導航:首頁 > 網路信息 > 卷積神經網路是如何更新參數的

卷積神經網路是如何更新參數的

發布時間:2023-11-01 10:34:55

① 卷積神經網路

關於花書中卷積網路的筆記記錄於 https://www.jianshu.com/p/5a3c90ea0807 。

卷積神經網路(Convolutional Neural Network,CNN或ConvNet)是一種具有 局部連接、權重共享 等特性的深層前饋神經網路。卷積神經網路是受生物學上感受野的機制而提出。 感受野(Receptive Field) 主要是指聽覺、視覺等神經系統中一些神經元的特性,即 神經元只接受其所支配的刺激區域內的信號

卷積神經網路最早是主要用來處理圖像信息。如果用全連接前饋網路來處理圖像時,會存在以下兩個問題:

目前的卷積神經網路一般是由卷積層、匯聚層和全連接層交叉堆疊而成的前饋神經網路,使用反向傳播演算法進行訓練。 卷積神經網路有三個結構上的特性:局部連接,權重共享以及匯聚 。這些特性使卷積神經網路具有一定程度上的平移、縮放和旋轉不變性。

卷積(Convolution)是分析數學中一種重要的運算。在信號處理或圖像處理中,經常使用一維或二維卷積。

一維卷積經常用在信號處理中,用於計算信號的延遲累積。假設一個信號發生器每個時刻t 產生一個信號 ,其信息的衰減率為 ,即在 個時間步長後,信息為原來的 倍。假設 ,那麼在時刻t收到的信號 為當前時刻產生的信息和以前時刻延遲信息的疊加:

我們把 稱為 濾波器(Filter)或卷積核(Convolution Kernel) 。假設濾波器長度為 ,它和一個信號序列 的卷積為:

信號序列 和濾波器 的卷積定義為:

一般情況下濾波器的長度 遠小於信號序列長度 ,下圖給出一個一維卷積示例,濾波器為 :

二維卷積經常用在圖像處理中。因為圖像為一個兩維結構,所以需要將一維卷積進行擴展。給定一個圖像 和濾波器 ,其卷積為:

下圖給出一個二維卷積示例:

注意這里的卷積運算並不是在圖像中框定卷積核大小的方框並將各像素值與卷積核各個元素相乘並加和,而是先把卷積核旋轉180度,再做上述運算。

在圖像處理中,卷積經常作為特徵提取的有效方法。一幅圖像在經過卷積操作後得到結果稱為 特徵映射(Feature Map)

最上面的濾波器是常用的高斯濾波器,可以用來對圖像進行 平滑去噪 ;中間和最下面的過濾器可以用來 提取邊緣特徵

在機器學習和圖像處理領域,卷積的主要功能是在一個圖像(或某種特徵)上滑動一個卷積核(即濾波器),通過卷積操作得到一組新的特徵。在計算卷積的過程中,需要進行卷積核翻轉(即上文提到的旋轉180度)。 在具體實現上,一般會以互相關操作來代替卷積,從而會減少一些不必要的操作或開銷。

互相關(Cross-Correlation)是一個衡量兩個序列相關性的函數,通常是用滑動窗口的點積計算來實現 。給定一個圖像 和卷積核 ,它們的互相關為:

互相關和卷積的區別僅在於卷積核是否進行翻轉。因此互相關也可以稱為不翻轉卷積 。當卷積核是可學習的參數時,卷積和互相關是等價的。因此,為了實現上(或描述上)的方便起見,我們用互相關來代替卷積。事實上,很多深度學習工具中卷積操作其實都是互相關操作。

在卷積的標準定義基礎上,還可以引入濾波器的 滑動步長 零填充 來增加卷積多樣性,更靈活地進行特徵抽取。

濾波器的步長(Stride)是指濾波器在滑動時的時間間隔。

零填充(Zero Padding)是在輸入向量兩端進行補零。

假設卷積層的輸入神經元個數為 ,卷積大小為 ,步長為 ,神經元兩端各填補 個零,那麼該卷積層的神經元數量為 。

一般常用的卷積有以下三類:

因為卷積網路的訓練也是基於反向傳播演算法,因此我們重點關注卷積的導數性質:

假設 。

, , 。函數 為一個標量函數。

則由 有:

可以看出, 關於 的偏導數為 和 的卷積

同理得到:

