① linux段錯誤問題
linux內存管理把這個內存空間分為了兩塊 一塊是0-3G的用戶空間,一塊是3G-4G的內核空間。一般的程序分配內存是在用戶空間分配。所以,這個地址是正常的。
malloc分配內存的時候,是在一個線性區裡面分配,每個程序都有屬於自己的線性區。如果這個地址恰好分配在不屬於自己進程的線性區裡面。那麼肯定是會報段錯誤。
段錯誤不是內核空間才會發生的事情。
用戶程序只能訪問屬於自己的線性區,這個線性區是屬於用戶空間的。用戶程序不能直接訪問內核空間。
這些知識都是屬於linux內核的。如果不清楚的話,可以看看內核方面的書。
② linux中使用了什麼內存管理方法,為什麼
「事實勝於雄辯」,我們用一個小例子(原形取自《User-Level Memory Management》)來展示上面所講的各種內存區的差別與位置。
進程的地址空間對應的描述結構是「內存描述符結構」,它表示進程的全部地址空間,——包含了和進程地址空間有關的全部信息,其中當然包含進程的內存區域。
進程內存的分配與回收
創建進程fork()、程序載入execve()、映射文件mmap()、動態內存分配malloc()/brk()等進程相關操作都需要分配內存給進程。不過這時進程申請和獲得的還不是實際內存,而是虛擬內存,准確的說是「內存區域」。進程對內存區域的分配最終都會歸結到do_mmap()函數上來(brk調用被單獨以系統調用實現,不用do_mmap()),
內核使用do_mmap()函數創建一個新的線性地址區間。但是說該函數創建了一個新VMA並不非常准確,因為如果創建的地址區間和一個已經存在的地址區間相鄰,並且它們具有相同的訪問許可權的話,那麼兩個區間將合並為一個。如果不能合並,那麼就確實需要創建一個新的VMA了。但無論哪種情況,do_mmap()函數都會將一個地址區間加入到進程的地址空間中--無論是擴展已存在的內存區域還是創建一個新的區域。
同樣,釋放一個內存區域應使用函數do_ummap(),它會銷毀對應的內存區域。
如何由虛變實!
從上面已經看到進程所能直接操作的地址都為虛擬地址。當進程需要內存時,從內核獲得的僅僅是虛擬的內存區域,而不是實際的物理地址,進程並沒有獲得物理內存(物理頁面——頁的概念請大家參考硬體基礎一章),獲得的僅僅是對一個新的線性地址區間的使用權。實際的物理內存只有當進程真的去訪問新獲取的虛擬地址時,才會由「請求頁機制」產生「缺頁」異常,從而進入分配實際頁面的常式。
該異常是虛擬內存機制賴以存在的基本保證——它會告訴內核去真正為進程分配物理頁,並建立對應的頁表,這之後虛擬地址才實實在在地映射到了系統的物理內存上。(當然,如果頁被換出到磁碟,也會產生缺頁異常,不過這時不用再建立頁表了)
這種請求頁機制把頁面的分配推遲到不能再推遲為止,並不急於把所有的事情都一次做完(這種思想有點像設計模式中的代理模式(proxy))。之所以能這么做是利用了內存訪問的「局部性原理」,請求頁帶來的好處是節約了空閑內存,提高了系統的吞吐率。要想更清楚地了解請求頁機制,可以看看《深入理解linux內核》一書。
這里我們需要說明在內存區域結構上的nopage操作。當訪問的進程虛擬內存並未真正分配頁面時,該操作便被調用來分配實際的物理頁,並為該頁建立頁表項。在最後的例子中我們會演示如何使用該方法。
系統物理內存管理
雖然應用程序操作的對象是映射到物理內存之上的虛擬內存,但是處理器直接操作的卻是物理內存。所以當應用程序訪問一個虛擬地址時,首先必須將虛擬地址轉化成物理地址,然後處理器才能解析地址訪問請求。地址的轉換工作需要通過查詢頁表才能完成,概括地講,地址轉換需要將虛擬地址分段,使每段虛地址都作為一個索引指向頁表,而頁表項則指向下一級別的頁表或者指向最終的物理頁面。
每個進程都有自己的頁表。進程描述符的pgd域指向的就是進程的頁全局目錄。下面我們借用《linux設備驅動程序》中的一幅圖大致看看進程地址空間到物理頁之間的轉換關系。
