Linux下PCI設備驅動開發
1. 關鍵數據結構
PCI設備上有三種地址空間:PCI的I/O空間、PCI的存儲空間和PCI的配置空間。CPU可以訪問PCI設備上的所有地址空間,其中I/O空間和存儲空間提供給設備驅動程序使用,而配置空間則由Linux內核中的PCI初始化代碼使用。內核在啟動時負責對所有PCI設備進行初始化,配置好所有的PCI設備,包括中斷號以及I/O基址,並在文件/proc/pci中列出所有找到的PCI設備,以及這些設備的參數和屬性。
Linux驅動程序通常使用結構(struct)來表示一種設備,而結構體中的變數則代表某一具體設備,該變數存放了與該設備相關的所有信息。好的驅動程序都應該能驅動多個同種設備,每個設備之間用次設備號進行區分,如果採用結構數據來代表所有能由該驅動程序驅動的設備,那麼就可以簡單地使用數組下標來表示次設備號。
在PCI驅動程序中,下面幾個關鍵數據結構起著非常核心的作用:
pci_driver
這個數據結構在文件include/linux/pci.h里,這是Linux內核版本2.4之後為新型的PCI設備驅動程序所添加的,其中最主要的是用於識別設備的id_table結構,以及用於檢測設備的函數probe( )和卸載設備的函數remove( ):
struct pci_driver {
struct list_head node;
char *name;
const struct pci_device_id *id_table;
int (*probe) (struct pci_dev *dev, const struct pci_device_id *id);
void (*remove) (struct pci_dev *dev);
int (*save_state) (struct pci_dev *dev, u32 state);
int (*suspend)(struct pci_dev *dev, u32 state);
int (*resume) (struct pci_dev *dev);
int (*enable_wake) (struct pci_dev *dev, u32 state, int enable);
};
pci_dev
這個數據結構也在文件include/linux/pci.h里,它詳細描述了一個PCI設備幾乎所有的
硬體信息,包括廠商ID、設備ID、各種資源等:
struct pci_dev {
struct list_head global_list;
struct list_head bus_list;
struct pci_bus *bus;
struct pci_bus *subordinate;
void *sysdata;
struct proc_dir_entry *procent;
unsigned int devfn;
unsigned short vendor;
unsigned short device;
unsigned short subsystem_vendor;
unsigned short subsystem_device;
unsigned int class;
u8 hdr_type;
u8 rom_base_reg;
struct pci_driver *driver;
void *driver_data;
u64 dma_mask;
u32 current_state;
unsigned short vendor_compatible[DEVICE_COUNT_COMPATIBLE];
unsigned short device_compatible[DEVICE_COUNT_COMPATIBLE];
unsigned int irq;
struct resource resource[DEVICE_COUNT_RESOURCE];
struct resource dma_resource[DEVICE_COUNT_DMA];
struct resource irq_resource[DEVICE_COUNT_IRQ];
char name[80];
char slot_name[8];
int active;
int ro;
unsigned short regs;
int (*prepare)(struct pci_dev *dev);
int (*activate)(struct pci_dev *dev);
int (*deactivate)(struct pci_dev *dev);
};
2. 基本框架
在用模塊方式實現PCI設備驅動程序時,通常至少要實現以下幾個部分:初始化設備模塊、設備打開模塊、數據讀寫和控制模塊、中斷處理模塊、設備釋放模塊、設備卸載模塊。下面給出一個典型的PCI設備驅動程序的基本框架,從中不難體會到這幾個關鍵模塊是如何組織起來的。
/* 指明該驅動程序適用於哪一些PCI設備 */
static struct pci_device_id demo_pci_tbl [] __initdata = {
{PCI_VENDOR_ID_DEMO, PCI_DEVICE_ID_DEMO,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, DEMO},
{0,}
};
/* 對特定PCI設備進行描述的數據結構 */
struct demo_card {
unsigned int magic;
/* 使用鏈表保存所有同類的PCI設備 */
struct demo_card *next;
/* ... */
}
/* 中斷處理模塊 */
static void demo_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
/* ... */
}
/* 設備文件操作介面 */
static struct file_operations demo_fops = {
owner: THIS_MODULE, /* demo_fops所屬的設備模塊 */
read: demo_read, /* 讀設備操作*/
write: demo_write, /* 寫設備操作*/
ioctl: demo_ioctl, /* 控制設備操作*/
mmap: demo_mmap, /* 內存重映射操作*/
open: demo_open, /* 打開設備操作*/
release: demo_release /* 釋放設備操作*/
/* ... */
};
/* 設備模塊信息 */
static struct pci_driver demo_pci_driver = {
name: demo_MODULE_NAME, /* 設備模塊名稱 */
id_table: demo_pci_tbl, /* 能夠驅動的設備列表 */
probe: demo_probe, /* 查找並初始化設備 */
remove: demo_remove /* 卸載設備模塊 */
/* ... */
};
static int __init demo_init_mole (void)
{
/* ... */
}
static void __exit demo_cleanup_mole (void)
{
pci_unregister_driver(&demo_pci_driver);
}
/* 載入驅動程序模塊入口 */
mole_init(demo_init_mole);
/* 卸載驅動程序模塊入口 */
mole_exit(demo_cleanup_mole);
上面這段代碼給出了一個典型的PCI設備驅動程序的框架,是一種相對固定的模式。需要注意的是,同載入和卸載模塊相關的函數或數據結構都要在前面加上__init、__exit等標志符,以使同普通函數區分開來。構造出這樣一個框架之後,接下去的工作就是如何完成框架內的各個功能模塊了。
3. 初始化設備模塊
在Linux系統下,想要完成對一個PCI設備的初始化,需要完成以下工作:
檢查PCI匯流排是否被Linux內核支持;
檢查設備是否插在匯流排插槽上,如果在的話則保存它所佔用的插槽的位置等信息。
讀出配置頭中的信息提供給驅動程序使用。
當Linux內核啟動並完成對所有PCI設備進行掃描、登錄和分配資源等初始化操作的同時,會建立起系統中所有PCI設備的拓撲結構,此後當PCI驅動程序需要對設備進行初始化時,一般都會調用如下的代碼:
static int __init demo_init_mole (void)
{
/* 檢查系統是否支持PCI匯流排 */
if (!pci_present())
return -ENODEV;
/* 注冊硬體驅動程序 */
if (!pci_register_driver(&demo_pci_driver)) {
pci_unregister_driver(&demo_pci_driver);
return -ENODEV;
}
/* ... */
return 0;
}
驅動程序首先調用函數pci_present( )檢查PCI匯流排是否已經被Linux內核支持,如果系統支持PCI匯流排結構,這個函數的返回值為0,如果驅動程序在調用這個函數時得到了一個非0的返回值,那麼驅動程序就必須得中止自己的任務了。在2.4以前的內核中,需要手工調用pci_find_device( )函數來查找PCI設備,但在2.4以後更好的辦法是調用pci_register_driver( )函數來注冊PCI設備的驅動程序,此時需要提供一個pci_driver結構,在該結構中給出的probe探測常式將負責完成對硬體的檢測工作。
static int __init demo_probe(struct pci_dev *pci_dev, const struct
pci_device_id *pci_id)
{
struct demo_card *card;
/* 啟動PCI設備 */
if (pci_enable_device(pci_dev))
return -EIO;
/* 設備DMA標識 */
if (pci_set_dma_mask(pci_dev, DEMO_DMA_MASK)) {
return -ENODEV;
}
/* 在內核空間中動態申請內存 */
if ((card = kmalloc(sizeof(struct demo_card), GFP_KERNEL)) == NULL) {
printk(KERN_ERR "pci_demo: out of memory\n");
return -ENOMEM;
}
memset(card, 0, sizeof(*card));
/* 讀取PCI配置信息 */
card->iobase = pci_resource_start (pci_dev, 1);
card->pci_dev = pci_dev;
card->pci_id = pci_id->device;
card->irq = pci_dev->irq;
card->next = devs;
card->magic = DEMO_CARD_MAGIC;
/* 設置成匯流排主DMA模式 */
pci_set_master(pci_dev);
/* 申請I/O資源 */
request_region(card->iobase, 64, card_names[pci_id->driver_data]);
return 0;
}
4. 打開設備模塊
在這個模塊里主要實現申請中斷、檢查讀寫模式以及申請對設備的控制權等。在申請控制權的時候,非阻塞方式遇忙返回,否則進程主動接受調度,進入睡眠狀態,等待其它進程釋放對設備的控制權。
static int demo_open(struct inode *inode, struct file *file)
{
/* 申請中斷,注冊中斷處理程序 */
request_irq(card->irq, &demo_interrupt, SA_SHIRQ,
card_names[pci_id->driver_data], card)) {
/* 檢查讀寫模式 */
if(file->f_mode & FMODE_READ) {
/* ... */
}
if(file->f_mode & FMODE_WRITE) {
/* ... */
}
/* 申請對設備的控制權 */
down(&card->open_sem);
while(card->open_mode & file->f_mode) {
if (file->f_flags & O_NONBLOCK) {
/* NONBLOCK模式,返回-EBUSY */
up(&card->open_sem);
return -EBUSY;
} else {
/* 等待調度,獲得控制權 */
card->open_mode |= f_mode & (FMODE_READ | FMODE_WRITE);
up(&card->open_sem);
/* 設備打開計數增1 */
MOD_INC_USE_COUNT;
/* ... */
}
}
}
5. 數據讀寫和控制信息模塊
PCI設備驅動程序可以通過demo_fops 結構中的函數demo_ioctl( ),向應用程序提供對硬體進行控制的介面。例如,通過它可以從I/O寄存器里讀取一個數據,並傳送到用戶空間里:
static int demo_ioctl(struct inode *inode, struct file *file, unsigned int
cmd, unsigned long arg)
{
/* ... */
switch(cmd) {
case DEMO_RDATA:
/* 從I/O埠讀取4位元組的數據 */
val = inl(card->iobae + 0x10);
/* 將讀取的數據傳輸到用戶空間 */
return 0;
}
/* ... */
}
事實上,在demo_fops里還可以實現諸如demo_read( )、demo_mmap( )等操作,Linux內核源碼中的driver目錄里提供了許多設備驅動程序的源代碼,找那裡可以找到類似的例子。在對資源的訪問方式上,除了有I/O指令以外,還有對外設I/O內存的訪問。對這些內存的操作一方面可以通過把I/O內存重新映射後作為普通內存進行操作,另一方面也可以通過匯流排主DMA(Bus Master DMA)的方式讓設備把數據通過DMA傳送到系統內存中。
6. 中斷處理模塊
PC的中斷資源比較有限,只有0~15的中斷號,因此大部分外部設備都是以共享的形式申請中斷號的。當中斷發生的時候,中斷處理程序首先負責對中斷進行識別,然後再做進一步的處理。
static void demo_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct demo_card *card = (struct demo_card *)dev_id;
u32 status;
spin_lock(&card->lock);
/* 識別中斷 */
status = inl(card->iobase + GLOB_STA);
if(!(status & INT_MASK))
{
spin_unlock(&card->lock);
return; /* not for us */
}
/* 告訴設備已經收到中斷 */
outl(status & INT_MASK, card->iobase + GLOB_STA);
spin_unlock(&card->lock);
/* 其它進一步的處理,如更新DMA緩沖區指針等 */
}
7. 釋放設備模塊
釋放設備模塊主要負責釋放對設備的控制權,釋放佔用的內存和中斷等,所做的事情正好與打開設備模塊相反:
static int demo_release(struct inode *inode, struct file *file)
{
/* ... */
/* 釋放對設備的控制權 */
card->open_mode &= (FMODE_READ | FMODE_WRITE);