當 或 時, ,即相當於對 進行 的零填充。從而 關於 的偏導數為 和 的寬卷積

用互相關的「卷積」表示,即為(注意 寬卷積運算具有交換性性質 ):

在全連接前饋神經網路中,如果第 層有 個神經元,第 層有 個神經元,連接邊有 個,也就是權重矩陣有 個參數。當 和 都很大時,權重矩陣的參數非常多,訓練的效率會非常低。

如果採用卷積來代替全連接,第 層的凈輸入 為第 層活性值 和濾波器 的卷積,即:

根據卷積的定義,卷積層有兩個很重要的性質:

由於局部連接和權重共享,卷積層的參數只有一個m維的權重 和1維的偏置 ,共 個參數。參數個數和神經元的數量無關。此外,第 層的神經元個數不是任意選擇的,而是滿足 。

卷積層的作用是提取一個局部區域的特徵,不同的卷積核相當於不同的特徵提取器。

特徵映射(Feature Map)為一幅圖像(或其它特徵映射)在經過卷積提取到的特徵,每個特徵映射可以作為一類抽取的圖像特徵。 為了提高卷積網路的表示能力,可以在每一層使用多個不同的特徵映射,以更好地表示圖像的特徵。

在輸入層,特徵映射就是圖像本身。如果是灰度圖像,就是有一個特徵映射,深度 ;如果是彩色圖像,分別有RGB三個顏色通道的特徵映射,深度 。

不失一般性,假設一個卷積層的結構如下:

為了計算輸出特徵映射 ,用卷積核 分別對輸入特徵映射 進行卷積,然後將卷積結果相加,並加上一個標量偏置 得到卷積層的凈輸入 再經過非線性激活函數後得到輸出特徵映射 。

在輸入為 ,輸出為 的卷積層中,每個輸出特徵映射都需要 個濾波器以及一個偏置。假設每個濾波器的大小為 ,那麼共需要 個參數。

匯聚層(Pooling Layer)也叫子采樣層(Subsampling Layer),其作用是進行特徵選擇,降低特徵數量,並從而減少參數數量。

常用的匯聚函數有兩種:

其中 為區域 內每個神經元的激活值。

可以看出,匯聚層不但可以有效地減少神經元的數量,還可以使得網路對一些小的局部形態改變保持不變性,並擁有更大的感受野。

典型的匯聚層是將每個特徵映射劃分為 大小的不重疊區域,然後使用最大匯聚的方式進行下采樣。匯聚層也可以看做是一個特殊的卷積層,卷積核大小為 ,步長為 ,卷積核為 函數或 函數。過大的采樣區域會急劇減少神經元的數量,會造成過多的信息損失。

一個典型的卷積網路是由卷積層、匯聚層、全連接層交叉堆疊而成。

目前常用卷積網路結構如圖所示,一個卷積塊為連續 個卷積層和 個匯聚層( 通常設置為 , 為 或 )。一個卷積網路中可以堆疊 個連續的卷積塊,然後在後面接著 個全連接層( 的取值區間比較大,比如 或者更大; 一般為 )。

目前,整個網路結構 趨向於使用更小的卷積核(比如 和 )以及更深的結構(比如層數大於50) 。此外,由於卷積的操作性越來越靈活(比如不同的步長),匯聚層的作用變得也越來越小,因此目前比較流行的卷積網路中, 匯聚層的比例也逐漸降低,趨向於全卷積網路

在全連接前饋神經網路中,梯度主要通過每一層的誤差項 進行反向傳播,並進一步計算每層參數的梯度。在卷積神經網路中,主要有兩種不同功能的神經層:卷積層和匯聚層。而參數為卷積核以及偏置,因此 只需要計算卷積層中參數的梯度。

不失一般性,第 層為卷積層,第 層的輸入特徵映射為 ,通過卷積計算得到第 層的特徵映射凈輸入 ,第 層的第 個特徵映射凈輸入

由 得:

同理可得,損失函數關於第 層的第 個偏置 的偏導數為:

在卷積網路中,每層參數的梯度依賴其所在層的誤差項 。

卷積層和匯聚層中,誤差項的計算有所不同,因此我們分別計算其誤差項。

第 層的第 個特徵映射的誤差項 的具體推導過程如下:

