㈠ java實現幾種常見排序演算法
下面給你介紹四種常用排序演算法:
1、冒泡排序
特點:效率低,實現簡單
思想(從小到大排):每一趟將待排序序列中最大元素移到最後,剩下的為新的待排序序列,重復上述步驟直到排完所有元素。這只是冒泡排序的一種,當然也可以從後往前排。
㈡ java實現以下演算法:有6個數組a,b,c,d,e,f,從每個數組中取出一個數值,按順序放進指定的數組q中,
package Bai_17;
public class NumberSort {
public static void sort(int[][] root, int[] number){
int[] result = new int[number.length];
for(int i =0;i<number.length;i++){
result[i] = root[i][number[i]];
}
for(int i =0;i<result.length;i++){
for(int j= i;j<result.length-1;j++){
if(result[j]>result[j+1]){
int tmp = result[j];
result[j]=result[j+1];
result[j+1]=result[j];
}
}
}
for(int i=0;i<result.length;i++){
System.out.print(result[i]);
}
}
public static void main(String args[]){
int myvalue[][] = new int[6][6];
int[] number = {5,4,3,2,1,0};
//int count =0;
for(int i =0;i<myvalue.length*myvalue[0].length;i++){
//myvalue[0] = {1,2,3,4,5,6};
myvalue[i/6][i%6]=i;
}
sort(myvalue,number);
}
}
基本的思路。。不過還要debug。。裡面的myvalue[][] 定義了你的六個數組。
然後number[]對應的就是從myvalue裡面index來取值。這程序是從第一個數組裡面的第5個,第二個數組的第四個。。。。取出來之後排序。列印
如果不會debug的話,要等以後了。。
㈢ JAVA中有哪幾種常用的排序方法每個排序方法的實現思路是如何的每個方法的思想是什麼
一、冒泡排序
已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。首先比較 a[1]與a[2]的值,若a[1]大於a[2]則交換兩者的值,否則不變。再比較a[2]與a[3]的值,若a[2]大於a[3]則交換兩者的值,否則不變。再比較a[3]與a[4],以此類推,最後比較a[n-1]與a[n]的值。這樣處理一輪後,a[n]的值一定是這組數據中最大的。再對 a[1]~a[n-1]以相同方法處理一輪,則a[n-1]的值一定是a[1]~a[n-1]中最大的。再對a[1]~a[n-2]以相同方法處理一輪,以此類推。共處理n-1輪後a[1]、a[2]、……a[n]就以升序排列了。
優點:穩定;
缺點:慢,每次只能移動相鄰兩個數據。
二、選擇排序
冒泡排序的改進版。
每一趟從待排序的數據元素中選出最小(或最大)的一個元素,順序放在已排好序的數列的最後,直到全部待排序的數據元素排完。
選擇排序是不穩定的排序方法。
n個記錄的文件的直接選擇排序可經過n-1趟直接選擇排序得到有序結果:
①初始狀態:無序區為R[1..n],有序區為空。
②第1趟排序
在無序區R[1..n]中選出關鍵字最小的記錄R[k],將它與無序區的第1個記錄R[1]交換,使R[1..1]和R[2..n]分別變為記錄個數增加1個的新有序區和記錄個數減少1個的新無序區。
……
③第i趟排序
第i趟排序開始時,當前有序區和無序區分別為R[1..i-1]和R(1≤i≤n- 1)。該趟排序從當前無序區中選出關鍵字最小的記錄 R[k],將它與無序區的第1個記錄R交換,使R[1..i]和R分別變為記錄個數增加1個的新有序區和記錄個數減少1個的新無序區。
這樣,n個記錄的文件的直接選擇排序可經過n-1趟直接選擇排序得到有序結果。
優點:移動數據的次數已知(n-1次);
缺點:比較次數多。
三、插入排序
已知一組升序排列數據a[1]、a[2]、……a[n],一組無序數據b[1]、 b[2]、……b[m],需將二者合並成一個升序數列。首先比較b[1]與a[1]的值,若b[1]大於a[1],則跳過,比較b[1]與a[2]的值,若b[1]仍然大於a[2],則繼續跳過,直到b[1]小於a數組中某一數據a[x],則將a[x]~a[n]分別向後移動一位,將b[1]插入到原來 a[x]的位置這就完成了b[1]的插入。b[2]~b[m]用相同方法插入。(若無數組a,可將b[1]當作n=1的數組a)
優點:穩定,快;
缺點:比較次數不一定,比較次數越少,插入點後的數據移動越多,特別是當數據總量龐大的時候,但用鏈表可以解決這個問題。
三、縮小增量排序
由希爾在1959年提出,又稱希爾排序(shell排序)。
已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。發現當n不大時,插入排序的效果很好。首先取一增量d(d<n),將a[1]、a[1+d]、a[1+2d]……列為第一組,a[2]、a[2+d]、 a[2+2d]……列為第二組……,a[d]、a[2d]、a[3d]……列為最後一組以次類推,在各組內用插入排序,然後取d'<d,重復上述操作,直到d=1。
優點:快,數據移動少;
缺點:不穩定,d的取值是多少,應取多少個不同的值,都無法確切知道,只能憑經驗來取。
四、快速排序
快速排序是目前已知的最快的排序方法。
已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。首先任取數據 a[x]作為基準。比較a[x]與其它數據並排序,使a[x]排在數據的第k位,並且使a[1]~a[k-1]中的每一個數據<a[x],a[k+1]~a[n]中的每一個數據>a[x],然後採用分治的策略分別對a[1]~a[k-1]和a[k+1]~a[n] 兩組數據進行快速排序。
優點:極快,數據移動少;
缺點:不穩定。
五、箱排序
已知一組無序正整數數據a[1]、a[2]、……a[n],需將其按升序排列。首先定義一個數組x[m],且m>=a[1]、a[2]、……a[n],接著循環n次,每次x[a]++.