/* 喚醒其它等待獲取控制權的進程 */
wake_up(&card->open_wait);
up(&card->open_sem);
/* 釋放中斷 */
free_irq(card->irq, card);
/* 設備打開計數增1 */
MOD_DEC_USE_COUNT;
/* ... */
}
8. 卸載設備模塊
卸載設備模塊與初始化設備模塊是相對應的,實現起來相對比較簡單,主要是調用函數pci_unregister_driver( )從Linux內核中注銷設備驅動程序:
static void __exit demo_cleanup_mole (void)
{
pci_unregister_driver(&demo_pci_driver);
}
小結
PCI匯流排不僅是目前應用廣泛的計算機匯流排標准,而且是一種兼容性最強、功能最全的計算機匯流排。而Linux作為一種新的操作系統,其發展前景是無法估量的,同時也為PCI匯流排與各種新型設備互連成為可能。由於Linux源碼開放,因此給連接到PCI匯流排上的任何設備編寫驅動程序變得相對容易。本文介紹如何編譯Linux下的PCI驅動程序,針對的內核版本是2.4。
❷ Linux驅動與設備節點簡介 & Android內核與Linux內核的區別
驅動是內核的一部分,作為直接訪問物理硬體的一個軟體層,用於應用程序與物理硬體設備通信。內核包含多種驅動,如WIFI、USB、Audio、藍牙、相機、顯示驅動。
(1)設備驅動程序三類:字元設備驅動程序、塊設備驅動程序、網路設備驅動程序;
(2)對應Linux三類設備:字元設備、塊設備、網路設備;
(3)常見字元設備:滑鼠、鍵盤、串口、控制台等;
(4)常見塊設備:各種硬碟、flash磁碟、RAM磁碟等;
(5)網路設備(網路介面):eth0、eth1,註:網路設備沒有設備節點,應用程序通過Socket訪問網路設備。由於網路設備面向報文,較難實現相關read、write等文件讀寫函數,所以驅動的實現也與字元設備和塊設備不同。
Linux使用對文件一樣的管理方式來管理設備,所有設備都以文件的形式存放在/dev目錄下,系統中的每個字元設備或者塊設備都必須為其創建一個設備文件,它包含了該設備的設備類型(塊設備或字元設滾橋備)、設備號(主設備號和次設備號)以及設備訪問控制屬性等。設備節點通過 mknod 命令創建,也可以由Udev用戶工具軟體在系統啟動後根據/sys目錄下每個設備的實際信息創建,使用後一種方式可以為每個設備動態分配設備號。
Linux中設備節點通過「mknod」命令創建,創建時需要指定主設備號和次設備號,即指定對應的驅動程序和對應的物理設備(訪問設備節點時就相當於通過其設備號訪問驅動程序進而間接訪問到物理設備)。主設備號用來區分不同種類的設備,而次設備號用來區分同一類大舉猛型的多個設備。對於常用設備,Linux有約定俗成的編號,如硬碟的主設備號是3
理解:應用程序通過訪問設備節點讀取主設備號和次設備號,通過主設答枯備號找對應的驅動,通過次設備號對應到具體物理設備。註:1個驅動對應一類設備,並用唯一主設備號標識。
Linux支持的各種設備的主設備號定義在include/linux/major.h文件中,已經在官方注冊的主設備號和次設備號在Documentation/devices.txt文件中。
Android系統最底層是Linux,並且在中間加上了一個Dalvik / ART的Java虛擬機,從表面層看是Android運行庫。每個Android應用都運行在自己的進程上,享有Dalvik / ART虛擬機為它分配的專有實例,並支持多個虛擬機在同一設備上高效運行,虛擬機執行的是專有格式的可執行文件(.dex) - 該格式經過優化,以將內存好用降到最低。
Android內核和Linux內核的差別主要體現在如下11個方面:
❸ Linux驅動程序開發實例的目錄
前言
第1章 Linux設備驅動程序模型 1
1.1 設備驅動程序基礎 1
1.1.1 驅動程序的概念 1
1.1.2 驅動程序的載入方式 2
1.1.3 編寫可載入模塊 3
1.1.4 帶參數的可載入模塊 5
1.1.5 設備驅動程序的分類 6
1.2 字元設備驅動程序原理 7
1.2.1 file_operations結構 7
1.2.2 使用register_chrdev注冊字元
設備 9
1.2.3 使用cdev_add注冊字元設備 11
1.2.4 字元設備的讀寫 13
1.2.5 ioctl介面 14
1.2.6 seek介面 16
1.2.7 poll介面 18
1.2.8 非同步通知 22
1.3 proc文件系統 24
1.3.1 proc文件系統概述 24
1.3.2 seq_file機制 25
1.3.3 使用proc文件系統 27
1.4 塊設備驅動程序 32
1.4.1 Linux塊設備驅動程序原理 32
1.4.2 簡單的塊設備驅動程序實例 35
1.5 網路設備驅動程序 39
1.5.1 網路設備的特殊性 39
1.5.2 sk_buff結構 40
1.5.3 Linux網路設備驅動程序架構 42
1.5.4 虛擬網路設備驅動程序實例 46
1.6 Linux 2.6設備管理機制 50
1.6.1 kobject和kset 50
1.6.2 sysfs文件系統 51
1.6.3 設備模型層次 52
1.6.4 platform的概念 54
第2章 Linux內核同步機制 58
2.1 鎖機制 58
2.1.1 自旋鎖 58
2.1.2 讀寫鎖 60
2.1.3 RCU 61
2.2 互斥 64
2.2.1 原子操作 64
2.2.2 信號量 65
2.2.3 讀寫信號量 67
2.3 等待隊列 68
2.3.1 等待隊列原理 68
2.3.2 阻塞式I/O實例 68
2.3.3 完成事件 70
2.4 關閉中斷 71
第3章 內存管理與鏈表 72
3.1 物理地址和虛擬地址 72
3.2 內存分配與釋放 72
3.3 IO埠到虛擬地址的映射 73
3.3.1 靜態映射 73
3.3.2 動態映射 75
3.4 內核空間到用戶空間的映射 76
3.4.1 內核空間到用戶空間的地址
映射原理 76
3.4.2 mmap地址映射實例 78
3.5 內核鏈表 80
3.5.1 Linux內核中的鏈表 80
3.5.2 內核鏈表實例 81
第4章 延遲處理 83
4.1 內核線程 83
4.2 軟中斷機制 85
4.2.1 軟中斷原理 85
4.2.2 tasklet 87
4.3 工作隊列 89
4.3.1 工作隊列原理 89
4.3.2 工作隊列實例 91
4.4 內核時間 92
4.4.1 Linux中的時間概念 92
4.4.2 Linux中的延遲 93
4.4.3 內核定時器 93
第5章 簡單設備驅動程序 96
5.1 寄存器訪問 96
5.1.1 S3C6410地址映射 96
5.1.2 S3C6410看門狗驅動程序實例 98
5.1.3 S3C6410蜂鳴器驅動程序實例 102
5.2 電平控制 107
5.2.1 S3C6410 LED驅動程序實例 107
5.2.2 掃描型S3C6410按鍵驅動
程序實例 109
5.3 時序產生 112
5.3.1 時序圖原理 112
5.3.2 AT24C02晶元原理 112
5.3.3 AT24C02驅動程序開發實例 115
5.4 硬中斷處理 123
5.4.1 硬中斷處理原理 123
5.4.2 中斷型S3C6410按鍵驅動
程序實例 127
5.5 Linux I/O埠控制 132
5.5.1 Linux I/O埠讀寫 132
5.5.2 在應用層訪問Linux I/O
埠 133
5.5.3 /dev/port設備 134
第6章 深入Linux內核 135
6.1 嵌入式Linux系統構成 135
6.2 Linux內核導讀 136
6.2.1 Linux內核組成 136
6.2.2 Linux的代碼結構 137
6.2.3 內核Makefile 138
