以使用文件系統中的一個常規文件或者一個獨立分區作為交換空間使用。同時linux允許使用多個交換分區或者交換文件。

創建swap交換空間
創建交換空間所需的交換文件是一個普通的文件,但是,創建交換文件與創建普通文件不同,必須通過dd命令來完成,同時這個文件必須位於本地硬碟上,不能在網路文件系統(NFS)上創建swap交換文件。例如:
[root@localhost ~]# dd if=/dev/zero of=/data/swapfile bs=1024 count=65536
65536+0 records in
65536+0 records out
這樣就創建一個有連續空間的交換文件,大小為60M左右,關於dd命令做簡單的講述:
if=輸入文件,或者設備名稱。
of=輸出文件或者設備名稱。
ibs=bytes 表示一次讀入bytes 個位元組(即一個塊大小為 bytes 個位元組)。
obs=bytes 表示一次寫bytes 個位元組(即一個塊大小為 bytes 個位元組)。
bs=bytes,同時設置讀寫塊的大小,以bytes為單位,此參數可代替 ibs 和 obs。
count=blocks 僅拷貝blocks個塊。
skip=blocks 表示從輸入文件開頭跳過 blocks 個塊後再開始復制。
seek=blocks表示從輸出文件開頭跳過 blocks 個塊後再開始復制。(通常只有當輸出文件是磁碟或磁帶時才有效)
這里的輸入設備/dev/zero代表一個輸出永遠為0的設備文件,使用它作輸入可以得到全為空的文件。
激活和使用swap
首先通過mkswap命令指定作為交換空間的設備或者文件:
[root@localhost ~]#mkswap /data/swapfile
Setting up swapspace version 1, size = 67104 kB
[root@localhost backup]# free
total used free shared buffers cached
Mem: 2066632 1998188 68444 0 26160 1588044
-/+ buffers/cache: 383984 1682648
Swap: 4088500 101036 3987464
從上面輸出可知,我們指定了一個67104 kB的交換空間,而此時新建的交換空間還未被使用,下面簡單介紹下mkswap命令,mkswap的一般使用格式為:
mkswap [參數] [設備名稱或文件][交換區大小]
參數:
-c:建立交換區前,先檢查是否有損壞的區塊。
-v0:建立舊式交換區,此為預設值。
-v1:建立新式交換區。
交換區大小:指定交換區的大小,單位為1024位元組。
設置交換分區後,接著通過swapon命令激活swap:
[root@localhost ~]#/usr/sbin/swapon /data/swapfile
[root@localhost backup]# free
total used free shared buffers cached
Mem: 2066632 1997668 68964 0 27404 1588880
-/+ buffers/cache: 381384 1685248
Swap: 4154028 100976 4053052


過free命令可以看出,swap大小已經由4088500k變為4154028k,相差的值是60M左右,剛好等於我們增加的一個交換文件大小,這說明
新增的交換分區已經可以使用了,但是如果linux重啟,那麼新增的swap空間將變得不可用,因此需要在/etc/fstab中添加自動載入設置:
/data/swapfile none swap sw 0 0
如此以來,linux在重啟後就可以實現自動載入swap分區了。其實linux在啟動過程中會執行「swapon -a」命令,此命令會載入列在/etc/fstab中的所有交換空間。

移除swap
通過swapoff即可移除一個交換空間
[root@localhost ~]#/usr/sbin/swapoff /data/swapfile
其實也可以通過「swapoff -a」移除在/etc/fstab中定義的所有交換空間,這里的「swapoff -a」與上面提到的「swapon -a」對應。執行「swapoff -a」後,free命令輸出如下:
[root@localhost backup]# free
total used free shared buffers cached
Mem: 2066632 2048724 17908 0 30352 1642748
-/+ buffers/cache: 375624 1691008
Swap: 0 0 0

⑷ Linux內存機制(swap)