上面的過程說起來簡單,做起來難呀。因為在虛擬地址映射到頁之前必須先分配物理頁——也就是說必須先從內核中獲取空閑頁,並建立頁表。下面我們介紹一下內核管理物理內存的機制。
物理內存管理(頁管理)
Linux內核管理物理內存是通過分頁機制實現的,它將整個內存劃分成無數個4k(在i386體系結構中)大小的頁,從而分配和回收內存的基本單位便是內存頁了。利用分頁管理有助於靈活分配內存地址,因為分配時不必要求必須有大塊的連續內存[3],系統可以東一頁、西一頁的湊出所需要的內存供進程使用。雖然如此,但是實際上系統使用內存時還是傾向於分配連續的內存塊,因為分配連續內存時,頁表不需要更改,因此能降低TLB的刷新率(頻繁刷新會在很大程度上降低訪問速度)。
鑒於上述需求,內核分配物理頁面時為了盡量減少不連續情況,採用了「夥伴」關系來管理空閑頁面。夥伴關系分配演算法大家應該不陌生——幾乎所有操作系統方面的書都會提到,我們不去詳細說它了,如果不明白可以參看有關資料。這里只需要大家明白Linux中空閑頁面的組織和管理利用了夥伴關系,因此空閑頁面分配時也需要遵循夥伴關系,最小單位只能是2的冪倍頁面大小。內核中分配空閑頁面的基本函數是get_free_page/get_free_pages,它們或是分配單頁或是分配指定的頁面(2、4、8…512頁)。
注意:get_free_page是在內核中分配內存,不同於malloc在用戶空間中分配,malloc利用堆動態分配,實際上是調用brk()系統調用,該調用的作用是擴大或縮小進程堆空間(它會修改進程的brk域)。如果現有的內存區域不夠容納堆空間,則會以頁面大小的倍數為單位,擴張或收縮對應的內存區域,但brk值並非以頁面大小為倍數修改,而是按實際請求修改。因此Malloc在用戶空間分配內存可以以位元組為單位分配,但內核在內部仍然會是以頁為單位分配的。
另外,需要提及的是,物理頁在系統中由頁結構structpage描述,系統中所有的頁面都存儲在數組mem_map[]中,可以通過該數組找到系統中的每一頁(空閑或非空閑)。而其中的空閑頁面則可由上述提到的以夥伴關系組織的空閑頁鏈表(free_area[MAX_ORDER])來索引。
內核內存使用
Slab
所謂尺有所長,寸有所短。以頁為最小單位分配內存對於內核管理系統中的物理內存來說的確比較方便,但內核自身最常使用的內存卻往往是很小(遠遠小於一頁)的內存塊——比如存放文件描述符、進程描述符、虛擬內存區域描述符等行為所需的內存都不足一頁。這些用來存放描述符的內存相比頁面而言,就好比是麵包屑與麵包。一個整頁中可以聚集多個這些小塊內存;而且這些小塊內存塊也和麵包屑一樣頻繁地生成/銷毀。
為了滿足內核對這種小內存塊的需要,Linux系統採用了一種被稱為slab分配器的技術。Slab分配器的實現相當復雜,但原理不難,其核心思想就是「存儲池[4]」的運用。內存片段(小塊內存)被看作對象,當被使用完後,並不直接釋放而是被緩存到「存儲池」里,留做下次使用,這無疑避免了頻繁創建與銷毀對象所帶來的額外負載。
Slab技術不但避免了內存內部分片(下文將解釋)帶來的不便(引入Slab分配器的主要目的是為了減少對夥伴系統分配演算法的調用次數——頻繁分配和回收必然會導致內存碎片——難以找到大塊連續的可用內存),而且可以很好地利用硬體緩存提高訪問速度。
Slab並非是脫離夥伴關系而獨立存在的一種內存分配方式,slab仍然是建立在頁面基礎之上,換句話說,Slab將頁面(來自於夥伴關系管理的空閑頁面鏈表)撕碎成眾多小內存塊以供分配,slab中的對象分配和銷毀使用kmem_cache_alloc與kmem_cache_free。
Kmalloc