6.2.4 S3C6410硬體初始化 139
6.3 Linux文件系統 141
6.3.1 虛擬文件系統 141
6.3.2 根文件系統 143
6.3.3 文件系統載入 143
6.3.4 ext3文件系統 145
6.4 Flash文件系統 145
6.4.1 MTD設備 145
6.4.2 MTD字元設備 148
6.4.3 MTD塊設備 150
6.4.4 cramfs文件系統 153
6.4.5 JFFS2文件系統 153
6.4.6 YAFFS文件系統 155
6.4.7 文件系統總結 156
6.5 Linux內核移植 156
6.5.1 體系配置 156
6.5.2 添加yaffs2 157
6.5.3 Nand flash驅動程序移植 157
6.5.4 配置啟動參數 159
6.5.5 移植RTC驅動程序 160
6.6 根文件系統製作 162
6.6.1 Busybox 162
6.6.2 shell基礎 165
6.6.3 根文件系統構建實例 166
6.7 udev模型 167
6.7.1 udev模型原理 167
6.7.2 mdev的使用 167
第7章 I2C匯流排驅動程序 169
7.1 Linux的I2C驅動程序架構 169
7.1.1 I2C適配器 169
7.1.2 I2C演算法 170
7.1.3 I2C驅動程序結構 170
7.1.4 I2C從設備 171
7.1.5 i2c-dev設備層 171
7.2 Linux I2C驅動程序開發 174
7.2.1 S3C2410X的I2C控制器 174
7.2.2 S3C2410X的I2C驅動程序
分析 175
7.3 S3C2410的I2C訪問實例 182
7.4 I2C客戶端驅動程序 185
第8章 TTY與串口驅動程序 190
8.1 TTY概念 190
8.2 Linux TTY驅動程序體系 190
8.2.1 TTY驅動程序調用關系 190
8.2.2 TTY驅動程序原理 191
8.3 線路規程 194
8.4 串口驅動程序與TTY 196
8.4.1 串口設備驅動程序原理 196
8.4.2 S3C6410的串口驅動程序
實例 199
8.5 TTY應用層 202
第9章 網路設備驅動程序 205
9.1 DM9000網卡驅動程序
開發 205
9.1.1 DM9000原理 205
9.1.2 DM9000X驅動程序分析 207
9.1.3 DM9000網口驅動程序移植 215
9.2 NFS根文件系統搭建 219
9.2.1 主機配置 219
9.2.2 NFS根文件系統搭建實例 220
9.3 netlink Socket 224
9.3.1 netlink機制 224
9.3.2 netlink應用層編程 228
9.3.3 netlink驅動程序實例 229
第10章 framebuffer驅動程序 232
10.1 Linux framebuffer驅動
程序原理 232
10.1.1 framebuffer核心數據結構 232
10.1.2 framebuffer操作介面 234
10.1.3 framebuffer驅動程序的文件
介面 236
10.1.4 framebuffer驅動程序框架 236
10.2 S3C6410 顯示控制器 238
10.3 S3C6410 LCD驅動程序實例 243
10.4 framebuffer應用層 250
10.5 Qt4界面系統移植 251
第11章 輸入子系統驅動程序 253
11.1 Linux輸入子系統概述 253
11.1.1 input_dev結構 253
11.1.2 輸入事件 255
11.2 input_handler 256
11.2.1 Input Handler層 256
11.2.2 常用的Input Handler 259
11.3 輸入設備應用層 261
11.4 鍵盤輸入設備驅動程序
實例 262
11.5 event介面 267
11.6 觸摸屏驅動程序實例 270
11.6.1 S3C6410觸摸屏控制器 270
11.6.2 S3C6410觸摸屏驅動程序
設計 273
11.7 觸摸屏校準 282
11.7.1 觸摸屏校準原理 282
11.7.2 利用TSLIB庫校準觸摸屏 282
第12章 USB驅動程序 284
12.1 USB體系概述 284
12.1.1 USB系統組成 284
12.1.2 USB主機 284
12.1.3 USB設備邏輯層次 285
12.2 Linux USB驅動程序體系 287
12.2.1 USB總體結構 287
12.2.2 USB設備驅動程序 287
12.2.3 主機控制器驅動程序 288
12.2.4 USB請求塊urb 289
12.2.5 USB請求塊的填充 291
12.3 S3C6410 USB主機控制器
驅動程序 292
12.3.1 USB主機控制器驅動程序
分析 292
12.3.2 S3C6410 USB驅動程序
載入 294
12.4 USB鍵盤設備驅動程序
分析 296
12.5 USB Gadget驅動程序 301
12.5.1 Linux USB Gadget驅動程序 301
12.5.2 Linux USB Gadget驅動程序
實例 302
第13章 音頻設備驅動程序 303
13.1 ALSA音頻體系 303
13.2 ALSA驅動層API 304
13.2.1 音效卡和設備管理 304
13.2.2 PCM API 304
13.2.3 控制與混音API 305
13.2.4 AC97 API 306
13.2.5 SOC層驅動 307
13.3 ALSA驅動程序實例 308
13.3.1 S3C6410的AC97控制
單元 308
13.3.2 S3C6410音效卡電路原理 309
13.3.3 S3C6410的數字音頻介面 310
13.3.4 wm9713的數字音頻介面 313
13.4 ALSA音頻編程介面 316
13.4.1 ALSA PCM介面實例 316
13.4.2 ALSA MIDI介面實例 320
13.4.3 ALSA mixer介面實例 321
13.4.4 ALSA timer介面實例 322
第14章 video4linux2視頻
驅動程序 327
14.1 video4linux2驅動程序
架構 327
14.1.1 video4linux2驅動程序的
注冊 327
14.1.2 v4l2_fops介面 331
14.1.3 常用的結構 332
14.1.4 video4linux2的ioctl函數 333
14.2 S3C6410攝像頭驅動程序
分析 333
14.2.1 電路原理 333
14.2.2 驅動程序分析 334
14.3 video4linux2應用層實例 339
第15章 SD卡驅動程序 346
15.1 Linux SD卡驅動程序體系 346
15.1.1 SD卡電路原理 346
15.1.2 MMC卡驅動程序架構 347
15.1.3 MMC卡驅動程序相關
結構 347
15.1.4 MMC卡塊設備驅動程序 350
15.1.5 SD卡主機控制器介面驅動
程序 356
15.2 S3C6410 SD卡控制器驅動
程序分析 360
15.2.1 電路原理 360
15.2.2 S3C6410 SDHCI驅動
程序原理 360
15.2.3 SD卡的載入實例 364
參考文獻 366
❹ LINUX設備驅動程序如何與硬體通信
LINUX設備驅動程序是怎麼樣和硬體通信的?下面將由我帶大家來解答這個疑問吧,希望對大家有所收獲!
LINUX設備驅動程序與硬體設備之間的通信
設備驅動程序是軟體概念和硬體電路之間的一個抽象層,因此兩方面都要討論。到目前為止,我們已經討論詳細討論了軟體概念上的一些細節,現在討論另一方面,介紹驅動程序在Linux上如何在保持可移植性的前提下訪問I/O埠和I/O內存。
我們在需要示例的場合會使用簡單的數字I/O埠來講解I/O指令,並使用普通的幀緩沖區顯存來講解內存映射I/O。