我們知道,直接從物理內存讀寫數據要比從硬碟讀寫數據要快的多,因此,我們希望所有數據的讀取和寫入都在內存完成,而內存是有限的,這樣就引出了物理內存與虛擬內存的概念。

物理內存就是系統硬體提供的內存大小,是真正的內存,相對於物理內存,在linux下還有一個虛擬內存的概念,虛擬內存就是為了滿足物理內存的不足而提出的策略,它是利用磁碟空間虛擬出的一塊邏輯內存,用作虛擬內存的磁碟空間被稱為交換空間(Swap Space)。

作為物理內存的擴展,linux會在物理內存不足時,使用交換分區的虛擬內存,更詳細的說,就是內核會將暫時不用的內存塊信息寫到交換空間,這樣以來,物理內存得到了釋放,這塊內存就可以用於其它目的,當需要用到原始的內容時,這些信息會被重新從交換空間讀入物理內存。

Linux的內存管理採取的是分頁存取機制,為了保證物理內存能得到充分的利用,內核會在適當的時候將物理內存中不經常使用的數據塊自動交換到虛擬內存中,而將經常使用的信息保留到物理內存。

要深入了解linux內存運行機制,需要知道下面提到的幾個方面:

Linux系統會不時的進行頁面交換操作,以保持盡可能多的空閑物理內存,即使並沒有什麼事情需要內存,Linux也會交換出暫時不用的內存頁面。這可以避免等待交換所需的時間。

Linux 進行頁面交換是有條件的,不是所有頁面在不用時都交換到虛擬內存,linux內核根據」最近最經常使用「演算法,僅僅將一些不經常使用的頁面文件交換到虛擬 內存,有時我們會看到這么一個現象:linux物理內存還有很多,但是交換空間也使用了很多。其實,這並不奇怪,例如,一個佔用很大內存的進程運行時,需 要耗費很多內存資源,此時就會有一些不常用頁面文件被交換到虛擬內存中,但後來這個佔用很多內存資源的進程結束並釋放了很多內存時,剛才被交換出去的頁面 文件並不會自動的交換進物理內存,除非有這個必要,那麼此刻系統物理內存就會空閑很多,同時交換空間也在被使用,就出現了剛才所說的現象了。關於這點,不 用擔心什麼,只要知道是怎麼一回事就可以了。

交換空間的頁面在使用時會首先被交換到物理內存,如果此時沒有足夠的物理內存來容納這些頁 面,它們又會被馬上交換出去,如此以來,虛擬內存中可能沒有足夠空間來存儲這些交換頁面,最終會導致linux出現假死機、服務異常等問題,linux雖 然可以在一段時間內自行恢復,但是恢復後的系統已經基本不可用了。

因此,合理規劃和設計Linux內存的使用,是非常重要的.

在Linux 操作系統中,當應用程序需要讀取文件中的數據時,操作系統先分配一些內存,將數據從磁碟讀入到這些內存中,然後再將數據分發給應用程序;當需要往文件中寫 數據時,操作系統先分配內存接收用戶數據,然後再將數據從內存寫到磁碟上。然而,如果有大量數據需要從磁碟讀取到內存或者由內存寫入磁碟時,系統的讀寫性 能就變得非常低下,因為無論是從磁碟讀數據,還是寫數據到磁碟,都是一個很消耗時間和資源的過程,在這種情況下,Linux引入了buffers和 cached機制。

buffers與cached都是內存操作,用來保存系統曾經打開過的文件以及文件屬性信息,這樣當操作系統需要讀取某些文件時,會首先在buffers 與cached內存區查找,如果找到,直接讀出傳送給應用程序,如果沒有找到需要數據,才從磁碟讀取,這就是操作系統的緩存機制,通過緩存,大大提高了操 作系統的性能。但buffers與cached緩沖的內容卻是不同的。

buffers是用來緩沖塊設備做的,它只記錄文件系統的元數據(metadata)以及 tracking in-flight pages,而cached是用來給文件做緩沖。更通俗一點說:buffers主要用來存放目錄裡面有什麼內容,文件的屬性以及許可權等等。而cached直接用來記憶我們打開過的文件和程序。