其中 為第 層使用的激活函數導數, 為上采樣函數(upsampling),與匯聚層中使用的下采樣操作剛好相反。如果下采樣是最大匯聚(max pooling),誤差項 中每個值會直接傳遞到上一層對應區域中的最大值所對應的神經元,該區域中其它神經元的誤差項的都設為0。如果下采樣是平均匯聚(meanpooling),誤差項 中每個值會被平均分配到上一層對應區域中的所有神經元上。

第 層的第 個特徵映射的誤差項 的具體推導過程如下:

其中 為寬卷積。

LeNet-5雖然提出的時間比較早,但是是一個非常成功的神經網路模型。基於LeNet-5 的手寫數字識別系統在90年代被美國很多銀行使用,用來識別支票上面的手寫數字。LeNet-5 的網路結構如圖:

不計輸入層,LeNet-5共有7層,每一層的結構為:

AlexNet是第一個現代深度卷積網路模型,其首次使用了很多現代深度卷積網路的一些技術方法,比如採用了ReLU作為非線性激活函數,使用Dropout防止過擬合,使用數據增強來提高模型准確率等。AlexNet 贏得了2012 年ImageNet 圖像分類競賽的冠軍。

AlexNet的結構如圖,包括5個卷積層、3個全連接層和1個softmax層。因為網路規模超出了當時的單個GPU的內存限制,AlexNet 將網路拆為兩半,分別放在兩個GPU上,GPU間只在某些層(比如第3層)進行通訊。

AlexNet的具體結構如下:

在卷積網路中,如何設置卷積層的卷積核大小是一個十分關鍵的問題。 在Inception網路中,一個卷積層包含多個不同大小的卷積操作,稱為Inception模塊。Inception網路是由有多個inception模塊和少量的匯聚層堆疊而成

v1版本的Inception模塊,採用了4組平行的特徵抽取方式,分別為1×1、3× 3、5×5的卷積和3×3的最大匯聚。同時,為了提高計算效率,減少參數數量,Inception模塊在進行3×3、5×5的卷積之前、3×3的最大匯聚之後,進行一次1×1的卷積來減少特徵映射的深度。如果輸入特徵映射之間存在冗餘信息, 1×1的卷積相當於先進行一次特徵抽取

② 一文看懂卷積神經網路-CNN(基本原理+獨特價值+實際應用)

在 CNN 出現之前,圖像對於人工智慧來說是一個難題,有2個原因:

圖像需要處理的數據量太大,導致成本很高,效率很低

圖像在數字化的過程中很難保留原有的特徵,導致圖像處理的准確率不高

下面就詳細說明一下這2個問題:

圖像是由像素構成的,每個像素又是由顏色構成的。

現在隨隨便便一張圖片都是 1000×1000 像素以上的, 每個像素都有RGB 3個參數來表示顏色信息。

假如我們處理一張 1000×1000 像素的圖片,我們就需要處理3百萬個參數!

1000×1000×3=3,000,000

這么大量的數據處理起來是非常消耗資源的,而且這只是一張不算太大的圖片!

卷積神經網路 – CNN 解決的第一個問題就是「將復雜問題簡化」,把大量參數降維成少量參數,再做處理。

更重要的是:我們在大部分場景下,降維並不會影響結果。比如1000像素的圖片縮小成200像素,並不影響肉眼認出來圖片中是一隻貓還是一隻狗,機器也是如此。

圖片數字化的傳統方式我們簡化一下,就類似下圖的過程:

假如有圓形是1,沒有圓形是0,那麼圓形的位置不同就會產生完全不同的數據表達。但是從視覺的角度來看, 圖像的內容(本質)並沒有發生變化,只是位置發生了變化 。

所以當我們移動圖像中的物體,用傳統的方式的得出來的參數會差異很大!這是不符合圖像處理的要求的。

而 CNN 解決了這個問題,他用類似視覺的方式保留了圖像的特徵,當圖像做翻轉,旋轉或者變換位置時,它也能有效的識別出來是類似的圖像。

那麼卷積神經網路是如何實現的呢?在我們了解 CNN 原理之前,先來看看人類的視覺原理是什麼?