I/O埠和I/O內存
計算機對每種外設都是通過讀寫它的寄存器進行控制的。大部分外設都有幾個寄存器,不管是在內存地址空間還是在I/O地址空間,這些寄存器的訪問地址都是連續的。
I/O埠就是I/O埠,設備會把寄存器映射到I/O埠,不管處理器是否具有獨立的I/O埠地址空間。即使沒有在訪問外設時也要模擬成讀寫I/O埠。
I/O內存是設備把寄存器映射到某個內存地址區段(如PCI設備)。這種I/O內存通常是首先方案,它不需要特殊的處理器指令,而且CPU核心訪問內存更有效率。
I/O寄存器和常規內存
盡管硬體寄存器和內存非常相似,但程序員在訪問I/O寄存器的時候必須注意避免由於CPU或編譯器不恰當的優化而改變預期的I/O動作。
I/O寄存器和RAM最主要的區別就是I/O操作具有邊際效應,而內存操作則沒有:由於內存沒有邊際效應,所以可以用多種 方法 進行優化,如使用高速緩存保存數值、重新排序讀/寫指令等。
編譯器能夠將數值緩存在CPU寄存器中而不寫入內存,即使儲存數據,讀寫操作也都能在高速緩存中進行而不用訪問物理RAM。無論是在編譯器一級或是硬體一級,指令的重新排序都有可能發生:一個指令序列如果以不同於程序文本中的次序運行常常能執行得更快。
在對常規內存進行這些優化的時候,優化過程是透明的,而且效果良好,但是對I/O操作來說這些優化很可能造成致命的錯誤,這是因為受到邊際效應的干擾,而這卻是驅動程序訪問I/O寄存器的主要目的。處理器無法預料某些 其它 進程(在另一個處理器上運行,或在在某個I/O控制器中發生的操作)是否會依賴於內存訪問的順序。編譯器或CPU可能會自作聰明地重新排序所要求的操作,結果會發生奇怪的錯誤,並且很難調度。因此,驅動程序必須確保不使用高速緩沖,並且在訪問寄存器時不發生讀或寫指令的重新排序。
由硬體自身引起的問題很解決:只要把底層硬體配置成(可以是自動的或是由Linux初始化代碼完成)在訪問I/O區域(不管是內存還是埠)時禁止硬體緩存即可。
由編譯器優化和硬體重新排序引起的問題的解決辦法是:對硬體(或其他處理器)必須以特定順序的操作之間設置內存屏障(memory barrier)。Linux提供了4個宏來解決所有可能的排序問題:
#include <linux/kernel.h>
void barrier(void)
這個函數通知編譯器插入一個內存屏障,但對硬體沒有影響。編譯後的代碼會把當前CPU寄存器中的所有修改過的數值保存到內存中,需要這些數據的時候再重新讀出來。對barrier的調用可避免在屏障前後的編譯器優化,但硬體完成自己的重新排序。
#include <asm/system.h>
void rmb(void);
void read_barrier_depends(void);
void wmb(void);
void mb(void);
這些函數在已編譯的指令流中插入硬體內存屏障;具體實現方法是平台相關的。rmb(讀內存屏障)保證了屏障之前的讀操作一定會在後來的讀操作之前完成。wmb保證寫操作不會亂序,mb指令保證了兩者都不會。這些函數都是barrier的超集。
void smp_rmb(void);
void smp_read_barrier_depends(void);
void smp_wmb(void);
void smp_mb(void);
上述屏障宏版本也插入硬體屏障,但僅僅在內核針對SMP系統編譯時有效;在單處理器系統上,它們均會被擴展為上面那些簡單的屏障調用。
設備驅動程序中使用內存屏障的典型形式如下:
writel(dev->registers.addr, io_destination_address);
writel(dev->registers.size, io_size);
writel(dev->registers.operation, DEV_READ);
wmb();
writel(dev->registers.control, DEV_GO);
在這個例子中,最重要的是要確保控制某種特定操作的所有設備寄存器一定要在操作開始之前已被正確設置。其中的內存屏障會強制寫操作以要求的順序完成。
因為內存屏障會影響系統性能,所以應該只用於真正需要的地方。不同類型的內存屏障對性能的影響也不盡相同,所以最好盡可能使用最符合需要的特定類型。
值得注意的是,大多數處理同步的內核原語,如自旋鎖和atomic_t操作,也能作為內存屏障使用。同時還需要注意,某些外設匯流排(比如PCI匯流排)存在自身的高速緩存問題,我們將在後面的章節中討論相關問題。
在某些體系架構上,允許把賦值語句和內存屏障進行合並以提高效率。內核提供了幾個執行這種合並的宏,在默認情況下,這些宏的定義如下:
#define set_mb(var, value) do {var = value; mb();} while 0
#define set_wmb(var, value) do {var = value; wmb();} while 0
#define set_rmb(var, value) do {var = value; rmb();} while 0
在適當的地方,<asm/system.h>中定義的這些宏可以利用體系架構特有的指令更快的完成任務。注意只有小部分體系架構定義了set_rmb宏。
使用I/O埠
I/O埠是驅動程序與許多設備之間的通信方式——至少在部分時間是這樣。本節講解了使用I/O埠的不同函數,另外也涉及到一些可移植性問題。
I/O埠分配
下面我們提供了一個注冊的介面,它允允許驅動程序聲明自己需要操作的埠:
#include <linux/ioport.h>
struct resource *request_region(unsigned long first, unsigned long n, const char *name);
它告訴內核,我們要使用起始於first的n個埠。name是設備的名稱。如果分配成功返回非NULL,如果失敗返回NULL。
所有分配的埠可從/proc/ioports中找到。如果我們無法分配到我們要的埠集合,則可以查看這個文件哪個驅動程序已經分配了這些埠。
如果不再使用這些埠,則用下面函數返回這些埠給系統:
void release_region(unsigned long start, unsigned long n);
下面函數允許驅動程序檢查給定的I/O埠是否可用:
int check_region(unsigned long first, unsigned long n);//不可用返回負的錯誤代碼
我們不贊成用這個函數,因為它返回成功並不能確保分配能夠成功,因為檢查和其後的分配並不是原子操作。我們應該始終使用request_region,因為這個函數執行了必要的鎖定,以確保分配過程以安全原子的方式完成。
操作I/O埠
當驅動程序請求了需要使用的I/O埠范圍後,必須讀取和/或寫入這些埠。為此,大多數硬體都會把8位、16位、32位區分開來。它們不能像訪問系統內存那樣混淆使用。
因此,C語言程序必須調用不同的函數訪問大小不同的埠。那些只支持映射的I/O寄存器的計算機體系架構通過把I/O埠地址重新映射到內存地址來偽裝埠I/O,並且為了易於移植,內核對驅動程序隱藏了這些細節。Linux內核頭文件中(在與體系架構相關的頭文件<asm/io.h>中)定義了如下一些訪問I/O埠的內聯函數:
unsigned inb(unsigned port);
void outb(unsigned char byte, unsigned port);
位元組讀寫埠。
unsigned inw(unsigned port);
void outw(unsigned short word, unsigned port);
訪問16位埠
unsigned inl(unsigned port);
void outl(unsigned longword, unsigned port);
訪問32位埠
在用戶空間訪問I/O埠