Slab分配器不僅僅只用來存放內核專用的結構體,它還被用來處理內核對小塊內存的請求。當然鑒於Slab分配器的特點,一般來說內核程序中對小於一頁的小塊內存的請求才通過Slab分配器提供的介面Kmalloc來完成(雖然它可分配32到131072位元組的內存)。從內核內存分配的角度來講,kmalloc可被看成是get_free_page(s)的一個有效補充,內存分配粒度更靈活了。
有興趣的話,可以到/proc/slabinfo中找到內核執行現場使用的各種slab信息統計,其中你會看到系統中所有slab的使用信息。從信息中可以看到系統中除了專用結構體使用的slab外,還存在大量為Kmalloc而准備的Slab(其中有些為dma准備的)。
內核非連續內存分配(Vmalloc)
夥伴關系也好、slab技術也好,從內存管理理論角度而言目的基本是一致的,它們都是為了防止「分片」,不過分片又分為外部分片和內部分片之說,所謂內部分片是說系統為了滿足一小段內存區(連續)的需要,不得不分配了一大區域連續內存給它,從而造成了空間浪費;外部分片是指系統雖有足夠的內存,但卻是分散的碎片,無法滿足對大塊「連續內存」的需求。無論何種分片都是系統有效利用內存的障礙。slab分配器使得一個頁面內包含的眾多小塊內存可獨立被分配使用,避免了內部分片,節約了空閑內存。夥伴關系把內存塊按大小分組管理,一定程度上減輕了外部分片的危害,因為頁框分配不在盲目,而是按照大小依次有序進行,不過夥伴關系只是減輕了外部分片,但並未徹底消除。你自己比劃一下多次分配頁面後,空閑內存的剩餘情況吧。
所以避免外部分片的最終思路還是落到了如何利用不連續的內存塊組合成「看起來很大的內存塊」——這里的情況很類似於用戶空間分配虛擬內存,內存邏輯上連續,其實映射到並不一定連續的物理內存上。Linux內核借用了這個技術,允許內核程序在內核地址空間中分配虛擬地址,同樣也利用頁表(內核頁表)將虛擬地址映射到分散的內存頁上。以此完美地解決了內核內存使用中的外部分片問題。內核提供vmalloc函數分配內核虛擬內存,該函數不同於kmalloc,它可以分配較Kmalloc大得多的內存空間(可遠大於128K,但必須是頁大小的倍數),但相比Kmalloc來說,Vmalloc需要對內核虛擬地址進行重映射,必須更新內核頁表,因此分配效率上要低一些(用空間換時間)
與用戶進程相似,內核也有一個名為init_mm的mm_strcut結構來描述內核地址空間,其中頁表項pdg=swapper_pg_dir包含了系統內核空間(3G-4G)的映射關系。因此vmalloc分配內核虛擬地址必須更新內核頁表,而kmalloc或get_free_page由於分配的連續內存,所以不需要更新內核頁表。
vmalloc分配的內核虛擬內存與kmalloc/get_free_page分配的內核虛擬內存位於不同的區間,不會重疊。因為內核虛擬空間被分區管理,各司其職。進程空間地址分布從0到3G(其實是到PAGE_OFFSET,在0x86中它等於0xC0000000),從3G到vmalloc_start這段地址是物理內存映射區域(該區域中包含了內核鏡像、物理頁面表mem_map等等)比如我使用的系統內存是64M(可以用free看到),那麼(3G——3G+64M)這片內存就應該映射到物理內存,而vmalloc_start位置應在3G+64M附近(說"附近"因為是在物理內存映射區與vmalloc_start期間還會存在一個8M大小的gap來防止躍界),vmalloc_end的位置接近4G(說"接近"是因為最後位置系統會保留一片128k大小的區域用於專用頁面映射,還有可能會有高端內存映射區,這些都是細節,這里我們不做糾纏)。
上圖是內存分布的模糊輪廓
由get_free_page或Kmalloc函數所分配的連續內存都陷於物理映射區域,所以它們返回的內核虛擬地址和實際物理地址僅僅是相差一個偏移量(PAGE_OFFSET),你可以很方便的將其轉化為物理內存地址,同時內核也提供了virt_to_phys()函數將內核虛擬空間中的物理映射區地址轉化為物理地址。要知道,物理內存映射區中的地址與內核頁表是有序對應的,系統中的每個物理頁面都可以找到它對應的內核虛擬地址(在物理內存映射區中的)。
