『壹』 數據結構 java開發中常用的排序演算法有哪些
排序演算法有很多,所以在特定情景中使用哪一種演算法很重要。為了選擇合適的演算法,可以按照建議的順序考慮以下標准:
(1)執行時間
(2)存儲空間
(3)編程工作
對於數據量較小的情形,(1)(2)差別不大,主要考慮(3);而對於數據量大的,(1)為首要。
主要排序法有:
一、冒泡(Bubble)排序——相鄰交換
二、選擇排序——每次最小/大排在相應的位置
三、插入排序——將下一個插入已排好的序列中
四、殼(Shell)排序——縮小增量
五、歸並排序
六、快速排序
七、堆排序
八、拓撲排序
一、冒泡(Bubble)排序
----------------------------------Code 從小到大排序n個數------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比較交換相鄰元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),適用於排序小列表。
二、選擇排序
----------------------------------Code 從小到大排序n個數--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次掃描選擇最小項
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小項交換,即將這一項移到列表中的正確位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),適用於排序小的列表。
三、插入排序
--------------------------------------------Code 從小到大排序n個數-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循環從第二個數組元素開始,因為arr[0]作為最初已排序部分
{
int temp=arr[i];//temp標記為未排序第一個元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*將temp與已排序元素從小到大比較,尋找temp應插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)與冒泡、選擇相同,適用於排序小列表
若列表基本有序,則插入排序比冒泡、選擇更有效率。
四、殼(Shell)排序——縮小增量排序
-------------------------------------Code 從小到大排序n個數-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量遞減,以增量3,2,1為例
{
for(int L=0;L<(n-1)/incr;L++)//重復分成的每個子列表
{
for(int i=L+incr;i<n;i+=incr)//對每個子列表應用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
適用於排序小列表。
效率估計O(nlog2^n)~O(n^1.5),取決於增量值的最初大小。建議使用質數作為增量值,因為如果增量值是2的冪,則在下一個通道中會再次比較相同的元素。
殼(Shell)排序改進了插入排序,減少了比較的次數。是不穩定的排序,因為排序過程中元素可能會前後跳躍。
五、歸並排序
----------------------------------------------Code 從小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每個子列表中剩下一個元素時停止
else int mid=(low+high)/2;/*將列表劃分成相等的兩個子列表,若有奇數個元素,則在左邊子列表大於右側子列表*/
MergeSort(low,mid);//子列表進一步劃分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一個數組,用於存放歸並的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*兩個子列表進行排序歸並,直到兩個子列表中的一個結束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二個子列表中仍然有元素,則追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一個子列表中仍然有元素,則追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//將排序的數組B的 所有元素復制到原始數組arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),歸並的最佳、平均和最糟用例效率之間沒有差異。
適用於排序大列表,基於分治法。
六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的演算法思想:選定一個樞紐元素,對待排序序列進行分割,分割之後的序列一個部分小於樞紐元素,一個部分大於樞紐元素,再對這兩個分割好的子序列進行上述的過程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//採用子序列的第一個元素作為樞紐元素
while (low < high)
{
//從後往前栽後半部分中尋找第一個小於樞紐元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//將這個比樞紐元素小的元素交換到前半部分
swap(arr[low], arr[high]);
//從前往後在前半部分中尋找第一個大於樞紐元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//將這個樞紐元素大的元素交換到後半部分
}
return low ;//返回樞紐元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),適用於排序大列表。
此演算法的總時間取決於樞紐值的位置;選擇第一個元素作為樞紐,可能導致O(n²)的最糟用例效率。若數基本有序,效率反而最差。選項中間值作為樞紐,效率是O(nlogn)。
基於分治法。
七、堆排序
最大堆:後者任一非終端節點的關鍵字均大於或等於它的左、右孩子的關鍵字,此時位於堆頂的節點的關鍵字是整個序列中最大的。
思想:
(1)令i=l,並令temp= kl ;
(2)計算i的左孩子j=2i+1;
(3)若j<=n-1,則轉(4),否則轉(6);
(4)比較kj和kj+1,若kj+1>kj,則令j=j+1,否則j不變;
(5)比較temp和kj,若kj>temp,則令ki等於kj,並令i=j,j=2i+1,並轉(3),否則轉(6)
(6)令ki等於temp,結束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)