上面這些函數主要是提供給設備驅動程序使用的,但它們也可以用戶空間使用,至少在PC類計算機上可以使用。GNU的C庫在<sys/io.h>中定義了這些函數。如果要要用戶空間使用inb及相關函數,則必須滿足正下面這些條件:
編譯程序時必須帶有-O選項來強制內聯函數的展開。
必須用ioperm(獲取單個埠的許可權)或iopl(獲取整個I/O空間)系統調用來獲取對埠進行I/O操作的許可權。這兩個函數都是x86平台特有的。
必須以root身份運行該程序才能調用ioperm或iopl。或者進程的祖先進程之一已經以root身份獲取對埠的訪問。
如果宿主平台沒有以上兩個系統調用,則用戶空間程序仍然可以使用/dev/port設備文件訪問I/O埠。不過要注意,該設備文件的含義與平台密切相關,並且除PC平台以處,它幾乎沒有什麼用處。
串操作
以上的I/O操作都是一次傳輸一個數據,作為補充,有些處理器實現了一次傳輸一個數據序列的特殊指令,序列中的數據單位可以是位元組、字、雙字。這些指令稱為串操作指令,它們執行這些任務時比一個C語言編寫的循環語句快得多。下面列出的宏實現了串I/O:
void insb(unsigned port, void *addr, unsigned long count);
void outsb(unsigned port, void *addr, unsigned long count);從內存addr開始連續讀/寫count數目的位元組。只對單一埠port讀取或寫入數據
void insw(unsigned port, void *addr, unsigned long count);
void outsw(unsigned port, void *addr, unsigned long count);對一個16位埠讀寫16位數據
void insl(unsigned port, void *addr, unsigned long count);
void outsl(unsigned port, void *addr, unsigned long count);對一個32位埠讀寫32位數據
在使用串I/O操作函數時,需要銘記的是:它們直接將位元組流從埠中讀取或寫入。因此,當埠和主機系統具有不同的位元組序時,將導致不可預期的結果。使用inw讀取埠將在必要時交換位元組,以便確保讀入的值匹配於主機的位元組序。然而,串函數不會完成這種交換。
暫停式I/O
在處理器試圖從匯流排上快速傳輸數據時,某些平台(特別是i386)就會出現問題。當處理器時鍾比外設時鍾(如ISA)快時就會出現問題,並且在設備板上特別慢時表現出來。為了防止出現丟失數據的情況,可以使用暫停式的I/O函數來取代通常的I/O函數,這些暫停式的I/O函數很像前面介紹的那些I/O函數,不同之處是它們的名字用_p結尾,如inb_p、outb_p等等。在linux支持的大多數平台上都定義了這些函數,不過它們常常擴展為非暫停式I/O同樣的代碼,因為如果不使用過時的外設匯流排就不需要額外的暫停。
平台相關性
I/O指令是與處理器密切相關的。因為它們的工作涉及到處理器移入移出數據的細節,所以隱藏平台間的差異非常困難。因此,大部分與I/O埠相關的源代碼都與平台相關。
回顧前面函數列表可以看到有一處不兼容的地方,即數據類型。函數的參數根據各平台體系架構上的不同要相應地使用不同的數據類型。例如,port參數在x86平台上(處理器只支持64KB的I/O空間)上定義為unsigned short,但在其他平台上定義為unsigned long,在這些平台上,埠是與內存在同一地址空間內的一些特定區域。
感興趣的讀者可以從io.h文件獲得更多信息,除了本章介紹的函數,一些與體系架構相關的函數有時也由該文件定義。
值得注意的是,x86家族之外的處理器都不為埠提供獨立的地址空間。
I/O操作在各個平台上執行的細節在對應平台的編程手冊中有詳細的敘述;也可以從web上下載這些手冊的PDF文件。
I/O埠示例
演示設備驅動程序的埠I/O的示例代碼運行於通用的數字I/O埠上,這種埠在大多數計算機平台上都能找到。
數字I/O埠最常見的一種形式是一個位元組寬度的I/O區域,它或者映射到內存,或者映射到埠。當把數字寫入到輸出區域時,輸出引腳上的電平信號隨著寫入的各位而發生相應變化。從輸入區域讀取到的數據則是輸入引腳各位當前的邏輯電平值。
這類I/O埠的具體實現和軟體介面是因系統而異的。大多數情況下,I/O引腳由兩個I/O區域控制的:一個區域中可以選擇用於輸入和輸出的引腳,另一個區域中可以讀寫實際的邏輯電平。不過有時情況簡單些,每個位不是輸入就是輸出(不過這種情況下就不能稱為“通用I/O"了);在所有個人計算機上都能找到的並口就是這樣的非通用的I/O埠。
並口簡介
並口的最小配置由3個8位埠組成。第一個埠是一個雙向的數據寄存器,它直接連接到物理連接器的2~9號引腳上。第二個埠是一個只讀的狀態寄存器;當並口連接列印機時,該寄存器 報告 列印機狀態,如是否是線、缺紙、正忙等等。第三個埠是一個只用於輸出的控制寄存器,它的作用之一是控制是否啟用中斷。
如下所示:並口的引腳
示例驅動程序
while(count--) {
outb(*(ptr++), port);
wmb();
}
使用I/O內存
除了x86上普遍使的I/O埠之外,和設備通信的另一種主要機制是通過使用映射到內存的寄存器或設備內存,這兩種都稱為I/O內存,因為寄存器和內存的差別對軟體是透明的。
I/O內存僅僅是類似RAM的一個區域,在那裡處理器可以通過匯流排訪問設備。這種內存有很多用途,比如存放視頻數據或乙太網數據包,也可以用來實現類似I/O埠的設備寄存器(也就是說,對它們的讀寫也存在邊際效應)。
根據計算機平台和所使用匯流排的不同,i/o內存可能是,也可能不是通過頁表訪問的。如果訪問是經由頁表進行的,內核必須首先安排物理地址使其對設備驅動程序可見(這通常意味著在進行任何I/O之前必須先調用ioremap)。如果訪問無需頁表,那麼I/O內存區域就非常類似於I/O埠,可以使用適當形式的函數讀取它們。
不管訪問I/O內存是否需要調用ioremap,都不鼓勵直接使用指向I/O內存的指針。相反使用包裝函數訪問I/O內存,這一方面在所有平台上都是安全的,另一方面,在可以直接對指針指向的內存區域執行操作的時候,這些函數是經過優化的。並且直接使用指針會影響程序的可移植性。
I/O內存分配和映射
在使用之前,必須首先分配I/O區域。分配內存區域的介面如下(在<linux/ioport.h>中定義):
struct resource *request_mem_region(unsigned long start, unsigned long len, char *name);
該函數從start開始分配len位元組長的內存區域。如果成功返回非NULL,否則返回NULL值。所有的I/O內存分配情況可從/proc/iomem得到。
不再使用已分配的內存區域時,使用如下介面釋放:
void release_mem_region(unsigned long start, unsigned long len);
下面函數用來檢查給定的I/O內存區域是否可用的老函數:
int check_mem_region(unsigned long start, unsigned long len);//這個函數和check_region一樣不安全,應避免使用
分配內存之後我們還必須確保該I/O內存對內存而言是可訪問的。獲取I/O內存並不意味著可引用對應的指針;在許多系統上,I/O內存根本不能通過這種方式直接訪問。因此,我們必須由ioremap函數建立映射,ioremap專用於為I/O內存區域分配虛擬地址。
我們根據以下定義來調用ioremap函數:
#include <asm/io.h>
void *ioremap(unsigned long phys_addr, unsigned long size);
void *ioremap_nocache(unsigned long phys_addr, unsigned long size);在大多數計算機平台上,該函數和ioremap相同:當所有I/O內存已屬於非緩存地址時,就沒有必要實現ioremap的獨立的,非緩沖版本。
