① 學大數據需要什麼基礎知識和能力
大數據的發展歷程總體上可以劃分為三個重要階段,萌芽期、成熟期和大規模應用期,20世紀90年至21世紀初,為萌芽期,隨著,一批商業智能工具和知識管理技術的開始和應用,度過了數據萌芽。
21世紀前十年則為成熟期,主要標志為,大數據解決方案逐漸走向成熟,形成了並行計算與分布式系統兩大核心技,谷歌的GFS和MapRece等大數據技術受到追捧,Hadoop平台開始大行期道,2010年以後,為大規模應用期,標志為,數據應用滲透各行各業,數據驅動決策,信息社會智能化程度快速提高。
點擊鏈接加入群聊【大數據學習交流群】:互聯網科技發展蓬勃興起,人工智慧時代來臨,抓住下一個風口。為幫助那些往想互聯網方向轉行想學習,卻因為時間不夠,資源不足而放棄的人。我自己整理的一份最新的大數據進階資料和高級開發教程, 歡迎進階中和進想深入大數據的小夥伴加入。
數據時代的到來,也推動了數據行業的發展,包括企業使用數據獲取價值,促使了大量人員從事於數據的學習,學習大數據需要掌握基礎知識,接下從我的角度,為大家做個簡要的闡述。
學習大數據需要掌握的知識,初期了解概念,後期就要學習數據技術,主要包括:
1.大數據概念
2.大數據的影響
3.大數據的影響
4.大數據的應用
5.大數據的產業
6.大數據處理架構Hadoop
7.大數據關鍵技術
8.大數據的計算模式
後三個牽涉的數據技技術,就復雜一點了,可以細說一下:
1.大數據處理架構Hadoop:Hadoop的特性、Hadoop生態系統、Hadoop的安裝與使用;
2.大數據關鍵技術技術:數據採集、數據存儲與管理、數據處理與分析、數據隱私與安全;
3.大數據處理計算模式:批處理計算、流計算、圖計算、查詢分析計算
數據的核心技術就是獲取數據價值,獲取數據前提是,先要有數據,這就牽涉數據挖掘了。
一、java語言以java語言為基礎掌握面向對象編程思想所涉及的知識,以及該知識在面向對象編程思想中的應用,培養學生設計程序的能力。掌握程度:精通
二、數據結構與演算法掌握基於JAVA語言的底層數據結構和演算法原理,並且能夠自己動手寫出來關於集合的各種演算法和數據結構,並且了解這些數據結構處理的問題和優缺點。掌握程度:熟練。
三、資料庫原理與MYSQL資料庫掌握關系型資料庫的原理,掌握結構化數據的特性。掌握關系型資料庫的範式。通過MYSQL資料庫掌握通過SQL語言與MYSQL資料庫進行交互。熟練掌握各種復雜SQL語句的編寫。掌握程度:熟練。
四、LINUX操作系統全面了解LINUX。詳解LINUX下的管理命令、用戶管理、網路配置管理等。掌握SHELL腳本編程,能夠根據具體業務進行復雜SHELL腳本的編寫。掌握程度:精通。
五、Hadoop技術學習Hadoop技術的兩個核心:分布式文件系統HDFS和分布式計算框架MapRece。掌握MR的運行過程及相關原理,精通各種業務的MR程序編寫。掌握Hadoop的核心源碼及實現原理。掌握使用Hadoop進行海量數據的存儲、計算與處理。掌握程度:精通。
六、分布式資料庫技術:精通分布式資料庫HBASE、掌握Mongodb及了解其它分布式資料庫技術。精通分布式資料庫原理、應用場景、HBASE資料庫的設計、操作等,能結合HIVE等工具進行海量數據的存儲於檢索。掌握程度:精通。
七、數據倉庫HIVE精通基於hadoop的數據倉庫HIVE。精通HIVESQL的語法,精通使用HIVESQL進行數據操作。內部表、外部表及與傳統資料庫的區別,掌握HIVE的應用場景及Hive與HBase的結合使用。掌握程度:精通。
八、PYTHON語言精通PYTHON語言基礎語法及面向對象。精通PYTHON語言的爬蟲、WEB、演算法等框架。並根據業務可以基於PYTHON語言開發完成的業務功能和系統。掌握程度:精通。
九、機器學習演算法熟練掌握機器學習經典演算法,掌握演算法的原理,公式,演算法的應用場景。熟練掌握使用機器學習演算法進行相關數據的分析,保證分析結果的准確性。掌握程度:熟練。
十、Spark高級編程技術掌握Spark的運行原理與架構,熟悉Spark的各種應用場景,掌握基於SparkRDD的各種運算元的使用;精通SparkStreaming針對流處理的底層原理,熟練應用SparkSql對各種數據源處理,熟練掌握Spark機器學習演算法庫。達到能夠在掌握Spark的各種組件的基礎上,能夠構建出大型的離線或實時的業務項目。掌握程度:精通。