{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元 int I; BuildHeap(R); //將R[1-n]建成初始堆for(i=n;i>1;i--) //對當前無序區R[1..i]進行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //將堆頂和堆中最後一個記錄交換 Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質 } } ---------------------------------------Code--------------------------------------
堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。
堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。 由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。 堆排序是就地排序,輔助空間為O(1), 它是不穩定的排序方法。
堆排序與直接插入排序的區別:
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。
八、拓撲排序
例 :學生選修課排課先後順序
拓撲排序:把有向圖中各頂點按照它們相互之間的優先關系排列成一個線性序列的過程。
方法:
在有向圖中選一個沒有前驅的頂點且輸出
從圖中刪除該頂點和所有以它為尾的弧
重復上述兩步,直至全部頂點均已輸出(拓撲排序成功),或者當圖中不存在無前驅的頂點(圖中有迴路)為止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*輸出拓撲排序函數。若G無迴路,則輸出G的頂點的一個拓撲序列並返回OK,否則返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//對各頂點求入度indegree[0....num]
InitStack(thestack);//初始化棧
for(i=0;i<G.num;i++)
Console.WriteLine("結點"+G.vertices[i].data+"的入度為"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓撲排序輸出順序為:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("發生錯誤,程序結束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("該圖有環,出現錯誤,無法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
演算法的時間復雜度O(n+e)。
『貳』 java基礎 insert方法問題
20大進階架構專題每日送達
1.直接插入排序
經常碰到這樣一類排序問題:把新的數據插入到已經排好的數據列中。
將第一個數和第二個數排序,然後構成一個有序序列
將第三個數插入進去,構成一個新的有序序列。
對第四個數、第五個數……直到最後一個數,重復第二步。
如何寫成代碼:
首先設定插入次數,即循環次數,for(int i=1;i
設定插入數和得到已經排好序列的最後一個數的位數。insertNum和j=i-1。
從最後一個數開始向前循環,如果插入數小於當前數,就將當前數向後移動一位。
將當前數放置到空著的位置,即j+1。
代碼實現如下:
public void insertSort(int[] a){
int length=a.length;//數組長度,將這個提取出來是為了提高速度。
int insertNum;//要插入的數
for(int i=1;i//插入的次數
insertNum=a[i];//要插入的數
int j=i-1;//已經排序好的序列元素個數
while(j>=0&&a[j]>insertNum){//序列從後到前循環,將大於insertNum的數向後移動一格
a[j+1]=a[j];//元素移動一格
j--;
}
a[j+1]=insertNum;//將需要插入的數放在要插入的位置。
}
}
2.希爾排序
將數的個數設為n,取奇數k=n/2,將下標差值為k的數分為一組,構成有序序列。
再取k=k/2 ,將下標差值為k的書分為一組,構成有序序列。
重復第二步,直到k=1執行簡單插入排序。
如何寫成代碼:
首先確定分的組數。
然後對組中元素進行插入排序。
然後將length/2,重復1,2步,直到length=0為止。
代碼實現如下:
public void sheelSort(int[] a){
int d = a.length;
while (d!=0) {
d=d/2;
for (int x = 0; x < d; x++) {//分的組數
for (int i = x + d; i < a.length; i += d) {//組中的元素,從第二個數開始
int j = i - d;//j為有序序列最後一位的位數
int temp = a[i];//要插入的元素
for (; j >= 0 && temp < a[j]; j -= d) {//從後往前遍歷。
a[j + d] = a[j];//向後移動d位
}
a[j + d] = temp;
}
}
}
}
3.簡單選擇排序
(如果每次比較都交換,那麼就是交換排序;如果每次比較完一個循環再交換,就是簡單選擇排序。)
遍歷整個序列,將最小的數放在最前面。
遍歷剩下的序列,將最小的數放在最前面。
重復第二步,直到只剩下一個數。
如何寫成代碼:
首先確定循環次數,並且記住當前數字和當前位置。
將當前位置後面所有的數與當前數字進行對比,小數賦值給key,並記住小數的位置。
比對完成後,將最小的值與第一個數的值交換。
重復2、3步。
代碼實現如下:
public void selectSort(int[] a) {
int length = a.length;
for (int i = 0; i < length; i++) {//循環次數
int key = a[i];
int position=i;
for (int j = i + 1; j < length; j++) {//選出最小的值和位置
if (a[j] < key) {
key = a[j];
position = j;
}
}
a[position]=a[i];//交換位置
a[i]=key;
}
}
4.堆排序
將序列構建成大頂堆。
將根節點與最後一個節點交換,然後斷開最後一個節點。
重復第一、二步,直到所有節點斷開。
代碼實現如下:
public void heapSort(int[] a){
System.out.println("開始排序");
int arrayLength=a.length;
//循環建堆
for(int i=0;i-1;i++){
//建堆
buildMaxHeap(a,arrayLength-1-i);
//交換堆頂和最後一個元素
swap(a,0,arrayLength-1-i);
System.out.println(Arrays.toString(a));
}
}
private void swap(int[] data, int i, int j) {
// TODO Auto-generated method stub
int tmp=data[i];
data[i]=data[j];
data[j]=tmp;
}