為了驗證我們的結論是否正確,可以通過vi打開一個非常大的文件,看看cached的變化,然後再次vi這個文件,感覺一下兩次打開的速度有何異同,是不是第二次打開的速度明顯快於第一次呢?接著執行下面的命令:

find / -name .conf 看看buffers的值是否變化,然後重復執行find命令,看看兩次顯示速度有何不同。

上面這個60代表物理內存在使用40%的時候才會使用swap(參考網路資料:當剩餘物理內存低於40%(40=100-60)時,開始使用交換空間) swappiness=0的時候表示最大限度使用物理內存,然後才是 swap空間,swappiness=100的時候表示積極的使用swap分區,並且把內存上的數據及時的搬運到swap空間裡面。

值越大表示越傾向於使用swap。可以設為0,這樣做並不會禁止對swap的使用,只是最大限度地降低了使用swap的可能性。

通常情況下:swap分區設置建議是內存的兩倍 (內存小於等於4G時),如果內存大於4G,swap只要比內存大就行。另外盡量的將swappiness調低,這樣系統的性能會更好。

B. 修改swappiness參數

永久性修改:

立即生效,重啟也可以生效。

一般系統是不會自動釋放內存的 關鍵的配置文件/proc/sys/vm/drop_caches。這個文件中記錄了緩存釋放的參數,默認值為0,也就是不釋放緩存。他的值可以為0~3之間的任意數字,代表著不同的含義:

0 – 不釋放 1 – 釋放頁緩存 2 – 釋放dentries和inodes 3 – 釋放所有緩存

前提:首先要保證內存剩餘要大於等於swap使用量,否則會宕機!根據內存機制,swap分區一旦釋放,所有存放在swap分區的文件都會轉存到物理內存上。通常通過重新掛載swap分區完成釋放swap。
a.查看當前swap分區掛載在哪?b.關停這個分區 c.查看狀態:d.查看swap分區是否關停,最下面一行顯示全 e.將swap掛載到/dev/sda5上 f.查看掛載是否成功

⑸ linux分頁機制二級頁表問題

顯然是印刷錯誤(或筆誤),你自己看後面的詳細說明。 It then uses PT2 to index into the
second-level page table just found and extract entry 3, 在 second-level table 里PT2索引的是 entry 3,說明 PT2=3,前面專的 PT2=2 是印刷錯誤。屬

⑹ linux中使用了什麼內存管理方法,為什麼

「事實勝於雄辯」,我們用一個小例子(原形取自《User-Level Memory Management》)來展示上面所講的各種內存區的差別與位置。

進程的地址空間對應的描述結構是「內存描述符結構」,它表示進程的全部地址空間,——包含了和進程地址空間有關的全部信息,其中當然包含進程的內存區域。

進程內存的分配與回收

創建進程fork()、程序載入execve()、映射文件mmap()、動態內存分配malloc()/brk()等進程相關操作都需要分配內存給進程。不過這時進程申請和獲得的還不是實際內存,而是虛擬內存,准確的說是「內存區域」。進程對內存區域的分配最終都會歸結到do_mmap()函數上來(brk調用被單獨以系統調用實現,不用do_mmap()),

內核使用do_mmap()函數創建一個新的線性地址區間。但是說該函數創建了一個新VMA並不非常准確,因為如果創建的地址區間和一個已經存在的地址區間相鄰,並且它們具有相同的訪問許可權的話,那麼兩個區間將合並為一個。如果不能合並,那麼就確實需要創建一個新的VMA了。但無論哪種情況,do_mmap()函數都會將一個地址區間加入到進程的地址空間中--無論是擴展已存在的內存區域還是創建一個新的區域。

同樣,釋放一個內存區域應使用函數do_ummap(),它會銷毀對應的內存區域。

如何由虛變實!