void iounmap(void *addr);
記住,由ioremap返回的地址不應該直接引用,而應該使用內核提供的accessor函數。
訪問I/O內存
在某些平台上我們可以將ioremap的返回值直接當作指針使用。但是,這種使用不具有可移植性,訪問I/O內存的正確方法是通過一組專用於些目的的函數(在<asm/io.h>中定義)。
從I/O內存中讀取,可使用以下函數之一:
unsigned int ioread8(void *addr);
unsigned int ioread16(void *addr);
unsigned int ioread32(void *addr);
其中,addr是從ioremap獲得的地址(可能包含一個整數偏移量);返回值是從給定I/O內存讀取到的值。
寫入I/O內存的函數如下:
void iowrite8(u8 value, void *addr);
void iowrite16(u16 value, void *addr);
void iowrite32(u32 value, void *addr);
如果必須在給定的I/O內存地址處讀/寫一系列值,則可使用上述函數的重復版本:
void ioread8_rep(void *addr, void *buf, unsigned long count);
void ioread16_rep(void *addr, void *buf, unsigned long count);
void ioread32_rep(void *addr, void *buf, unsigned long count);
void iowrite8_rep(void *addr, const void *buf, unsigned long count);
void iowrite16_rep(void *addr, const void *buf, unsigned long count);
void iowrite32_rep(void *addr, const void *buf, unsigned long count);
上述函數從給定的buf向給定的addr讀取或寫入count個值。count以被寫入數據的大小為單位。
上面函數均在給定的addr處執行所有的I/O操作,如果我們要在一塊I/O內存上執行操作,則可以使用下面的函數:
void memset_io(void *addr, u8 value, unsigned int count);
void memcpy_fromio(void *dest, void *source, unsigned int count);
void memcpy_toio(void *dest, void *source, unsigned int count);
上述函數和C函數庫的對應函數功能一致。
像I/O內存一樣使用I/O埠
某些硬體具有一種有趣的特性:某些版本使用I/O埠,而其他版本則使用I/O內存。導出給處理器的寄存器在兩種情況下都是一樣的,但訪問方法卻不同。為了讓處理這類硬體的驅動程序更加易於編寫,也為了最小化I/O埠和I/O內存訪問這間的表面區別,2.6內核引入了ioport_map函數:
void *ioport_map(unsigned long port, unsigned int count);
該函數重新映射count個I/O埠,使其看起來像I/O內存。此後,驅動程序可在該函數返回的地址上使用ioread8及其相關函數,這樣就不必理會I/O埠和I/O內存之間的區別了。
當不需要這種映射時使用下面函數一撤消:
void ioport_unmap(void *addr);
這些函數使得I/O埠看起來像內存。但需要注意的是,在重新映射之前,我們必須通過request_region來分配這些I/O埠。
為I/O內存重用short
前面介紹的short示例模塊訪問的是I/O埠,它也可以訪問I/O內存。為此必須在載入時通知它使用I/O內存,另外還要修改base地址以使其指向I/O區域。
下例是在MIPS開發板上點亮調試用的LED:
mips.root# ./short_load use_mem=1 base = 0xb7ffffc0
mips.root# echo -n 7 > /dev/short0
下面代碼是short寫入內存區域時使用的循環:
while(count--) {
iowrite8(*ptr++, address);
wmb();
}
1MB地址空間之下的ISA內存
最廣為人知的I/O內存區之一就是個人計算機上的ISA內存段。它的內存范圍在64KB(0xA0000)到1MB(0x100000)之間,因此它正好出現在常規系統RAM的中間。這種地址看上去有點奇怪,因為這個設計決策是20世紀80年代早期作出的,在當時看來沒有人會用到640KB以上的內存。
❺ 如何在嵌入式LINUX中增加自己的設備驅動程序
Linux驅動程序的使用可以按照兩種方式編譯,一種是靜態編譯進內核,另一種是編譯成模塊以供動態載入。由於uClinux不支持模塊動態載入,而且嵌入式LINUX不能夠象桌面LINUX那樣靈活的使用insmod/rmmod載入卸載設備驅動程序,因而這里只介紹將設備驅動程序靜態編譯進uClinux內核的方法。
下面以UCLINUX為例,介紹在一個以模塊方式出現的驅動程序test.c基礎之上,將其編譯進內核的一系列步驟:
(1)
改動test.c源帶代碼
第一步,將原來的:
#include
#include
char
kernel_version[]=UTS_RELEASE;
改動為:
#ifdef
MODULE
#include
#include
char
kernel_version[]=UTS_RELEASE;
#else
#define
MOD_INC_USE_COUNT
#define
MOD_DEC_USE_COUNT
#endif
第二步,新建函數int
init_test(void)
將設備注冊寫在此處:
result=register_chrdev(254,"test",&test_fops);
(2)將test.c復制到/uclinux/linux/drivers/char目錄下,並且在/uclinux/linux/drivers/char目錄下mem.c中,int
chr_dev_init(
)函數中增加如下代碼:
#ifdef
CONFIG_TESTDRIVE
init_test();
#endif
(3)在/uclinux/linux/drivers/char目錄下Makefile中增加如下代碼:
ifeq($(CONFIG_TESTDRIVE),y)
L_OBJS+=test.o
Endif
(4)在/uclinux/linux/arch/m68knommu目錄下config.in中字元設備段里增加如下代碼:
bool
'support
for
testdrive'
CONFIG_TESTDRIVE
y
(5)
運行make
menuconfig(在menuconfig的字元設備選項里你可以看見我們剛剛添加的'support
for
testdrive'選項,並且已經被選中);make
dep;make
linux;make
linux.text;make
linux.data;cat
linux.text
linux.data
>
linux.bin。
(6)
在
/uclinux/romdisk/romdisk/dev/目錄下創建設備:
mknod
test
c
254
0
並且在/uclinux/appsrc/下運行make,生成新的Romdisk.s19文件。
到這里,在UCLINUX中增加設備驅動程序的工作可以說是完成了,只要將新的linux.bin與Romdisk
❻ 6. Linux-LCD 驅動程序概述
入局:應用程序是如何操控LCD顯示器的?