十一、真實大數據項目實戰通過幾個真實的大數據項目把之前學習的知識與大數據技術框架貫穿,學習真實的大數據項目從數據採集、清洗、存儲、處理、分析的完整過程,掌握大數據項目開發的設計思想,數據處理技術手段,解決開發過程中遇到的問題和技術難點如何解決。
② 使用JAVA透過數據文件實現隨機森林的模型構建代碼,急需求一個能輸出模型的
③ 人工智慧,機器學習與深度學習,到底是什麼關系
一、人工智慧
人工智慧(Artificial Intelligence),英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。
人工智慧是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括語音識別、圖像識別、機器人、自然語言處理、智能搜索和專家系統等。
人工智慧可以對人的意識、思維的信息過程的模擬。人工智慧不是人的智能,但能像人那樣思考、也有可能超過人的智能。
二、數據挖掘
數據挖掘(Data Mining),顧名思義就是從海量數據中「挖掘」隱藏信息,按照教科書的說法,這里的數據是「大量的、不完全的、有雜訊的、模糊的、隨機的實際應用數據」,信息指的是「隱含的、規律性的、人們事先未知的、但又是潛在有用的並且最終可理解的信息和知識」。在商業環境中,企業希望讓存放在資料庫中的數據能「說話」,支持決策。所以,數據挖掘更偏向應用。
數據挖掘通常與計算機科學有關,並通過統計、在線分析處理、情報檢索、機器學習、專家系統(依靠過去的經驗法則)和模式識別等諸多方法來實現上述目標。
三、機器學習
機器學習(Machine Learning)是指用某些演算法指導計算機利用已知數據得出適當的模型,並利用此模型對新的情境給出判斷的過程。
機器學習的思想並不復雜,它僅僅是對人類生活中學習過程的一個模擬。而在這整個過程中,最關鍵的是數據。
任何通過數據訓練的學習演算法的相關研究都屬於機器學習,包括很多已經發展多年的技術,比如線性回歸(Linear Regression)、K均值(K-means,基於原型的目標函數聚類方法)、決策樹(Decision Trees,運用概率分析的一種圖解法)、隨機森林(Random Forest,運用概率分析的一種圖解法)、PCA(Principal Component Analysis,主成分分析)、SVM(Support Vector Machine,支持向量機)以及ANN(Artificial Neural Networks,人工神經網路)。
四、深度學習
深度學習(Deep Learning)的概念源於人工神經網路的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分布式特徵表示。
深度學習是機器學習研究中的一個新的領域,其動機在於建立、模擬人腦進行分析學習的神經網路,它模仿人腦的機制來解釋數據,例如圖像,聲音和文本。
五、人工智慧與機器學習、深度學習的關系
嚴格意義上說,人工智慧和機器學習沒有直接關系,只不過目前機器學習的方法被大量的應用於解決人工智慧的問題而已。目前機器學習是人工智慧的一種實現方式,也是最重要的實現方式。
早期的機器學習實際上是屬於統計學,而非計算機科學的;而二十世紀九十年代之前的經典人工智慧跟機器學習也沒有關系。所以今天的AI和ML有很大的重疊,但並沒有嚴格的從屬關系。
不過如果僅就計算機系內部來說,ML是屬於AI的。AI今天已經變成了一個很泛泛的學科了。
深度學習是機器學習現在比較火的一個方向,其本身是神經網路演算法的衍生,在圖像、語音等富媒體的分類和識別上取得了非常好的效果。
所以,如果把人工智慧與機器學習當成兩個學科來看,三者關系如下圖所示:
機器學習是數據挖掘的一種重要方法,但機器學習是另一門學科,並不從屬於數據挖掘,二者相輔相成。
④ 如何讓Hadoop結合R語言做大數據分析
R語言和讓我們體會到了,兩種技術在各自領域的強大。很多開發人員在計算機的角度,都會提出下面2個問題。問題1: Hadoop的家族如此之強大,為什麼還要結合R語言?