從上面已經看到進程所能直接操作的地址都為虛擬地址。當進程需要內存時,從內核獲得的僅僅是虛擬的內存區域,而不是實際的物理地址,進程並沒有獲得物理內存(物理頁面——頁的概念請大家參考硬體基礎一章),獲得的僅僅是對一個新的線性地址區間的使用權。實際的物理內存只有當進程真的去訪問新獲取的虛擬地址時,才會由「請求頁機制」產生「缺頁」異常,從而進入分配實際頁面的常式。

該異常是虛擬內存機制賴以存在的基本保證——它會告訴內核去真正為進程分配物理頁,並建立對應的頁表,這之後虛擬地址才實實在在地映射到了系統的物理內存上。(當然,如果頁被換出到磁碟,也會產生缺頁異常,不過這時不用再建立頁表了)

這種請求頁機制把頁面的分配推遲到不能再推遲為止,並不急於把所有的事情都一次做完(這種思想有點像設計模式中的代理模式(proxy))。之所以能這么做是利用了內存訪問的「局部性原理」,請求頁帶來的好處是節約了空閑內存,提高了系統的吞吐率。要想更清楚地了解請求頁機制,可以看看《深入理解linux內核》一書。

這里我們需要說明在內存區域結構上的nopage操作。當訪問的進程虛擬內存並未真正分配頁面時,該操作便被調用來分配實際的物理頁,並為該頁建立頁表項。在最後的例子中我們會演示如何使用該方法。

系統物理內存管理

雖然應用程序操作的對象是映射到物理內存之上的虛擬內存,但是處理器直接操作的卻是物理內存。所以當應用程序訪問一個虛擬地址時,首先必須將虛擬地址轉化成物理地址,然後處理器才能解析地址訪問請求。地址的轉換工作需要通過查詢頁表才能完成,概括地講,地址轉換需要將虛擬地址分段,使每段虛地址都作為一個索引指向頁表,而頁表項則指向下一級別的頁表或者指向最終的物理頁面。

每個進程都有自己的頁表。進程描述符的pgd域指向的就是進程的頁全局目錄。下面我們借用《linux設備驅動程序》中的一幅圖大致看看進程地址空間到物理頁之間的轉換關系。

上面的過程說起來簡單,做起來難呀。因為在虛擬地址映射到頁之前必須先分配物理頁——也就是說必須先從內核中獲取空閑頁,並建立頁表。下面我們介紹一下內核管理物理內存的機制。

物理內存管理(頁管理)

Linux內核管理物理內存是通過分頁機制實現的,它將整個內存劃分成無數個4k(在i386體系結構中)大小的頁,從而分配和回收內存的基本單位便是內存頁了。利用分頁管理有助於靈活分配內存地址,因為分配時不必要求必須有大塊的連續內存[3],系統可以東一頁、西一頁的湊出所需要的內存供進程使用。雖然如此,但是實際上系統使用內存時還是傾向於分配連續的內存塊,因為分配連續內存時,頁表不需要更改,因此能降低TLB的刷新率(頻繁刷新會在很大程度上降低訪問速度)。

鑒於上述需求,內核分配物理頁面時為了盡量減少不連續情況,採用了「夥伴」關系來管理空閑頁面。夥伴關系分配演算法大家應該不陌生——幾乎所有操作系統方面的書都會提到,我們不去詳細說它了,如果不明白可以參看有關資料。這里只需要大家明白Linux中空閑頁面的組織和管理利用了夥伴關系,因此空閑頁面分配時也需要遵循夥伴關系,最小單位只能是2的冪倍頁面大小。內核中分配空閑頁面的基本函數是get_free_page/get_free_pages,它們或是分配單頁或是分配指定的頁面(2、4、8…512頁)。

