『壹』 遺傳演算法實現數字水印用MATLAB,程序怎麼寫啊可以把我的積分都給了你
一、嵌入水印信息的MATLAB程序
首先讀入原始圖象並設置參數,然後嵌入水印信息,程序代碼如下:
clear
%
%讀入原圖象
trueImage=imread('C:\Documents and Settings\ks001\My Documents\My Pictures\lean.tif');
alfa=.1;
LENGTH=2500;
subplot(2,2,1);
imshow(trueImage);
title('原始圖象');
%
%對原圖象進行DCT變換
dctF1=dct2('C:\Documents and Settings\ks001\My Documents\My Pictures\lean.tif');
subplot(2,2,2);
imshow(log(abs(dctF1)),[ ]);
title('DCT cofficient matrix');
[m,n]=size(dctF1);
%
%產生水印序列並對其排序
radon('right',10);
watermark1=radon(LENGTH,1);
subplot(2,2,3);
title('watermark seqence')
[Y0,I0]=sort(watermark1);
%
%找出水印嵌入位置(幅值較大的n個頻域成分)
A=dctF1(:);
[Y1,I1]=sort(A);
x=m*n;
k=LENGTH;
M=zeros(x,1);
%
%修改幅值較大的n個頻域成分的幅值,嵌入水印(因為兩個問題不同,所以有兩個注釋符)
for i=1:x
if k>=1
M(x)=Y1(x)*(1+alfa*Y0(k));
k=k-1;
else
M(x)=Y1(x);
end
x=x-1;
end
N=zeros(x,1);
x=m*n;
for i=1:x
N(I1(i))=M(i);
end
a=1;
for j=1:n
for i=1:m
dctF2(i,j)=N(a);
a=a+1;
end
end
%
%DCT反變換,得到嵌入水印的圖象
idctF1=idct2(dctF2);
subplot(2,2,4);
imshow(idctF1,[ ]);
title('嵌入水印後的圖象');
end
二、提取恢復水印信息的MATLAB程序
水印提取過程是水印嵌入過程的逆過程,相對嵌入過程來說比較復雜,難度較大,下面是水印提取檢測的MATLAB程序代碼:
function watermark_detect(image,Y1,I0,waterMark1)
%image:嵌入水印的圖象
%Y1:原始圖象的序列排序
%I0:原始水印的序列排序
%waterMark1:原始水印序列
%
%對嵌入水印圖象進行DCT變化
dctW1=dct2(image);
%
%找出幅值較大的系數
B=dtW1(:);
[Y1,I2]=sort(B);
[m1,n1]=size(dctW1);
y=m1*n1;
k=length(waterMark1);
N0=zeros(k,1);
%
%提取水印序列
while k>=1
N0(k)=(Y2(y)-Y1(y))/alfa/Y1(y);
k=k-1;
y=y-1;
end
k=length(waterMark1);
waterMark2=zeros(k,1);
for i=1:k
waterMark2(I0(i))=N0(i);
end
%
%選取50個測試序列,其中第10個為提取出的水印
figure;
for i=1;50
if i==10;
waterMark=waterMark2;
else
waterMark=rand(k,1);
end
%計算各個序列與原來水印序列的相關值
c=waterMark'*waterMark1/sqrt(waterMark'*waterMark);
stem(i,c);
hold on;
end
%
三、接下來對嵌入水印的圖象進行不同的攻擊,用以測試水印的魯棒性。
程序的目的和程序代碼如下:
%
%攻擊實驗
disp('input you choice according to the following
image processing operation:');
disp('0--exit');
disp('1--smoothing patterns');
%添加噪音
disp('2--adding uniorm noise 添加噪音');
%濾波
disp('3--adding filter [10 10] 濾波');
%剪切
disp('4--cutting part of the image 剪切');
%壓縮
disp('5--10 quality JPEG compressing 壓縮');
%旋轉45度
disp('6--rotate 45 旋轉');
%
d=input('please input you choice(請輸入您的選擇):');
while d~=0
switch d
case 1
watermark_detect(idctF1,Y1,I0,waterMark1);
case 2
WImage2=idctF1;
noise0=10*rand(size(WImage2));
WImage2=WImage2+noise0;
figure;
imshow(WImage2,[ ]);
title('adding uniform noise 添加噪音');
watemark_detect(WImage2,Y1,I0,waterMark1);
case 3
WImage3=idctF1;
H=fspcial('gaussian高斯',[10,10],5);
WImage3=imfilter(WImage3,H);
figure;
imshow(WImage3,[ ]);
title(through filter [10,10] 濾波');
watemark_detect(WImage3,Y1,I0,waterMark1);
case 4