而vmalloc分配的地址則限於vmalloc_start與vmalloc_end之間。每一塊vmalloc分配的內核虛擬內存都對應一個vm_struct結構體(可別和vm_area_struct搞混,那可是進程虛擬內存區域的結構),不同的內核虛擬地址被4k大小的空閑區間隔,以防止越界——見下圖)。與進程虛擬地址的特性一樣,這些虛擬地址與物理內存沒有簡單的位移關系,必須通過內核頁表才可轉換為物理地址或物理頁。它們有可能尚未被映射,在發生缺頁時才真正分配物理頁面。
這里給出一個小程序幫助大家認清上面幾種分配函數所對應的區域。
#include<linux/mole.h>
#include<linux/slab.h>
#include<linux/vmalloc.h>
unsignedchar*pagemem;
unsignedchar*kmallocmem;
unsignedchar*vmallocmem;
intinit_mole(void)
{
pagemem = get_free_page(0);
printk("<1>pagemem=%s",pagemem);
kmallocmem = kmalloc(100,0);
printk("<1>kmallocmem=%s",kmallocmem);
vmallocmem = vmalloc(1000000);
printk("<1>vmallocmem=%s",vmallocmem);
}
voidcleanup_mole(void)
{
free_page(pagemem);
kfree(kmallocmem);
vfree(vmallocmem);
}
實例
內存映射(mmap)是Linux操作系統的一個很大特色,它可以將系統內存映射到一個文件(設備)上,以便可以通過訪問文件內容來達到訪問內存的目的。這樣做的最大好處是提高了內存訪問速度,並且可以利用文件系統的介面編程(設備在Linux中作為特殊文件處理)訪問內存,降低了開發難度。許多設備驅動程序便是利用內存映射功能將用戶空間的一段地址關聯到設備內存上,無論何時,只要內存在分配的地址范圍內進行讀寫,實際上就是對設備內存的訪問。同時對設備文件的訪問也等同於對內存區域的訪問,也就是說,通過文件操作介面可以訪問內存。Linux中的X伺服器就是一個利用內存映射達到直接高速訪問視頻卡內存的例子。
熟悉文件操作的朋友一定會知道file_operations結構中有mmap方法,在用戶執行mmap系統調用時,便會調用該方法來通過文件訪問內存——不過在調用文件系統mmap方法前,內核還需要處理分配內存區域(vma_struct)、建立頁表等工作。對於具體映射細節不作介紹了,需要強調的是,建立頁表可以採用remap_page_range方法一次建立起所有映射區的頁表,或利用vma_struct的nopage方法在缺頁時現場一頁一頁的建立頁表。第一種方法相比第二種方法簡單方便、速度快,但是靈活性不高。一次調用所有頁表便定型了,不適用於那些需要現場建立頁表的場合——比如映射區需要擴展或下面我們例子中的情況。
我們這里的實例希望利用內存映射,將系統內核中的一部分虛擬內存映射到用戶空間,以供應用程序讀取——你可利用它進行內核空間到用戶空間的大規模信息傳輸。因此我們將試圖寫一個虛擬字元設備驅動程序,通過它將系統內核空間映射到用戶空間——將內核虛擬內存映射到用戶虛擬地址。從上一節已經看到Linux內核空間中包含兩種虛擬地址:一種是物理和邏輯都連續的物理內存映射虛擬地址;另一種是邏輯連續但非物理連續的vmalloc分配的內存虛擬地址。我們的例子程序將演示把vmalloc分配的內核虛擬地址映射到用戶地址空間的全過程。
程序里主要應解決兩個問題:
第一是如何將vmalloc分配的內核虛擬內存正確地轉化成物理地址?