深度學習的許多研究成果,離不開對大腦認知原理的研究,尤其是視覺原理的研究。

1981 年的諾貝爾醫學獎,頒發給了 David Hubel(出生於加拿大的美國神經生物學家) 和TorstenWiesel,以及 Roger Sperry。前兩位的主要貢獻,是「 發現了視覺系統的信息處理 」,可視皮層是分級的。

人類的視覺原理如下:從原始信號攝入開始(瞳孔攝入像素 Pixels),接著做初步處理(大腦皮層某些細胞發現邊緣和方向),然後抽象(大腦判定,眼前的物體的形狀,是圓形的),然後進一步抽象(大腦進一步判定該物體是只氣球)。下面是人腦進行人臉識別的一個示例:

對於不同的物體,人類視覺也是通過這樣逐層分級,來進行認知的:

我們可以看到,在最底層特徵基本上是類似的,就是各種邊緣,越往上,越能提取出此類物體的一些特徵(輪子、眼睛、軀乾等),到最上層,不同的高級特徵最終組合成相應的圖像,從而能夠讓人類准確的區分不同的物體。

那麼我們可以很自然的想到:可以不可以模仿人類大腦的這個特點,構造多層的神經網路,較低層的識別初級的圖像特徵,若干底層特徵組成更上一層特徵,最終通過多個層級的組合,最終在頂層做出分類呢?

答案是肯定的,這也是許多深度學習演算法(包括CNN)的靈感來源。

典型的 CNN 由3個部分構成:

卷積層

池化層

全連接層

如果簡單來描述的話:

卷積層負責提取圖像中的局部特徵;池化層用來大幅降低參數量級(降維);全連接層類似傳統神經網路的部分,用來輸出想要的結果。

下面的原理解釋為了通俗易懂,忽略了很多技術細節,如果大家對詳細的原理感興趣,可以看這個視頻《 卷積神經網路基礎 》。

卷積層的運算過程如下圖,用一個卷積核掃完整張圖片:

這個過程我們可以理解為我們使用一個過濾器(卷積核)來過濾圖像的各個小區域,從而得到這些小區域的特徵值。

在具體應用中,往往有多個卷積核,可以認為,每個卷積核代表了一種圖像模式,如果某個圖像塊與此卷積核卷積出的值大,則認為此圖像塊十分接近於此卷積核。如果我們設計了6個卷積核,可以理解:我們認為這個圖像上有6種底層紋理模式,也就是我們用6中基礎模式就能描繪出一副圖像。以下就是25種不同的卷積核的示例:

總結:卷積層的通過卷積核的過濾提取出圖片中局部的特徵,跟上面提到的人類視覺的特徵提取類似。

池化層簡單說就是下采樣,他可以大大降低數據的維度。其過程如下:

上圖中,我們可以看到,原始圖片是20×20的,我們對其進行下采樣,采樣窗口為10×10,最終將其下采樣成為一個2×2大小的特徵圖。

之所以這么做的原因,是因為即使做完了卷積,圖像仍然很大(因為卷積核比較小),所以為了降低數據維度,就進行下采樣。

總結:池化層相比卷積層可以更有效的降低數據維度,這么做不但可以大大減少運算量,還可以有效的避免過擬合。

這個部分就是最後一步了,經過卷積層和池化層處理過的數據輸入到全連接層,得到最終想要的結果。

經過卷積層和池化層降維過的數據,全連接層才能」跑得動」,不然數據量太大,計算成本高,效率低下。

典型的 CNN 並非只是上面提到的3層結構,而是多層結構,例如 LeNet-5 的結構就如下圖所示:

卷積層 – 池化層- 卷積層 – 池化層 – 卷積層 – 全連接層

在了解了 CNN 的基本原理後,我們重點說一下 CNN 的實際應用有哪些。

卷積神經網路 – CNN 很擅長處理圖像。而視頻是圖像的疊加,所以同樣擅長處理視頻內容。下面給大家列一些比較成熟的應用�:

圖像分類、檢索

圖像分類是比較基礎的應用,他可以節省大量的人工成本,將圖像進行有效的分類。對於一些特定領域的圖片,分類的准確率可以達到 95%+,已經算是一個可用性很高的應用了。