WImage4=idctF1; WImage4(1:128,1;128)=256;
figure;
imshow(WImage4);
title('cutting part of the image 剪切');
watemark_detect(WImage4,Y1,I0,waterMark1);
case 5
WImage5=idctF1;
WImage5=im2double(WImage5);
cnum=10;
dctm=dctmtx(8);
p1=dctm;
p2=dctm.';
imageDCT=blkproc(WImage5,[8,8],'p1*p2*x',dctm,dctm.');
DCTvar=im2col(imageDCT,[8,8],'distinct').';
n=size(DCTvar,1);
DCTvar=(sum(DCTvar.*DCTvar)-(sum(DCTvar)/n).^2)/n;
[m,order]=sort(DCTvar);
cnum=64-cnum;
mask=ones(8,8);
mask(order(1:cnum))=zeros(1,cnum);
im88=zeros(9,9);
im88(1:8,1:8)=mask;
im128128=kron(im88(1:8,1:8),ones(16));
dctm=dctmtx(8);
p1=dctm.';
p2=mask(1;8,1:8);
p3=dctm;
Wimage5=bikproc(imageDCT,[8,8],'p1*(x.8p2)*p3',dctm.',mask(1:8,1:8),dctm);
figure;
imshow(Wimage5);
title('JPEG Image 壓縮');
watemark_detect(WImage5,Y1,I0,waterMark1);
case 6 WImage6=idctF1;
WImage6=imrotate(WImage6,45,'bilinear','corp');
figure;
imshow(Wimage6);
title('rotate 45 旋轉');
watemark_detect(WImage6,Y1,I0,waterMark1);
case 0
break;
otherwise
error('you have a valid value(您的輸入錯誤)');
end
d=input('please input you choice(請輸入您的選擇):');
end
%結束
『貳』 遺傳演算法的matlab代碼實現是什麼
遺傳演算法我懂,我的論文就是用著這個演算法,具體到你要遺傳演算法是做什麼?優化什麼的。。。我給你一個標准遺傳演算法程序供你參考:
該程序是遺傳演算法優化BP神經網路函數極值尋優:
%% 該代碼為基於神經網路遺傳演算法的系統極值尋優
%% 清空環境變數
clc
clear
%% 初始化遺傳演算法參數
%初始化參數
maxgen=100; %進化代數,即迭代次數
sizepop=20; %種群規模
pcross=[0.4]; %交叉概率選擇,0和1之間
pmutation=[0.2]; %變異概率選擇,0和1之間
lenchrom=[1 1]; %每個變數的字串長度,如果是浮點變數,則長度都為1
bound=[-5 5;-5 5]; %數據范圍
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %將種群信息定義為一個結構體
avgfitness=[]; %每一代種群的平均適應度
bestfitness=[]; %每一代種群的最佳適應度
bestchrom=[]; %適應度最好的染色體
%% 初始化種群計算適應度值
% 初始化種群
for i=1:sizepop
%隨機產生一個種群
indivials.chrom(i,:)=Code(lenchrom,bound);
x=indivials.chrom(i,:);
%計算適應度
indivials.fitness(i)=fun(x); %染色體的適應度
end
%找最好的染色體
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色體
avgfitness=sum(indivials.fitness)/sizepop; %染色體的平均適應度
% 記錄每一代進化中最好的適應度和平均適應度
trace=[avgfitness bestfitness];
%% 迭代尋優
% 進化開始
for i=1:maxgen
i
% 選擇
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 變異
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);
% 計算適應度
for j=1:sizepop
x=indivials.chrom(j,:); %解碼
indivials.fitness(j)=fun(x);
end
%找到最小和最大適應度的染色體及它們在種群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次進化中最好的染色體
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;
avgfitness=sum(indivials.fitness)/sizepop;
trace=[trace;avgfitness bestfitness]; %記錄每一代進化中最好的適應度和平均適應度
end
%進化結束
%% 結果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('適應度曲線','fontsize',12);
xlabel('進化代數','fontsize',12);ylabel('適應度','fontsize',12);
axis([0,100,0,1])
disp('適應度 變數');
x=bestchrom;
% 窗口顯示
disp([bestfitness x]);