注意:get_free_page是在內核中分配內存,不同於malloc在用戶空間中分配,malloc利用堆動態分配,實際上是調用brk()系統調用,該調用的作用是擴大或縮小進程堆空間(它會修改進程的brk域)。如果現有的內存區域不夠容納堆空間,則會以頁面大小的倍數為單位,擴張或收縮對應的內存區域,但brk值並非以頁面大小為倍數修改,而是按實際請求修改。因此Malloc在用戶空間分配內存可以以位元組為單位分配,但內核在內部仍然會是以頁為單位分配的。

另外,需要提及的是,物理頁在系統中由頁結構structpage描述,系統中所有的頁面都存儲在數組mem_map[]中,可以通過該數組找到系統中的每一頁(空閑或非空閑)。而其中的空閑頁面則可由上述提到的以夥伴關系組織的空閑頁鏈表(free_area[MAX_ORDER])來索引。

內核內存使用

Slab

所謂尺有所長,寸有所短。以頁為最小單位分配內存對於內核管理系統中的物理內存來說的確比較方便,但內核自身最常使用的內存卻往往是很小(遠遠小於一頁)的內存塊——比如存放文件描述符、進程描述符、虛擬內存區域描述符等行為所需的內存都不足一頁。這些用來存放描述符的內存相比頁面而言,就好比是麵包屑與麵包。一個整頁中可以聚集多個這些小塊內存;而且這些小塊內存塊也和麵包屑一樣頻繁地生成/銷毀。

為了滿足內核對這種小內存塊的需要,Linux系統採用了一種被稱為slab分配器的技術。Slab分配器的實現相當復雜,但原理不難,其核心思想就是「存儲池[4]」的運用。內存片段(小塊內存)被看作對象,當被使用完後,並不直接釋放而是被緩存到「存儲池」里,留做下次使用,這無疑避免了頻繁創建與銷毀對象所帶來的額外負載。

Slab技術不但避免了內存內部分片(下文將解釋)帶來的不便(引入Slab分配器的主要目的是為了減少對夥伴系統分配演算法的調用次數——頻繁分配和回收必然會導致內存碎片——難以找到大塊連續的可用內存),而且可以很好地利用硬體緩存提高訪問速度。

Slab並非是脫離夥伴關系而獨立存在的一種內存分配方式,slab仍然是建立在頁面基礎之上,換句話說,Slab將頁面(來自於夥伴關系管理的空閑頁面鏈表)撕碎成眾多小內存塊以供分配,slab中的對象分配和銷毀使用kmem_cache_alloc與kmem_cache_free。

Kmalloc

Slab分配器不僅僅只用來存放內核專用的結構體,它還被用來處理內核對小塊內存的請求。當然鑒於Slab分配器的特點,一般來說內核程序中對小於一頁的小塊內存的請求才通過Slab分配器提供的介面Kmalloc來完成(雖然它可分配32到131072位元組的內存)。從內核內存分配的角度來講,kmalloc可被看成是get_free_page(s)的一個有效補充,內存分配粒度更靈活了。

有興趣的話,可以到/proc/slabinfo中找到內核執行現場使用的各種slab信息統計,其中你會看到系統中所有slab的使用信息。從信息中可以看到系統中除了專用結構體使用的slab外,還存在大量為Kmalloc而准備的Slab(其中有些為dma准備的)。

內核非連續內存分配(Vmalloc)

夥伴關系也好、slab技術也好,從內存管理理論角度而言目的基本是一致的,它們都是為了防止「分片」,不過分片又分為外部分片和內部分片之說,所謂內部分片是說系統為了滿足一小段內存區(連續)的需要,不得不分配了一大區域連續內存給它,從而造成了空間浪費;外部分片是指系統雖有足夠的內存,但卻是分散的碎片,無法滿足對大塊「連續內存」的需求。無論何種分片都是系統有效利用內存的障礙。slab分配器使得一個頁面內包含的眾多小塊內存可獨立被分配使用,避免了內部分片,節約了空閑內存。夥伴關系把內存塊按大小分組管理,一定程度上減輕了外部分片的危害,因為頁框分配不在盲目,而是按照大小依次有序進行,不過夥伴關系只是減輕了外部分片,但並未徹底消除。你自己比劃一下多次分配頁面後,空閑內存的剩餘情況吧。