典型場景:圖像搜索…

目標定位檢測

可以在圖像中定位目標,並確定目標的位置及大小。

典型場景:自動駕駛、安防、醫療…

目標分割

簡單理解就是一個像素級的分類。

他可以對前景和背景進行像素級的區分、再高級一點還可以識別出目標並且對目標進行分類。

典型場景:美圖秀秀、視頻後期加工、圖像生成…

人臉識別

人臉識別已經是一個非常普及的應用了,在很多領域都有廣泛的應用。

典型場景:安防、金融、生活…

骨骼識別

骨骼識別是可以識別身體的關鍵骨骼,以及追蹤骨骼的動作。

典型場景:安防、電影、圖像視頻生成、游戲…

今天我們介紹了 CNN 的價值、基本原理和應用場景,簡單總結如下:

CNN 的價值:

能夠將大數據量的圖片有效的降維成小數據量(並不影響結果)

能夠保留圖片的特徵,類似人類的視覺原理

CNN 的基本原理:

卷積層 – 主要作用是保留圖片的特徵

池化層 – 主要作用是把數據降維,可以有效的避免過擬合

全連接層 – 根據不同任務輸出我們想要的結果

CNN 的實際應用:

圖片分類、檢索

目標定位檢測

目標分割

人臉識別

骨骼識別

本文首發在 easyAI - 人工智慧知識庫

《 一文看懂卷積神經網路-CNN(基本原理+獨特價值+實際應用) 》

③ 卷積神經網路參數解析

(1)現象:

        (1-1)一次性將batch數量個樣本feed神經網路,進行前向傳播;然後再進行權重的調整,這樣的一整個過程叫做一個回合(epoch),也即一個batch大小樣本的全過程就是一次迭代。

        (1-2)將訓練數據分塊,做成批(batch training)訓練可以將多個訓練數據元的loss function求和,使用梯度下降法,最小化 求和後的loss function ,進而對神經網路的參數進行優化更新

(2)一次迭代:包括前向傳播計算輸出向量、輸出向量與label的loss計算和後向傳播求loss對權重向量 w 導數(梯度下降法計算),並實現權重向量 w 的更新。

(3)優點:

        (a)對梯度向量(代價函數對權值向量 w 的導數)的精確估計,保證以最快的速度下降到局部極小值的收斂性;一個batch一次梯度下降;

        (b)學習過程的並行運行;

        (c)更加接近隨機梯度下降的演算法效果;

        (d)Batch Normalization 使用同批次的統計平均和偏差對數據進行正則化,加速訓練,有時可提高正確率 [7]

(4)現實工程問題:存在計算機存儲問題,一次載入的batch大小受到內存的影響;

(5)batch參數選擇:

        (5-1)從收斂速度的角度來說,小批量的樣本集合是最優的,也就是我們所說的mini-batch,這時的batch size往往從幾十到幾百不等,但一般不會超過幾千

        (5-2)GPU對2的冪次的batch可以發揮更佳的性能,因此設置成16、32、64、128...時往往要比設置為整10、整100的倍數時表現更優

    (6)4種加速批梯度下降的方法 [8] :

        (6-1)使用動量-使用權重的 速度 而非 位置 來改變權重。

        (6-2)針對不同權重參數使用不同學習率。

        (6-3)RMSProp-這是Prop 的均方根 ( Mean Square ) 改進形式,Rprop 僅僅使用梯度的符號,RMSProp 是其針對 Mini-batches 的平均化版本

        (6-4)利用曲率信息的最優化方法。

(1)定義:運用梯度下降演算法優化loss成本函數時,權重向量的更新規則中,在梯度項前會乘以一個系數,這個系數就叫學習速率η

(2)效果:

        (2-1)學習率η越小,每次迭代權值向量變化小,學習速度慢,軌跡在權值空間中較光滑,收斂慢;

        (2-2)學習率η越大,每次迭代權值向量變化大,學習速度快,但是有可能使變化處於震盪中,無法收斂;

    (3)處理方法:

        (3-1)既要加快學習速度又要保持穩定的方法修改delta法則,即添加動量項。

    (4)選擇經驗:

        (4-1)基於經驗的手動調整。 通過嘗試不同的固定學習率,如0.1, 0.01, 0.001等,觀察迭代次數和loss的變化關系,找到loss下降最快關系對應的學習率。

        (4-2)基於策略的調整。

                (4-2-1)fixed 、exponential、polynomial

                (4-2-2)自適應動態調整。adadelta、adagrad、ftrl、momentum、rmsprop、sgd

    (5)學習率η的調整:學習速率在學習過程中實現自適應調整(一般是衰減)

        (5-1)非自適應學習速率可能不是最佳的。

        (5-2)動量是一種自適應學習速率方法的參數,允許沿淺方向使用較高的速度,同時沿陡峭方向降低速度前進

        (5-3)降低學習速率是必要的,因為在訓練過程中,較高學習速率很可能陷入局部最小值。

參考文獻:

[1]  Simon Haykin. 神經網路與機器學習[M]. 機械工業出版社, 2011.