//對data數組從0到lastIndex建大頂堆
private void buildMaxHeap(int[] data, int lastIndex) {
// TODO Auto-generated method stub
//從lastIndex處節點(最後一個節點)的父節點開始
for(int i=(lastIndex-1)/2;i>=0;i--){
//k保存正在判斷的節點
int k=i;
//如果當前k節點的子節點存在
while(k*2+1<=lastIndex){
//k節點的左子節點的索引
int biggerIndex=2*k+1;
//如果biggerIndex小於lastIndex,即biggerIndex+1代表的k節點的右子節點存在
if(biggerIndex //若果右子節點的值較大
if(data[biggerIndex]1]){
//biggerIndex總是記錄較大子節點的索引
biggerIndex++;
}
}
//如果k節點的值小於其較大的子節點的值
if(data[k] //交換他們
swap(data,k,biggerIndex);
//將biggerIndex賦予k,開始while循環的下一次循環,重新保證k節點的值大於其左右子節點的值
k=biggerIndex;
}else{
break;
}
}
}
}
5.冒泡排序
將序列中所有元素兩兩比較,將最大的放在最後面。
將剩餘序列中所有元素兩兩比較,將最大的放在最後面。
重復第二步,直到只剩下一個數。
如何寫成代碼:
設置循環次數。
設置開始比較的位數,和結束的位數。
兩兩比較,將最小的放到前面去。
重復2、3步,直到循環次數完畢。
代碼實現如下:
public void bubbleSort(int[] a){
int length=a.length;
int temp;
for(int i=0;i for(int j=0;j-1;j++){
if(a[j]>a[j+1]){
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}
}
}
}
6.快速排序
選擇第一個數為p,小於p的數放在左邊,大於p的數放在右邊。
遞歸的將p左邊和右邊的數都按照第一步進行,直到不能遞歸。
代碼實現如下:
public static void quickSort(int[] numbers, int start, int end) {
if (start < end) {
int base = numbers[start]; // 選定的基準值(第一個數值作為基準值)
int temp; // 記錄臨時中間值
int i = start, j = end;
do {
while ((numbers[i] < base) && (i < end))
i++;
while ((numbers[j] > base) && (j > start))
j--;
if (i <= j) {
temp = numbers[i];
numbers[i] = numbers[j];
numbers[j] = temp;
i++;
j--;
}
} while (i <= j);
if (start < j)
quickSort(numbers, start, j);
if (end > i)
quickSort(numbers, i, end);
}
}
7.歸並排序
選擇相鄰兩個數組成一個有序序列。
選擇相鄰的兩個有序序列組成一個有序序列。
重復第二步,直到全部組成一個有序序列。
代碼實現如下:
public static void mergeSort(int[] numbers, int left, int right) {
int t = 1;// 每組元素個數
int size = right - left + 1;
while (t < size) {
int s = t;// 本次循環每組元素個數
t = 2 * s;
int i = left;
while (i + (t - 1) < size) {
merge(numbers, i, i + (s - 1), i + (t - 1));
i += t;
}
if (i + (s - 1) < right)
merge(numbers, i, i + (s - 1), right);
}
}
private static void merge(int[] data, int p, int q, int r) {
int[] B = new int[data.length];
int s = p;
int t = q + 1;
int k = p;
while (s <= q && t <= r) {
if (data[s] <= data[t]) {
B[k] = data[s];
s++;
} else {
B[k] = data[t];
t++;
}
k++;
}
if (s == q + 1)
B[k++] = data[t++];
else
B[k++] = data[s++];
for (int i = p; i <= r; i++)
data[i] = B[i];
}
8.基數排序
將所有的數的個位數取出,按照個位數進行排序,構成一個序列。
將新構成的所有的數的十位數取出,按照十位數進行排序,構成一個序列。
代碼實現如下:
public void sort(int[] array) {
//首先確定排序的趟數;
int max = array[0];
for (int i = 1; i < array.length; i++) {
if (array[i] > max) {
max = array[i];
}
}
int time = 0;
//判斷位數;
while (max > 0) {
max /= 10;
time++;
}
//建立10個隊列;
List queue = new ArrayList ();
for ( int i = 0; i < 10; i++) {
ArrayList queue1 = new ArrayList ();
queue.add(queue1);
}
//進行time次分配和收集;
for ( int i = 0; i < time; i++) {
//分配數組元素;
for ( int j = 0; j < array.length; j++) {
//得到數字的第time+1位數;
int x = array[j] % ( int) Math. pow( 10, i + 1) / ( int) Math. pow( 10, i);
ArrayList queue2 = queue.get(x);
queue2.add( array[j]);
queue. set(x, queue2);
}
int count = 0; //元素計數器;
//收集隊列元素;
for ( int k = 0; k < 10; k++) {
while ( queue.get(k).size() > 0) {
ArrayList queue3 = queue.get(k);
array[count] = queue3.get( 0);
queue3.remove( 0);
count++;
}
}
}
}
來源:KaelQ
地址:www.jianshu.com/p/5e171281a387
獲取方式:點「在看」,V信關注師長的小號:編程最前線並回復面試領取,更多精彩陸續奉上。