優點:快,效率達到O(1)
缺點:數據范圍必須為正整數並且比較小
六、歸並排序
歸並排序是多次將兩個或兩個以上的有序表合並成一個新的有序表。最簡單的歸並是直接將兩個有序的子表合並成一個有序的表。
歸並排序是穩定的排序.即相等的元素的順序不會改變.如輸入記錄 1(1) 3(2) 2(3) 2(4) 5(5) (括弧中是記錄的關鍵字)時輸出的 1(1) 2(3) 2(4) 3(2) 5(5) 中的2 和 2 是按輸入的順序.這對要排序數據包含多個信息而要按其中的某一個信息排序,要求其它信息盡量按輸入的順序排列時很重要.這也是它比快速排序優勢的地方.
㈣ arrays.sort
arrays.sort 是Java中的一種用於對數組進行排序的方法。
基本概念
arrays.sort是Java語言中的一個方法,用於對數組進行排序。無論是整數數組、浮點數數組還是字元串數組,都可以使用該方法進行排序。該方法基於優化過的快速排序演算法,效率較高。
使用方法
使用arrays.sort方法非常簡單。首先,需要導入java.util.Arrays類,然後可以直接調用其sort方法對數組進行排序。對於不同類型的數組,例如整數數組、浮點數數組或字元串數組,只需在調用sort方法時傳入對應的數組即可。此外,arrays.sort還可以對部分數組進行排序,只需傳入需要排序的數組的起始和結束索引即可。
特性與優勢
arrays.sort方法具有多種特性與優勢。首先,其基於快速排序演算法,效率高,適用於大數據量的排序。其次,它提供了靈活的排序方式,可以針對不同類型的數組進行排序,甚至可以針對數組的一部分進行排序。此外,arrays.sort方法還保證了排序的穩定性,即相等元素的相對順序在排序後保持不變。這些特性使得arrays.sort成為Java中非常實用的一個方法。
總的來說,arrays.sort是Java中用於對數組進行排序的一個高效且實用的方法。無論是對於學習Java編程還是在實際開發中,都是一個非常有用的工具。
㈤ Java通過幾種經典的演算法來實現數組排序
JAVA中在運用數組進行排序功能時,一般有四種方法:快速排序法、冒泡法、選擇排序法、插入排序法。
快速排序法主要是運用了Arrays中的一個方法Arrays.sort()實現。
冒泡法是運用遍歷數組進行比較,通過不斷的比較將最小值或者最大值一個一個的遍歷出來。
選擇排序法是將數組的第一個數據作為最大或者最小的值,然後通過比較循環,輸出有序的數組。
插入排序是選擇一個數組中的數據,通過不斷的插入比較最後進行排序。下面我就將他們的實現方法一一詳解供大家參考。
<1>利用Arrays帶有的排序方法快速排序
public class Test2{ public static void main(String[] args){ int[] a={5,4,2,4,9,1}; Arrays.sort(a); //進行排序 for(int i: a){ System.out.print(i); } } }
<2>冒泡排序演算法
public static int[] bubbleSort(int[] args){//冒泡排序演算法 for(int i=0;i<args.length-1;i++){ for(int j=i+1;j<args.length;j++){ if (args[i]>args[j]){ int temp=args[i]; args[i]=args[j]; args[j]=temp; } } } return args; }
<3>選擇排序演算法
public static int[] selectSort(int[] args){//選擇排序演算法 for (int i=0;i<args.length-1 ;i++ ){ int min=i; for (int j=i+1;j<args.length ;j++ ){ if (args[min]>args[j]){ min=j; } } if (min!=i){ int temp=args[i]; args[i]=args[min]; args[min]=temp; } } return args; }
<4>插入排序演算法
public static int[] insertSort(int[] args){//插入排序演算法 for(int i=1;i<args.length;i++){ for(int j=i;j>0;j--){ if (args[j]<args[j-1]){ int temp=args[j-1]; args[j-1]=args[j]; args[j]=temp; }else break; } } return args; }