我們知道應用程序的調用介面,無非 open/read/write ...然後通過驅動程序最終作用到硬體設備上。以字元設備為例,對於驅動的開發者,實現了應用程序調用的驅動層中與之相匹配的 drv_open/drv_read/drv_write 函數,為應用層序提供了操作實際硬體設備的通道。那麼,對於LCD驅動程序又是如何?先來了解下兩個非常重要的概念。
LCD控制器的功能是控制驅動信號,進而驅動LCD。用戶只需要通過讀寫一系列的寄存器,完成配置和顯示驅動。在驅動LCD設計的過程中首要的是配置LCD控制器,而在配置LCD控制器中最重要的一步則是幀緩沖區(Frame Buffer)的指定。用戶所要顯示的內容皆是從緩沖區中讀出,從而顯示到屏幕上的。幀緩沖區的大小由屏幕的解析度和顯示色彩數決定。驅動幀緩沖的實現是整個驅動開發過程的重點。
幀緩沖區是出現在Linux 2.2.xx及以後版本內核當中的一種驅動程序介面,這種介面將顯示設備抽象為幀緩沖區設備區。幀緩沖區為圖像硬體設備提供了一種抽象化處理,它代表了一些視頻硬體設備,允許應用軟體通過定義明確的界面來訪問圖像硬體設備。這樣軟體無須了解任何涉及硬體底層驅動的東西(如硬體寄存器)。它允許上層應用程序在圖形模式下直接對顯示緩沖區進行讀寫和I/O控制等操作。通過專門的設備節點可對該設備進行訪問,如/dev/fb*。用戶可以將它看成是顯示內存的一個映像,將其映射到進程地址空間之後,就可以進行讀寫操作,而讀寫操作可以反映到LCD。
幀緩沖(Frame Buffer)是Linux為顯示設備提供的一個介面,把顯存抽象後的一種設備,允許上層應用程序在圖形模式下直接對顯示緩沖區進行讀寫操作。用戶不必關心物理顯存的位置、換頁機制等等具體細節,這些都是由Frame Buffer設備驅動來完成的。幀緩沖設備屬於字元設備。
Linux系統Frame Buffer本質上只是提供了對圖形設備的硬體抽象,在開發者看來,Frame Buffer是一塊顯示緩存,向顯示緩存中寫入特定格式的數據就意味著向屏幕輸出內容。
由於有了frambuffer的抽象,使得應用程序通過定義好的介面就可以訪問硬體。所以應用程序不需要考慮底層的(寄存器級)的操作。應用程序對設備文件的訪問一般在/dev目錄,如 /dev/fb*。
內核中的frambuffer在: drivers/video/fbmem.c (fb: frame buffer)
(1) 創建字元設備"fb", FB_MAJOR=29,主設備號為29。
(2)創建類,但並沒有創建設備節點,因為需要注冊了LCD驅動後,才會有設備節點;
2.1 fb_open函數如下:
(1) registered_fb[fbidx] 這個數組也是fb_info結構體,其中fbidx等於次設備號id,顯然這個數組就是保存我們各個lcd驅動的信息;
2.2 fb_read函數如下:
從.open和.read函數中可以發現,都依賴於fb_info幀緩沖信息結構體,它從registered_fb[fbidx]數組中得到,這個數組保存我們各個lcd驅動的信息。由此可見,fbmem.c提供的都是些抽象出來的東西,最終都得依賴registered_fb這個數組。
這個register_framebuffer()除了注冊fb_info,還創建了設備節點。
以s3c2410fb.c為例,分析驅動的實現。
既然是匯流排設備驅動模型,那我們關心的是它的probe函數。
看到這里驅動的寫法也大致清晰:
附:
LCD的顯示過程與時序:
1.顯示從屏幕左上角第一行的第一個點開始,一個點一個點地在LCD上顯示,點與點之間的時間間隔為VCLK(像素時鍾信號);當顯示到屏幕的最右邊就結束這一行(Line),這一行的顯示對應時序圖上的HSYNC(水平同步信號)
2. 接下來顯示指針又回到屏幕的左邊從第二行開始顯示,顯示指針針在從第一行的右邊回到第二行的左邊是需要一定的時間的,我們稱之為行切換。
3. 以此類推,顯示指針就這樣一行一行的顯示至矩形的右下角才把一幅圖像(幀:frame)顯示完成,這一幀的顯示時間在時序圖上表示為VSYNC(垂直同步信號)。
參考:
https://sites.google.com/a/hongdy.org/www/linux/kernel/lcddriver
❼ linux驅動程序結構框架及工作原理分別是什麼
一、Linux device driver 的概念x0dx0ax0dx0a系統調用是操作系統內核和應用程序之間的介面,設備驅動程序是操作系統內核和機器硬體之間的介面。設備驅動程序為應用程序屏蔽了硬體的細節,這樣在應用程序看來,硬體設備只是一個設備文件,應用程序可以象操作普通文件一樣對硬體設備進行操作。設備驅動程序是內核的一部分,它完成以下的功能:x0dx0ax0dx0a1、對設備初始化和釋放;x0dx0ax0dx0a2、把數據從內核傳送到硬體和從硬體讀取數據;x0dx0ax0dx0a3、讀取應用程序傳送給設備文件的數據和回送應用程序請求的數據;x0dx0ax0dx0a4、檢測和處理設備出現的錯誤。x0dx0ax0dx0a在Linux操作系統下有三類主要的設備文件類型,一是字元設備,二是塊設備,三是網路設備。字元設備和塊設備的主要區別是:在對字元設備發出讀/寫請求時,實際的硬體I/O一般就緊接著發生了,塊設備則不然,它利用一塊系統內存作緩沖區,當用戶進程對設備請求能滿足用戶的要求,就返回請求的數據,如果不能,就調用請求函數來進行實際的I/O操作。塊設備是主要針對磁碟等慢速設備設計的,以免耗費過多的CPU時間來等待。x0dx0ax0dx0a已經提到,用戶進程是通過設備文件來與實際的硬體打交道。每個設備文件都都有其文件屬性(c/b),表示是字元設備還是塊設備?另外每個文件都有兩個設備號,第一個是主設備號,標識驅動程序,第二個是從設備號,標識使用同一個設備驅動程序的不同的硬體設備,比如有兩個軟盤,就可以用從設備號來區分他們。設備文件的的主設備號必須與設備驅動程序在登記時申請的主設備號一致,否則用戶進程將無法訪問到驅動程序。x0dx0ax0dx0a最後必須提到的是,在用戶進程調用驅動程序時,系統進入核心態,這時不再是搶先式調度。也就是說,系統必須在你的驅動程序的子函數返回後才能進行其他的工作。如果你的驅動程序陷入死循環,不幸的是你只有重新啟動機器了,然後就是漫長的fsck。x0dx0ax0dx0a二、實例剖析x0dx0ax0dx0a我們來寫一個最簡單的字元設備驅動程序。雖然它什麼也不做,但是通過它可以了解Linux的設備驅動程序的工作原理。把下面的C代碼輸入機器,你就會獲得一個真正的設備驅動程序。x0dx0ax0dx0a由於用戶進程是通過設備文件同硬體打交道,對設備文件的操作方式不外乎就是一些系統調用,如 open,read,write,close?, 注意,不是fopen, fread,但是如何把系統調用和驅動程序關聯起來呢?這需要了解一個非常關鍵的數據結構:x0dx0ax0dx0aSTruct file_operatiONs {x0dx0ax0dx0aint (*seek) (struct inode * ,struct file *, off_t ,int);x0dx0ax0dx0aint (*read) (struct inode * ,struct file *, char ,int);x0dx0ax0dx0aint (*write) (struct inode * ,struct file *, off_t ,int);x0dx0ax0dx0aint (*readdir) (struct inode * ,struct file *, struct dirent * ,int);x0dx0ax0dx0aint (*select) (struct inode * ,struct file *, int ,select_table *);x0dx0ax0dx0aint (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long);x0dx0ax0dx0aint (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);x0dx0ax0dx0aint (*open) (struct inode * ,struct file *);x0dx0ax0dx0aint (*release) (struct inode * ,struct file *);x0dx0ax0dx0aint (*fsync) (struct inode * ,struct file *);x0dx0ax0dx0aint (*fasync) (struct inode * ,struct file *,int);x0dx0ax0dx0aint (*check_media_change) (struct inode * ,struct file *);x0dx0ax0dx0aint (*revalidate) (dev_t dev);x0dx0ax0dx0a}x0dx0ax0dx0a這個結構的每一個成員的名字都對應著一個系統調用。用戶進程利用系統調用在對設備文件進行諸如read/write操作時,系統調用通過設備文件的主設備號找到相應的設備驅動程序,然後讀取這個數據結構相應的函數指針,接著把控制權交給該函數。這是linux的設備驅動程序工作的基本原理。既然是這樣,則編寫設備驅動程序的主要工作就是編寫子函數,並填充file_operations的各個域。x0dx0ax0dx0a下面就開始寫子程序。x0dx0ax0dx0a#include