所以避免外部分片的最終思路還是落到了如何利用不連續的內存塊組合成「看起來很大的內存塊」——這里的情況很類似於用戶空間分配虛擬內存,內存邏輯上連續,其實映射到並不一定連續的物理內存上。Linux內核借用了這個技術,允許內核程序在內核地址空間中分配虛擬地址,同樣也利用頁表(內核頁表)將虛擬地址映射到分散的內存頁上。以此完美地解決了內核內存使用中的外部分片問題。內核提供vmalloc函數分配內核虛擬內存,該函數不同於kmalloc,它可以分配較Kmalloc大得多的內存空間(可遠大於128K,但必須是頁大小的倍數),但相比Kmalloc來說,Vmalloc需要對內核虛擬地址進行重映射,必須更新內核頁表,因此分配效率上要低一些(用空間換時間)

與用戶進程相似,內核也有一個名為init_mm的mm_strcut結構來描述內核地址空間,其中頁表項pdg=swapper_pg_dir包含了系統內核空間(3G-4G)的映射關系。因此vmalloc分配內核虛擬地址必須更新內核頁表,而kmalloc或get_free_page由於分配的連續內存,所以不需要更新內核頁表。

vmalloc分配的內核虛擬內存與kmalloc/get_free_page分配的內核虛擬內存位於不同的區間,不會重疊。因為內核虛擬空間被分區管理,各司其職。進程空間地址分布從0到3G(其實是到PAGE_OFFSET,在0x86中它等於0xC0000000),從3G到vmalloc_start這段地址是物理內存映射區域(該區域中包含了內核鏡像、物理頁面表mem_map等等)比如我使用的系統內存是64M(可以用free看到),那麼(3G——3G+64M)這片內存就應該映射到物理內存,而vmalloc_start位置應在3G+64M附近(說"附近"因為是在物理內存映射區與vmalloc_start期間還會存在一個8M大小的gap來防止躍界),vmalloc_end的位置接近4G(說"接近"是因為最後位置系統會保留一片128k大小的區域用於專用頁面映射,還有可能會有高端內存映射區,這些都是細節,這里我們不做糾纏)。

上圖是內存分布的模糊輪廓

由get_free_page或Kmalloc函數所分配的連續內存都陷於物理映射區域,所以它們返回的內核虛擬地址和實際物理地址僅僅是相差一個偏移量(PAGE_OFFSET),你可以很方便的將其轉化為物理內存地址,同時內核也提供了virt_to_phys()函數將內核虛擬空間中的物理映射區地址轉化為物理地址。要知道,物理內存映射區中的地址與內核頁表是有序對應的,系統中的每個物理頁面都可以找到它對應的內核虛擬地址(在物理內存映射區中的)。

而vmalloc分配的地址則限於vmalloc_start與vmalloc_end之間。每一塊vmalloc分配的內核虛擬內存都對應一個vm_struct結構體(可別和vm_area_struct搞混,那可是進程虛擬內存區域的結構),不同的內核虛擬地址被4k大小的空閑區間隔,以防止越界——見下圖)。與進程虛擬地址的特性一樣,這些虛擬地址與物理內存沒有簡單的位移關系,必須通過內核頁表才可轉換為物理地址或物理頁。它們有可能尚未被映射,在發生缺頁時才真正分配物理頁面。

這里給出一個小程序幫助大家認清上面幾種分配函數所對應的區域。

#include<linux/mole.h>

#include<linux/slab.h>

#include<linux/vmalloc.h>

unsignedchar*pagemem;

unsignedchar*kmallocmem;

unsignedchar*vmallocmem;

intinit_mole(void)