問題2: Mahout同樣可以做數據挖掘和機器學習,和R語言的區別是什麼?下面我嘗試著做一個解答:問題1: Hadoop的家族如此之強大,為什麼還要結合R語言?
a. Hadoop家族的強大之處,在於對大數據的處理,讓原來的不可能(TB,PB數據量計算),成為了可能。
b. R語言的強大之處,在於統計分析,在沒有Hadoop之前,我們對於大數據的處理,要取樣本,假設檢驗,做回歸,長久以來R語言都是統計學家專屬的工具。
c. 從a和b兩點,我們可以看出,hadoop重點是全量數據分析,而R語言重點是樣本數據分析。 兩種技術放在一起,剛好是最長補短!
d. 模擬場景:對1PB的新聞網站訪問日誌做分析,預測未來流量變化
d1:用R語言,通過分析少量數據,對業務目標建回歸建模,並定義指標d2:用Hadoop從海量日誌數據中,提取指標數據d3:用R語言模型,對指標數據進行測試和調優d4:用Hadoop分步式演算法,重寫R語言的模型,部署上線這個場景中,R和Hadoop分別都起著非常重要的作用。以計算機開發人員的思路,所有有事情都用Hadoop去做,沒有數據建模和證明,」預測的結果」一定是有問題的。以統計人員的思路,所有的事情都用R去做,以抽樣方式,得到的「預測的結果」也一定是有問題的。所以讓二者結合,是產界業的必然的導向,也是產界業和學術界的交集,同時也為交叉學科的人才提供了無限廣闊的想像空間。問題2: Mahout同樣可以做數據挖掘和機器學習,和R語言的區別是什麼?
a. Mahout是基於Hadoop的數據挖掘和機器學習的演算法框架,Mahout的重點同樣是解決大數據的計算的問題。
b. Mahout目前已支持的演算法包括,協同過濾,推薦演算法,聚類演算法,分類演算法,LDA, 樸素bayes,隨機森林。上面的演算法中,大部分都是距離的演算法,可以通過矩陣分解後,充分利用MapRece的並行計算框架,高效地完成計算任務。
c. Mahout的空白點,還有很多的數據挖掘演算法,很難實現MapRece並行化。Mahout的現有模型,都是通用模型,直接用到的項目中,計算結果只會比隨機結果好一點點。Mahout二次開發,要求有深厚的JAVA和Hadoop的技術基礎,最好兼有 「線性代數」,「概率統計」,「演算法導論」 等的基礎知識。所以想玩轉Mahout真的不是一件容易的事情。
d. R語言同樣提供了Mahout支持的約大多數演算法(除專有演算法),並且還支持大量的Mahout不支持的演算法,演算法的增長速度比mahout快N倍。並且開發簡單,參數配置靈活,對小型數據集運算速度非常快。
雖然,Mahout同樣可以做數據挖掘和機器學習,但是和R語言的擅長領域並不重合。集百家之長,在適合的領域選擇合適的技術,才能真正地「保質保量」做軟體。
如何讓Hadoop結合R語言?
從上一節我們看到,Hadoop和R語言是可以互補的,但所介紹的場景都是Hadoop和R語言的分別處理各自的數據。一旦市場有需求,自然會有商家填補這個空白。
1). RHadoop
RHadoop是一款Hadoop和R語言的結合的產品,由RevolutionAnalytics公司開發,並將代碼開源到github社區上面。RHadoop包含三個R包 (rmr,rhdfs,rhbase),分別是對應Hadoop系統架構中的,MapRece, HDFS, HBase 三個部分。
2). RHiveRHive是一款通過R語言直接訪問Hive的工具包,是由NexR一個韓國公司研發的。
3). 重寫Mahout用R語言重寫Mahout的實現也是一種結合的思路,我也做過相關的嘗試。
4).Hadoop調用R
上面說的都是R如何調用Hadoop,當然我們也可以反相操作,打通JAVA和R的連接通道,讓Hadoop調用R的函數。但是,這部分還沒有商家做出成形的產品。
5. R和Hadoop在實際中的案例
R和Hadoop的結合,技術門檻還是有點高的。對於一個人來說,不僅要掌握Linux, Java, Hadoop, R的技術,還要具備 軟體開發,演算法,概率統計,線性代數,數據可視化,行業背景 的一些基本素質。在公司部署這套環境,同樣需要多個部門,多種人才的的配合。Hadoop運維,Hadoop演算法研發,R語言建模,R語言MapRece化,軟體開發,測試等等。所以,這樣的案例並不太多。
⑤ 演算法與程序有何區別和聯系
演算法是程序的靈魂,演算法是你處理一件事的過程跟主要的方法設計,程序是用計算機語言實現了演算法的東西,這么講吧,如果程序是一個人,那麼演算法就是他的思想,素質,學識等等的精神實力