導航:首頁 > 網路信息 > 自組織神經網路解決了哪些問題

自組織神經網路解決了哪些問題

發布時間:2024-07-26 10:21:09

① 人工智慧時代,神經網路的原理及使用方法 | 微課堂

人工智慧時代已經悄然來臨,在計算機技術高速發展的未來,機器是否能代替人腦?也許有些讀者會說,永遠不可能,因為散盯扮人腦的思考包含感性邏輯。事實上,神經網路演算法正是在模仿人腦的思考方式。想不想知道神經網路是如何「思考」的呢?下面我向大家簡單介紹一下神經網路的原理及使用方法。

所謂人工智慧,就是讓機器具備人的思維和意識。人工智慧主要有三個學派——行為主義、符號主義和連接主義。

行為主義是基於控制論,是在構建感知動作的控制系統。理解行為主義有個很好的例子,就是讓機器人單腳站立,通過感知要摔倒的方向控制兩只手的動作,保持身體的平衡,這就構建了一個感知動作控制系統。

符號主義是基於算數邏輯和表達式。求解問題時,先把問題描述為表達式,再求解表達式。如果你在求解某個問題時,可以用if case這樣的條件語句,和若干計算公式描述出來,這就使用了符號主義的方法,比如「專家系統」。符號主義可以認為是用公式描述的人工智慧,它讓計算機具備了理性思維。但是人類不僅具備理性思維,還具備無法用公式描述的感性思維。比如,如果你看過這篇推送,下回再見到「符號主義」幾個字,你會覺得眼熟,會想到這是人工智慧相關的知識,這是人的直覺,是感性的。

連接主義就是在模擬人的這種感性思維,是在仿造人腦內的神經元連接關系。這張圖給出了人腦中的一根神經元,左側是神經元的輸入,「軸突」部分是神經元的輸出。人腦就是由860億個這樣的神經元首尾相接組成的網路。

神經網路可以讓計算機具備感性思維。我們首先理解一下基於連接主義的神經網路設計過程。這張圖給出了人類從出生到24個月神經網路的變化:

隨著我們的成長,大量的數據通過視覺、聽覺湧入大腦,使我們的神經網路連接,也就是這些神經元連線上的權重發生了變化,有些線上的權重增強了,有些線上的權重減弱了。

我們要用計算機仿出這些神經網路連接關系,讓計算機具備感性思維。

首先需要准備數據,數據量越大越好,以構成特徵和標簽對。如果想識別貓,就要有大量貓的圖片和這張圖片是貓的標簽構成特徵標簽對,然後搭建神經網路的網路結構,再通過反向傳播優化連接的權重,直到模型的識別准確率達到要求,得到最優的連線權重,把這個模型保存起來。最後用保存的模型輸入從未見過的新數據,它會通過前向傳播輸出概率值,概率值最大的一個就是分類和預測的結果。

我們舉個例子來感受一下神經網路的設計過程。鳶尾花可以分為三類:狗尾鳶尾、雜色鳶尾和佛吉尼亞鳶尾。我們拿出一張圖,需要讓計算機判斷這是哪類鳶尾花。人們通過經驗總結出了規律:通過測量花的花萼長、花萼寬、花瓣長、花瓣寬分辨出鳶尾花的類別,比如花萼長>花萼寬,並且花瓣長/花瓣寬>2,則可以判定為這是第一種,雜色鳶尾。看到這里,也許有些讀者已經想到用if、case這樣的條件語句來實現鳶尾花的分類。沒錯,條件語句根據這些信息可以判斷鳶尾花分類,這是一個非常典型的專家系統,這個過程是理性計算。只要有了這些數據,就可以通過條件判定公式計算出是哪類鳶尾花。但是我們發現鳶尾花的種植者在識別鳶尾花的時候並不需要這么理性的計算,因為他們見識了太多的鳶尾花,一看就知道是哪種,而且隨著經驗的增加,識別的准確率會提高。這就是直覺,是感性思維,也是我們這篇文章想要和大家分享的神經網路方法。