{

pagemem = get_free_page(0);

printk("<1>pagemem=%s",pagemem);

kmallocmem = kmalloc(100,0);

printk("<1>kmallocmem=%s",kmallocmem);

vmallocmem = vmalloc(1000000);

printk("<1>vmallocmem=%s",vmallocmem);

}

voidcleanup_mole(void)

{

free_page(pagemem);

kfree(kmallocmem);

vfree(vmallocmem);

}

實例

內存映射(mmap)是Linux操作系統的一個很大特色,它可以將系統內存映射到一個文件(設備)上,以便可以通過訪問文件內容來達到訪問內存的目的。這樣做的最大好處是提高了內存訪問速度,並且可以利用文件系統的介面編程(設備在Linux中作為特殊文件處理)訪問內存,降低了開發難度。許多設備驅動程序便是利用內存映射功能將用戶空間的一段地址關聯到設備內存上,無論何時,只要內存在分配的地址范圍內進行讀寫,實際上就是對設備內存的訪問。同時對設備文件的訪問也等同於對內存區域的訪問,也就是說,通過文件操作介面可以訪問內存。Linux中的X伺服器就是一個利用內存映射達到直接高速訪問視頻卡內存的例子。

熟悉文件操作的朋友一定會知道file_operations結構中有mmap方法,在用戶執行mmap系統調用時,便會調用該方法來通過文件訪問內存——不過在調用文件系統mmap方法前,內核還需要處理分配內存區域(vma_struct)、建立頁表等工作。對於具體映射細節不作介紹了,需要強調的是,建立頁表可以採用remap_page_range方法一次建立起所有映射區的頁表,或利用vma_struct的nopage方法在缺頁時現場一頁一頁的建立頁表。第一種方法相比第二種方法簡單方便、速度快,但是靈活性不高。一次調用所有頁表便定型了,不適用於那些需要現場建立頁表的場合——比如映射區需要擴展或下面我們例子中的情況。

我們這里的實例希望利用內存映射,將系統內核中的一部分虛擬內存映射到用戶空間,以供應用程序讀取——你可利用它進行內核空間到用戶空間的大規模信息傳輸。因此我們將試圖寫一個虛擬字元設備驅動程序,通過它將系統內核空間映射到用戶空間——將內核虛擬內存映射到用戶虛擬地址。從上一節已經看到Linux內核空間中包含兩種虛擬地址:一種是物理和邏輯都連續的物理內存映射虛擬地址;另一種是邏輯連續但非物理連續的vmalloc分配的內存虛擬地址。我們的例子程序將演示把vmalloc分配的內核虛擬地址映射到用戶地址空間的全過程。

程序里主要應解決兩個問題:

第一是如何將vmalloc分配的內核虛擬內存正確地轉化成物理地址?

因為內存映射先要獲得被映射的物理地址,然後才能將其映射到要求的用戶虛擬地址上。我們已經看到內核物理內存映射區域中的地址可以被內核函數virt_to_phys轉換成實際的物理內存地址,但對於vmalloc分配的內核虛擬地址無法直接轉化成物理地址,所以我們必須對這部分虛擬內存格外「照顧」——先將其轉化成內核物理內存映射區域中的地址,然後在用virt_to_phys變為物理地址。

轉化工作需要進行如下步驟:

  • 找到vmalloc虛擬內存對應的頁表,並尋找到對應的頁表項。

  • 獲取頁表項對應的頁面指針

  • 通過頁面得到對應的內核物理內存映射區域地址。

  • 如下圖所示:

    第二是當訪問vmalloc分配區時,如果發現虛擬內存尚未被映射到物理頁,則需要處理「缺頁異常」。因此需要我們實現內存區域中的nopaga操作,以能返回被映射的物理頁面指針,在我們的實例中就是返回上面過程中的內核物理內存映射區域中的地址。由於vmalloc分配的虛擬地址與物理地址的對應關系並非分配時就可確定,必須在缺頁現場建立頁表,因此這里不能使用remap_page_range方法,只能用vma的nopage方法一頁一頁的建立。