因為內存映射先要獲得被映射的物理地址,然後才能將其映射到要求的用戶虛擬地址上。我們已經看到內核物理內存映射區域中的地址可以被內核函數virt_to_phys轉換成實際的物理內存地址,但對於vmalloc分配的內核虛擬地址無法直接轉化成物理地址,所以我們必須對這部分虛擬內存格外「照顧」——先將其轉化成內核物理內存映射區域中的地址,然後在用virt_to_phys變為物理地址。
轉化工作需要進行如下步驟:
找到vmalloc虛擬內存對應的頁表,並尋找到對應的頁表項。
獲取頁表項對應的頁面指針
通過頁面得到對應的內核物理內存映射區域地址。
如下圖所示:
第二是當訪問vmalloc分配區時,如果發現虛擬內存尚未被映射到物理頁,則需要處理「缺頁異常」。因此需要我們實現內存區域中的nopaga操作,以能返回被映射的物理頁面指針,在我們的實例中就是返回上面過程中的內核物理內存映射區域中的地址。由於vmalloc分配的虛擬地址與物理地址的對應關系並非分配時就可確定,必須在缺頁現場建立頁表,因此這里不能使用remap_page_range方法,只能用vma的nopage方法一頁一頁的建立。
程序組成
map_driver.c,它是以模塊形式載入的虛擬字元驅動程序。該驅動負責將一定長的內核虛擬地址(vmalloc分配的)映射到設備文件上。其中主要的函數有——vaddress_to_kaddress()負責對vmalloc分配的地址進行頁表解析,以找到對應的內核物理映射地址(kmalloc分配的地址);map_nopage()負責在進程訪問一個當前並不存在的VMA頁時,尋找該地址對應的物理頁,並返回該頁的指針。
test.c它利用上述驅動模塊對應的設備文件在用戶空間讀取讀取內核內存。結果可以看到內核虛擬地址的內容(ok!),被顯示在了屏幕上。
執行步驟
編譯map_driver.c為map_driver.o模塊,具體參數見Makefile
載入模塊:insmodmap_driver.o
生成對應的設備文件
1在/proc/devices下找到map_driver對應的設備命和設備號:grepmapdrv/proc/devices
2建立設備文件mknodmapfilec 254 0(在我的系統里設備號為254)
利用maptest讀取mapfile文件,將取自內核的信息列印到屏幕上。
③ Linux 怎麼增大可以創建的最大線程數
檢查ulimit -a 的結果,查自看stack size:
stack size (kbytes, -s) 8192
8192KB 就是棧的大小。不能超過這個棧的數目,因此上面2)分配的buf大小超過了棧限制,得到了setmentation fault。
LInux上,最大線程數目是:
number of threads = total virtual memory / (stack size*1024*1024)
在32位系統上,進程空間是4G,其中0-3G是用戶空間(0x0-0xBFFFFFFF), 3G-4G是內核空間。
因此理論上講,用戶空間大小/棧大小=最大線程數。3072M/8M=384,考慮到系統的佔用,主線程等,我的系統上是380. 也許在你的系統上是382.