這種神經網路設計過程首先需要採集大量的花萼長、花萼寬、花瓣長、花瓣寬,和它們所對應的是哪種鳶尾花。花萼長、花萼寬、花瓣長、花瓣寬叫做輸入特徵,它們對應的分類叫做標簽。大量的輸入特徵和標簽對構建出數據集,再把這個數據集喂入搭建好的神經網路結構,網路通過反向傳播優化參數,得到模型。當有新的、從未見過的輸入特徵,送入神經網路時,神經網路會輸出識別的結果。

展望21世紀初,在近十年神經網路理論研究趨向的背景下,神經網路理論的主要前沿領域包括:

一、對智能和機器關系問題的認識進一步增長。

研究人類智力一直是科學發展中最有意義,也是空前困難的挑沖灶戰性問題。人腦是我們所知道的唯一則帶智能系統,具有感知識別、學習、聯想、記憶、推理等智能。我們通過不斷 探索 人類智能的本質以及聯結機制,並用人工系統復現或部分復現,製造各種智能機器,這樣可使人類有更多的時間和機會從事更為復雜、更富創造性的工作。

神經網路是由大量處理單元組成的非線性、自適應、自組織系統,是在現代神經科學研究成果的基礎上提出的,試圖模擬神經網路加工、記憶信息的方式,設計一種新的機器,使之具有人腦風格的信息處理能力。智能理論所面對的課題來自「環境——問題——目的」,有極大的誘惑力與壓力,它的發展方向將是把基於連接主義的神經網路理論、基於符號主義的人工智慧專家系統理論和基於進化論的人工生命這三大研究領域,在共同追求的總目標下,自發而有機地結合起來。

二、神經計算和進化計算的重大發展。

計算和演算法是人類自古以來十分重視的研究領域,本世紀30年代,符號邏輯方面的研究非常活躍。近年來,神經計算和進化計算領域很活躍,有新的發展動向,在從系統層次向細胞層次轉化里,正在建立數學理論基礎。隨著人們不斷 探索 新的計算和演算法,將推動計算理論向計算智能化方向發展,在21世紀人類將全面進入信息 社會 ,對信息的獲取、處理和傳輸問題,對網路路由優化問題,對數據安全和保密問題等等將有新的要求,這些將成為 社會 運行的首要任務。因此,神經計算和進化計算與高速信息網路理論聯系將更加密切,並在計算機網路領域中發揮巨大的作用,例如大范圍計算機網路的自組織功能實現就要進行進化計算。

人類的思維方式正在轉變,從線性思維轉到非線性思維神經元,神經網路都有非線性、非局域性、非定常性、非凸性和混沌等特性。我們在計算智能的層次上研究非線性動力系統、混沌神經網路以及對神經網路的數理研究,進一步研究自適應性子波、非線性神經場的興奮模式、神經集團的宏觀力學等。因為,非線性問題的研究是神經網路理論發展的一個最大動力,也是它面臨的最大挑戰。

以上就是有關神經網路的相關內容,希望能為讀者帶來幫助。

以上內容由蘇州空天信息研究院謝雨宏提供。

② 神經網路的主要內容特點

(1) 神經網路的一般特點
作為一種正在興起的新型技術神經網路有著自己的優勢,他的主要特點如下:
① 由於神經網路模仿人的大腦,採用自適應演算法。使它較之專家系統的固定的推理方式及傳統計算機的指令程序方式更能夠適應化環境的變化。總結規律,完成某種運算、推理、識別及控制任務。因而它具有更高的智能水平,更接近人的大腦。
② 較強的容錯能力,使神經網路能夠和人工視覺系統一樣,根據對象的主要特徵去識別對象。
③ 自學習、自組織功能及歸納能力。
以上三個特點是神經網路能夠對不確定的、非結構化的信息及圖像進行識別處理。石油勘探中的大量信息就具有這種性質。因而,人工神經網路是十分適合石油勘探的信息處理的。
(2) 自組織神經網路的特點
自組織特徵映射神經網路作為神經網路的一種,既有神經網路的通用的上面所述的三個主要的特點又有自己的特色。
① 自組織神經網路共分兩層即輸入層和輸出層。
② 採用競爭學記機制,勝者為王,但是同時近鄰也享有特權,可以跟著競爭獲勝的神經元一起調整權值,從而使得結果更加光滑,不想前面的那樣粗糙。
③ 這一網路同時考慮拓撲結構的問題,即他不僅僅是對輸入數據本身的分析,更考慮到數據的拓撲機構。
權值調整的過程中和最後的結果輸出都考慮了這些,使得相似的神經元在相鄰的位置,從而實現了與人腦類似的大腦分區響應處理不同類型的信號的功能。
④ 採用無導師學記機制,不需要教師信號,直接進行分類操作,使得網路的適應性更強,應用更加的廣泛,尤其是那些對於現在的人來說結果還是未知的數據的分類。頑強的生命力使得神經網路的應用范圍大大加大。