    程序組成

    map_driver.c,它是以模塊形式載入的虛擬字元驅動程序。該驅動負責將一定長的內核虛擬地址(vmalloc分配的)映射到設備文件上。其中主要的函數有——vaddress_to_kaddress()負責對vmalloc分配的地址進行頁表解析,以找到對應的內核物理映射地址(kmalloc分配的地址);map_nopage()負責在進程訪問一個當前並不存在的VMA頁時,尋找該地址對應的物理頁,並返回該頁的指針。

    test.c它利用上述驅動模塊對應的設備文件在用戶空間讀取讀取內核內存。結果可以看到內核虛擬地址的內容(ok!),被顯示在了屏幕上。

    執行步驟

    編譯map_driver.c為map_driver.o模塊,具體參數見Makefile

    載入模塊:insmodmap_driver.o

    生成對應的設備文件

    1在/proc/devices下找到map_driver對應的設備命和設備號:grepmapdrv/proc/devices

    2建立設備文件mknodmapfilec 254 0(在我的系統里設備號為254)

    利用maptest讀取mapfile文件,將取自內核的信息列印到屏幕上。

    ⑺ 關於Linux-0.11內核_段頁內存管理的問題

    實際上,分段和分頁在某種程度上有點沉余,因為它們都可以劃分進程的物理地址空間:分段可以給每個進程分配不同的線性地址空間,而分頁可以把同一線性地址空間映射到不同的物理空間。採用分頁機制後,就沒必要再將進程分配到不同的線性地址空間。但Linux-0.11版通過共享頁目錄和線性地址分段,利用了分段機制,即採用段頁機制。0.99及以後的版本中不再共享頁目錄,不再對線性地址分段,使每個進程都擁有4GB線性空間,邏輯地址=線性地址,巧妙的「繞過了」分段機制,即採用分頁機制。
    Linux-0.11採用段頁機制,具體如下:
    內存物理地址0處開始放著一頁頁目錄表和四頁頁表。這一個頁目錄表是所有進程共享的。其後的四頁頁表正好映射16M物理內存,是進程0的頁表。以後創建進程時頁表要從主內存區申請,而頁目錄項直接從頁目錄表中取。這樣進程和頁目錄表頁存在一一對應關系,任務號為nr的進程,對應頁目錄的第nr*16 ~ (nr+1)*16一共16個目錄項。共有1K*1K*4K=4G的線性空間。這4G的線性空間由64個進程共享,通過對線性地址進行分段,每個進程都有64MB的線性空間,這樣每個進程都會有16個連續的頁目錄項。

    閱讀全文

    與linux內存分頁管理機制原理相關的資料

    熱點內容
    抖音如何上直播網站 瀏覽:887
    錄屏截圖大師保存的文件在哪裡 瀏覽:751
    紅河谷第二個版本 瀏覽:895
    c語言如何讓整型數據的商為小數 瀏覽:863
    怎樣下東西不要密碼 瀏覽:320
    小米手機拍照後文件名要怎麼設置 瀏覽:429
    每年程序員就業形勢 瀏覽:425
    安卓手機如何卸載程序 瀏覽:955
    相機能用qq不能用 瀏覽:319
    win10如何設置成xp配置文件 瀏覽:748
    蘋果隔空傳遞以後文件在哪裡 瀏覽:927
    打開ps顯示文件名無效 瀏覽:379
    做推廣哪個網站靠譜 瀏覽:588
    qq飛車如何綁定好友 瀏覽:873
    php編程語言在哪裡 瀏覽:302
    矢量文件有哪些格式 瀏覽:790
    文書檔案長期保存的文件有哪些 瀏覽:945
    如何把pdf文字復制粘貼到word文檔 瀏覽:507
    勤哲價格qinzheapp 瀏覽:709
    騰訊小說下載的文件在哪裡 瀏覽:106

    友情鏈接