我們可以減小棧限制或者增大虛擬內存使得線程的數目增加。
檢查虛擬內存: ulimit -v
檢查棧大小: ulimit -s
設置虛擬內存:ulimit -v 新值
設置棧大小: ulimit -s 新值
④ linux系統為什麼給內核分配1G不是500M為什麼不是2:2分配
所有進程都必須佔用一定數量的內存,這些內存用來存放從磁碟載入的程序代碼,或存放來自用戶輸入的數據等。內存可以提前靜態分配和統一回收,也可以按需動態分配和回收。
對於普通進程對應的內存空間包含5種不同的數據區:
代碼段
數據段
BSS段
堆:動態分配的內存段,大小不固定,可動態擴張(malloc等函數分配內存),或動態縮減(free等函數釋放);
棧:存放臨時創建的局部變數;
其中物理地址空間中除了896M(ZONE_DMA + ZONE_NORMAL)的區域是絕對的物理連續,其他內存都不是物理內存連續。在虛擬內核地址空間中的安全保護區域的指針都是非法的,用於保證指針非法越界類的操作,vm_struct是連續的虛擬內核空間,對應的物理頁面可以不連續,地址范圍(3G + 896M + 8M) ~ 4G;另外在虛擬用戶空間中 vm_area_struct同樣也是一塊連續的虛擬進程空間,地址空間范圍0~3G。
⑤ 為什麼要劃分為用戶空間和內核空間
Linux虛擬內存的大小為2^32(在32位的x86機器上),內核將這4G位元組的空間分為兩部分。最高的1G位元組(從虛地址
0xC0000000到0xFFFFFFFF)供內核使用,稱為「內核空間」。而較低的3G位元組(從虛地址0x00000000到
0xBFFFFFFF),供各個進程使用,稱為「用戶空間」。因為每個進程可以通過系統調用進入內核,因此,Linux內核空間由系統內的所有進程共享。
於是,從具體進程的角度來看,每個進程可以擁有4G位元組的虛擬地址空間(也叫虛擬內存).
每個進程有各自的私有用戶空間(0~3G),這個空間對系統中的其他進程是不可見的。最高的1GB內核空間則為所有進程以及內核所共享。另外,進程的「用戶空間」也叫「地址空間」,在後面的敘述中,我們對這兩個術語不再區分。
用戶空間不是進程共享的,而是進程隔離的。每個進程最大都可以有3GB的用戶空間。一個進程對其中一個地址的訪問,與其它進程對於同一地址的訪問絕不沖
突。比如,一個進程從其用戶空間的地址0x1234ABCD處可以讀出整數8,而另外一個進程從其用戶空間的地址0x1234ABCD處可以讀出整數
20,這取決於進程自身的邏輯。
因此Linux對用戶空間與內核空間的劃分起到了一定程度上的沖突避免。
⑥ linux鐵三角之內存(三)
一個用戶空間的進程,究竟消耗了多少內存。
首先要名確,一個application消耗的內存,一定指得是用戶空間的內存。
3g - 4g 的kernal space是共享的,每個進程都有自己用戶空間0 - 3G,只要通過系統調用就可以陷入kernal space, 就會從x86的3 rings升級到0 rings, 即陷入到內核空間。
app 調driver的iocrtrl, dirver 的ioctrl 內部通過調用kmalloc/vmalloc申請的內存並不計算在內,因為是通過內核的api申請的,屬於內核消耗的。
vss、rss、pss、uss
pidof a.out
pmap a.out
vma的來源
在linux鐵三角(二)有過敘述,這里不再贅述。這里直接上圖把
MMU給CPU發送page fault的時候,在硬體中有2個寄存器
是否RSS就代表一個進程真正的內存消耗呢?
三個進程,其中2個Bash, 1 個 cat.
那麼對應三張頁表,每當切換進程,存儲頁表的 基地址就會卻換,從而切換到不同的地址空間中。
中間的是內存條,通過三張頁表瓜分物理內存。
104進程內存消耗:
⑦ Linux進程內存管理方法