③ 什麼是Kohonen神經網路

Kohonen網路是自組織競爭型神經網路的一種,該網路為無監督學習網路,能夠識別環境特徵並自動聚類。Kohonen神經網路是芬蘭赫爾辛基大學教授Teuvo Kohonen提出的,該網路通過自組織特徵映射調整網路權值,使神經網路收斂於一種表示形態,在這一形態中一個神經元只對某種輸入模式特別匹配或特別敏感。Kohonen網路的學習是無監督的自組織學習過程,神經元通過無監督競爭學習使不同的神經元對不同的輸入模式敏感,從而特定的神經元在模式識別中可以充當某一輸入模式的檢測器。網路訓練後神經元被劃分為不同區域,各區域對輸入模型具有不同的響應特徵。
Kohonen神經網路演算法工作機理為:網路學習過程中,當樣本輸入網路時,競爭層上的神經元計算輸入樣本與競爭層神經元權值之間的歐幾里德距離,距離最小的神經元為獲勝神經元。調整獲勝神經元和相鄰神經元權值,使獲得神經元及周邊權值靠近該輸入樣本。通過反復訓練,最終各神經元的連接權值具有一定的分布,該分布把數據之間的相似性組織到代表各類的神經元上,使同類神經元具有相近的權系數,不同類的神經元權系數差別明顯。需要注意的是,在學習的過程中,權值修改學習速率和神經元領域均在不斷較少,從而使同類神經元逐漸集中。

④ 神經網路:卷積神經網路(CNN)

神經網路 最早是由心理學家和神經學家提出的,旨在尋求開發和測試神經的計算模擬。

粗略地說, 神經網路 是一組連接的 輸入/輸出單元 ,其中每個連接都與一個 權 相關聯。在學習階段,通過調整權值,使得神經網路的預測准確性逐步提高。由於單元之間的連接,神經網路學習又稱 連接者學習。

神經網路是以模擬人腦神經元的數學模型為基礎而建立的,它由一系列神經元組成,單元之間彼此連接。從信息處理角度看,神經元可以看作是一個多輸入單輸出的信息處理單元,根據神經元的特性和功能,可以把神經元抽象成一個簡單的數學模型。

神經網路有三個要素: 拓撲結構、連接方式、學習規則

神經網路的拓撲結構 :神經網路的單元通常按照層次排列,根據網路的層次數,可以將神經網路分為單層神經網路、兩層神經網路、三層神經網路等。結構簡單的神經網路,在學習時收斂的速度快,但准確度低。

神經網路的層數和每層的單元數由問題的復雜程度而定。問題越復雜,神經網路的層數就越多。例如,兩層神經網路常用來解決線性問題,而多層網路就可以解決多元非線性問題

神經網路的連接 :包括層次之間的連接和每一層內部的連接,連接的強度用權來表示。

根據層次之間的連接方式,分為:

1)前饋式網路:連接是單向的,上層單元的輸出是下層單元的輸入,如反向傳播網路,Kohonen網路

2)反饋式網路:除了單項的連接外,還把最後一層單元的輸出作為第一層單元的輸入,如Hopfield網路

根據連接的范圍,分為:

1)全連接神經網路:每個單元和相鄰層上的所有單元相連

2)局部連接網路:每個單元只和相鄰層上的部分單元相連

神經網路的學習

根據學習方法分:

感知器:有監督的學習方法,訓練樣本的類別是已知的,並在學習的過程中指導模型的訓練

認知器:無監督的學習方法,訓練樣本類別未知,各單元通過競爭學習。

根據學習時間分:

離線網路:學習過程和使用過程是獨立的

在線網路:學習過程和使用過程是同時進行的

根據學習規則分:

相關學習網路:根據連接間的激活水平改變權系數

糾錯學習網路:根據輸出單元的外部反饋改變權系數

自組織學習網路:對輸入進行自適應地學習

摘自《數學之美》對人工神經網路的通俗理解:

神經網路種類很多,常用的有如下四種:

1)Hopfield網路,典型的反饋網路,結構單層,有相同的單元組成

2)反向傳播網路,前饋網路,結構多層,採用最小均方差的糾錯學習規則,常用於語言識別和分類等問題

3)Kohonen網路:典型的自組織網路,由輸入層和輸出層構成,全連接

4)ART網路:自組織網路

深度神經網路:

Convolutional Neural Networks(CNN)卷積神經網路

Recurrent neural Network(RNN)循環神經網路

Deep Belief Networks(DBN)深度信念網路

深度學習是指多層神經網路上運用各種機器學習演算法解決圖像,文本等各種問題的演算法集合。深度學習從大類上可以歸入神經網路,不過在具體實現上有許多變化。

深度學習的核心是特徵學習,旨在通過分層網路獲取分層次的特徵信息,從而解決以往需要人工設計特徵的重要難題。

Machine Learning vs. Deep Learning 

神經網路(主要是感知器)經常用於 分類

神經網路的分類知識體現在網路連接上,被隱式地存儲在連接的權值中。

神經網路的學習就是通過迭代演算法,對權值逐步修改的優化過程,學習的目標就是通過改變權值使訓練集的樣本都能被正確分類。

神經網路特別適用於下列情況的分類問題:

1) 數據量比較小,缺少足夠的樣本建立模型

2) 數據的結構難以用傳統的統計方法來描述

3) 分類模型難以表示為傳統的統計模型

缺點:

1) 需要很長的訓練時間,因而對於有足夠長訓練時間的應用更合適。

2) 需要大量的參數,這些通常主要靠經驗確定,如網路拓撲或「結構」。

3)  可解釋性差 。該特點使得神經網路在數據挖掘的初期並不看好。

優點:

1) 分類的准確度高

2)並行分布處理能力強

3)分布存儲及學習能力高

4)對噪音數據有很強的魯棒性和容錯能力

最流行的基於神經網路的分類演算法是80年代提出的 後向傳播演算法 。後向傳播演算法在多路前饋神經網路上學習。 

定義網路拓撲

在開始訓練之前,用戶必須說明輸入層的單元數、隱藏層數(如果多於一層)、每一隱藏層的單元數和輸出層的單元數,以確定網路拓撲。

對訓練樣本中每個屬性的值進行規格化將有助於加快學習過程。通常,對輸入值規格化,使得它們落入0.0和1.0之間。

離散值屬性可以重新編碼,使得每個域值一個輸入單元。例如,如果屬性A的定義域為(a0,a1,a2),則可以分配三個輸入單元表示A。即,我們可以用I0 ,I1 ,I2作為輸入單元。每個單元初始化為0。如果A = a0,則I0置為1;如果A = a1,I1置1;如此下去。

一個輸出單元可以用來表示兩個類(值1代表一個類,而值0代表另一個)。如果多於兩個類,則每個類使用一個輸出單元。

隱藏層單元數設多少個「最好」 ,沒有明確的規則。

網路設計是一個實驗過程,並可能影響准確性。權的初值也可能影響准確性。如果某個經過訓練的網路的准確率太低,則通常需要採用不同的網路拓撲或使用不同的初始權值,重復進行訓練。

後向傳播演算法學習過程:

迭代地處理一組訓練樣本,將每個樣本的網路預測與實際的類標號比較。

每次迭代後,修改權值,使得網路預測和實際類之間的均方差最小。

這種修改「後向」進行。即,由輸出層,經由每個隱藏層,到第一個隱藏層(因此稱作後向傳播)。盡管不能保證,一般地,權將最終收斂,學習過程停止。

演算法終止條件:訓練集中被正確分類的樣本達到一定的比例,或者權系數趨近穩定。

後向傳播演算法分為如下幾步:

1) 初始化權

網路的權通常被初始化為很小的隨機數(例如,范圍從-1.0到1.0,或從-0.5到0.5)。

每個單元都設有一個偏置(bias),偏置也被初始化為小隨機數。

2) 向前傳播輸入

對於每一個樣本X,重復下面兩步:

向前傳播輸入,向後傳播誤差

計算各層每個單元的輸入和輸出。輸入層:輸出=輸入=樣本X的屬性;即,對於單元j,Oj = Ij = Xj。隱藏層和輸出層:輸入=前一層的輸出的線性組合,即,對於單元j, Ij =wij Oi + θj,輸出=

3) 向後傳播誤差

計算各層每個單元的誤差。

輸出層單元j,誤差:

Oj是單元j的實際輸出,而Tj是j的真正輸出。

隱藏層單元j,誤差:

wjk是由j到下一層中單元k的連接的權,Errk是單元k的誤差

更新 權 和 偏差 ,以反映傳播的誤差。

權由下式更新:

 其中,△wij是權wij的改變。l是學習率,通常取0和1之間的值。

 偏置由下式更新:

  其中,△θj是偏置θj的改變。

Example

人類視覺原理:

深度學習的許多研究成果,離不開對大腦認知原理的研究,尤其是視覺原理的研究。1981 年的諾貝爾醫學獎,頒發給了 David Hubel(出生於加拿大的美國神經生物學家) 和Torsten Wiesel,以及Roger Sperry。前兩位的主要貢獻,是「發現了視覺系統的信息處理」, 可視皮層是分級的 。

人類的視覺原理如下:從原始信號攝入開始(瞳孔攝入像素Pixels),接著做初步處理(大腦皮層某些細胞發現邊緣和方向),然後抽象(大腦判定,眼前的物體的形狀,是圓形的),然後進一步抽象(大腦進一步判定該物體是只氣球)。

對於不同的物體,人類視覺也是通過這樣逐層分級,來進行認知的:

在最底層特徵基本上是類似的,就是各種邊緣,越往上,越能提取出此類物體的一些特徵(輪子、眼睛、軀乾等),到最上層,不同的高級特徵最終組合成相應的圖像,從而能夠讓人類准確的區分不同的物體。

可以很自然的想到:可以不可以模仿人類大腦的這個特點,構造多層的神經網路,較低層的識別初級的圖像特徵,若干底層特徵組成更上一層特徵,最終通過多個層級的組合,最終在頂層做出分類呢?答案是肯定的,這也是許多深度學習演算法(包括CNN)的靈感來源。

卷積神經網路是一種多層神經網路,擅長處理圖像特別是大圖像的相關機器學習問題。卷積網路通過一系列方法,成功將數據量龐大的圖像識別問題不斷降維,最終使其能夠被訓練。

CNN最早由Yann LeCun提出並應用在手寫字體識別上。LeCun提出的網路稱為LeNet,其網路結構如下:

這是一個最典型的卷積網路,由 卷積層、池化層、全連接層 組成。其中卷積層與池化層配合,組成多個卷積組,逐層提取特徵,最終通過若干個全連接層完成分類。

CNN通過卷積來模擬特徵區分,並且通過卷積的權值共享及池化,來降低網路參數的數量級,最後通過傳統神經網路完成分類等任務。

降低參數量級:如果使用傳統神經網路方式,對一張圖片進行分類,那麼,把圖片的每個像素都連接到隱藏層節點上,對於一張1000x1000像素的圖片,如果有1M隱藏層單元,一共有10^12個參數,這顯然是不能接受的。

但是在CNN里,可以大大減少參數個數,基於以下兩個假設:

1)最底層特徵都是局部性的,也就是說,用10x10這樣大小的過濾器就能表示邊緣等底層特徵

2)圖像上不同小片段,以及不同圖像上的小片段的特徵是類似的,也就是說,能用同樣的一組分類器來描述各種各樣不同的圖像

基於以上兩個假設,就能把第一層網路結構簡化

用100個10x10的小過濾器,就能夠描述整幅圖片上的底層特徵。

卷積運算的定義如下圖所示:

如上圖所示,一個5x5的圖像,用一個3x3的 卷積核 :

   101

   010

   101

來對圖像進行卷積操作(可以理解為有一個滑動窗口,把卷積核與對應的圖像像素做乘積然後求和),得到了3x3的卷積結果。

這個過程可以理解為使用一個過濾器(卷積核)來過濾圖像的各個小區域,從而得到這些小區域的特徵值。在實際訓練過程中, 卷積核的值是在學習過程中學到的。

在具體應用中,往往有多個卷積核,可以認為, 每個卷積核代表了一種圖像模式 ,如果某個圖像塊與此卷積核卷積出的值大,則認為此圖像塊十分接近於此卷積核。如果設計了6個卷積核,可以理解為這個圖像上有6種底層紋理模式,也就是用6種基礎模式就能描繪出一副圖像。以下就是24種不同的卷積核的示例:

池化 的過程如下圖所示:

可以看到,原始圖片是20x20的,對其進行采樣,采樣窗口為10x10,最終將其采樣成為一個2x2大小的特徵圖。

之所以這么做,是因為即使做完了卷積,圖像仍然很大(因為卷積核比較小),所以為了降低數據維度,就進行采樣。

即使減少了許多數據,特徵的統計屬性仍能夠描述圖像,而且由於降低了數據維度,有效地避免了過擬合。

在實際應用中,分為最大值采樣(Max-Pooling)與平均值采樣(Mean-Pooling)。

LeNet網路結構:

注意,上圖中S2與C3的連接方式並不是全連接,而是部分連接。最後,通過全連接層C5、F6得到10個輸出,對應10個數字的概率。

卷積神經網路的訓練過程與傳統神經網路類似,也是參照了反向傳播演算法

第一階段,向前傳播階段:

a)從樣本集中取一個樣本(X,Yp),將X輸入網路;

b)計算相應的實際輸出Op

第二階段,向後傳播階段

a)計算實際輸出Op與相應的理想輸出Yp的差;

b)按極小化誤差的方法反向傳播調整權矩陣。

⑤ 神經網路以及小波分析法在汽車發動機故障檢修中有什麼應用

汽車是我們生活中常用的將交通工具,那麼神經網路和小波分析法在汽車發動機故障檢修中有什麼應用呢?大家請看我接下來詳細地講解。

一,小波分析在故障檢修中的應用

小波包分解與故障特徵提取。缸蓋表面的振動信號由一系列瞬態響應信號組成,分別代表氣缸的振動源響應信號:1為氣缸的燃燒激勵響應;2是排氣閥打開時的節流閥沖擊。氣門間隙異常時,振動信號的能量大於目前沖擊力作用時,振動信號的主要組件目前離沖擊力穩定的振動信號和雜訊,信號能量相對較小。因此,可以利用每個頻帶的能量變化來提取故障特徵,通過小波包分解系數{4]得到頻帶的能量。

閱讀全文

與自組織神經網路解決了哪些問題相關的資料

熱點內容
painter2015視頻教程 瀏覽:204
jsperror 瀏覽:183
網路到底怎麼賺錢 瀏覽:402
蘋果耳機插口接觸不良 瀏覽:934
運動手環app哪個好 瀏覽:854
java設置double精度 瀏覽:587
java代碼分享網站 瀏覽:321
ps怎麼復制到文件裡面 瀏覽:360
win7管理員指紋登錄密碼忘了怎麼辦 瀏覽:38
c是一次性插入多少條數據 瀏覽:928
u盤文件編輯軟體 瀏覽:767
vb如何打開pdf文件 瀏覽:351
soundlinkiii升級 瀏覽:64
如何把文件改成cad 瀏覽:676
如何把多個監控合在一個網路內 瀏覽:637
qq的頭像在哪個文件夾 瀏覽:468
linuxexfat補丁 瀏覽:582
excelvb編程怎麼輸出數 瀏覽:737
567位qq 瀏覽:172
qq網名女生傷感 瀏覽:292

友情鏈接