Linux系統提供了復雜的存儲管理系統,使得進程所能訪問的內存達到4GB。在Linux系統中,進程的4GB內存空間被分為兩個部分——用戶空間與內核空間。用戶空間的地址一般分布為0~3GB(即PAGE_OFFSET,在Ox86中它等於OxC0000000),這樣,剩下的3~4GB為內核空間,用戶進程通常只能訪問用戶空間的虛擬地址,不能訪問內核空間的虛擬地址。用戶進程只有通過系統調用(代表用戶進程在內核態執行)等方式才可以訪問到內核空間。每個進程的用戶空間都是完全獨立、互不相乾的,用戶進程各自有不同的頁表。而內核空間是由內核負責映射,它並不會跟著進程改變,是固定的。內核空間的虛擬地址到物理地址映射是被所有進程共享的,內核的虛擬空間獨立於其他程序。Linux中1GB的內核地址空間又被劃分為物理內存映射區、虛擬內存分配區、高端頁面映射區、專用頁面映射區和系統保留映射區這幾個區域。對於x86系統而言,一般情況下,物理內存映射區最大長度為896MB,系統的物理內存被順序映射在內核空間的這個區域中。當系統物理內存大於896MB時,超過物理內存映射區的那部分內存稱為高端內存(而未超過物理內存映射區的內存通常被稱為常規內存),內核在存取高端內存時必須將它們映射到高端頁面映射區。Linux保留內核空間最頂部FIXADDR_TOP~4GB的區域作為保留區。當系統物理內存超過4GB時,必須使用CPU的擴展分頁(PAE)模式所提供的64位頁目錄項才能存取到4GB以上的物理內存,這需要CPU的支持。加入了PAE功能的Intel Pentium Pro及以後的CPU允許內存最大可配置到64GB,它們具備36位物理地址空間定址能力。由此可見,對於32位的x86而言,在3~4GB之間的內核空間中,從低地址到高地址依次為:物理內存映射區隔離帶vmalloc虛擬內存分配器區隔離帶高端內存映射區專用頁面映射區保留區。
⑧ Linux裡面什麼線性內存
Linux內存線性地址空間格局解析
實用平台:i386
Linux內存線性地址空間大小為4GB,分為2個局部:用戶空間局部(等閑是3G)和內核空間局部(等閑是1G)。在此我們重要關懷內核地址空間局部。
內核穿越內核頁大局目錄來管教所有的物理內存,由於線形地址前3G空間為用戶利用,內核頁大局目錄前768項(剛好3G)除0、1兩項外全副為0,後256項(1G)用來管教所有的物理內存。內核頁大局目錄在編譯時靜態地定義為swapper_pg_dir數組,該數組從物理內存地址0x101000處開始儲藏。
由圖可見,內核線形地址空間局部從PAGE_OFFSET(等閑定義為3G)開始,為了將內核裝入內存,從PAGE_OFFSET開始8M線形地址用來照射內核所在的物理內存地址;接下來是mem_map數組,mem_map的起始線形地址與系統構造相干,例如對於UMA構造,由於從PAGE_SIZE開始16M線形地址空間對應的16M物理地址空間是DMA區,mem_map數組等閑開始於PAGE_SIZE+16M的線形地址;從PAGE_SIZE開始到VMALLOC_START
–
VMALLOC_OFFSET的線形地址空間直接照射到物理內存空間(一一對應影射,物理地址=線形地址-PAGE_OFFSET),這段區域的大小和機器切實具有的物理內存大小有關,這兒VMALLOC_OFFSET在x86上為8M,重要用來遏止越界訛謬;在內存比擬小的系統上,餘下的線形地址空間(還要再扣除空白區即VMALLOC_OFFSET)被vmalloc()函數用來把不繼續的物理地址空間照射到繼續的線形地址空間上,在內存比擬大的系統上,vmalloc()利用從VMALLOC_START到VMALLOC_END(也即PKMAP_BASE扣除2頁的空白頁大小PAGE_SIZE)的線形地址空間,此刻餘下的線形地址空間(還要再扣除2頁的空白區即VMALLOC_OFFSET)又能夠分成2局部:第一局部從PKMAP_BASE到FIXADDR_START用來由kmap()函數照射高端內存;第二局部,從FIXADDR_START到FIXADDR_TOP,這是一個安寧大小的線形地址空間,(引用:Fixed
virtual addresses are needed for subsystems that need to know the
virtual address at compile time such as the
APIC),在x86系統構造上,FIXADDR_TOP被靜態定義為0xFFFFE000,此刻這個安寧大小空間告終於全副線形地址空間最後4K前面,該安寧大小空間大小是在編譯時計算出來並存儲在__FIXADDR_SIZE變數中。真空斷路器o:p>
正是由於vmalloc()利用區、kmap()利用區及安寧大小區的存在才使ZONE_NORMAL區大小受到局限,由於內核在運行時必需這些函數,因而在線形地址空間中起碼要VMALLOC_RESERVE大小的空間。VMALLOC_RESERVE的大小與系統構造相干,在x86上,VMALLOC_RESERVE定義為128M,這即便為什麼我們看到ZONE_NORMAL大小等閑是16M到896M的起因。