[2]   訓練神經網路時如何確定batch的大小?

[3]   學習筆記:Batch Size 對深度神經網路預言能力的影響  

[4]   機器學習演算法中如何選取超參數:學習速率、正則項系數、minibatch size.  http://blog.csdn.net/u012162613/article/details/44265967

[5]   深度學習如何設置學習率 . http://blog.csdn.net/mao_feng/article/details/52902666

[6]   調整學習速率以優化神經網路訓練. https://zhuanlan.hu.com/p/28893986

[7]   機器學習中用來防止過擬合的方法有哪些?

[8]   Neural Networks for Machine Learning by Geoffrey Hinton .

[9]   如何確定卷積神經網路的卷積核大小、卷積層數、每層map個數

[10]   卷積神經網路的卷積核大小、卷積層數、每層map個數都是如何確定下來的呢?

④ 卷積神經網路用全連接層的參數是怎麼確定的

卷積神經網路用全連接層的參數確定:卷積神經網路與傳統的人臉檢測方法不同,它是通過直接作用於輸入樣本,用樣本來訓練網路並最終實現檢測任務的。

它是非參數型的人臉檢測方法,可以省去傳統方法中建模、參數估計以及參數檢驗、重建模型等的一系列復雜過程。本文針對圖像中任意大小、位置、姿勢、方向、膚色、面部表情和光照條件的人臉。

輸入層

卷積神經網路的輸入層可以處理多維數據,常見地,一維卷積神經網路的輸入層接收一維或二維數組,其中一維數組通常為時間或頻譜采樣;二維數組可能包含多個通道;二維卷積神經網路的輸入層接收二維或三維數組;三維卷積神經網路的輸入層接收四維數組。

由於卷積神經網路在計算機視覺領域應用較廣,因此許多研究在介紹其結構時預先假設了三維輸入數據,即平面上的二維像素點和RGB通道。

⑤ (7)卷積神經網路的基本結構

    卷積神經網路主要結構有:卷積層、池化層、和全連接層。通過堆疊這些層結構形成一個卷積神經網路。將原始圖像轉化為類別得分,其中卷積層和全連接層擁有參數,激活層和池化層沒有參數。參數更新通過反向傳播實現。

(1)卷積層

    卷積核是一系列的濾波器,用來提取某一種特徵

    我們用它來處理一個圖片,當圖像特徵與過濾器表示的特徵相似時,卷積操作可以得到一個比較大的值。

    當圖像特徵與過濾器不相似時,卷積操作可以得到一個比較小的值,實際上,卷積的結果特徵映射圖顯示的是對應卷積核所代表的特徵在原始特徵圖上的分布情況。

        每個濾波器在空間上(寬度和高度)都比較小,但是深度和輸入數據保持一致(特徵圖的通道數),當卷積核在原圖像滑動時,會生成一個二維激活圖,激活圖上每個空間位置代表原圖像對該卷積核的反應。每個卷積層,會有一整個集合的卷積核,有多少個卷積核,輸出就有多少個通道。每個卷積核生成一個特徵圖,這些特徵圖堆疊起來組成整個輸出結果。

    卷積核體現了參數共享和局部連接的模式。每個卷積核的大小代表了一個感受野的大小。

    卷積後的特徵圖大小為(W-F+2*P)/s+1 ;P 為填充 s 為步長

(2)池化層

    池化層本質上是下采樣,利用圖像局部相關性的原理(認為最大值或者均值代表了這個局部的特徵),對圖像進行子抽樣,可以減少數據處理量同時保留有用信息。這里池化有平均池化,L2範式池化,最大池化,經過實踐,最大池化的效果要好於平均池化(平均池化一般放在卷積神經網路的最後一層),最大池化有利於保存紋理信息,平均池化有利於保存背景信息。實際上(因為信息損失的原因)我們可以看到,通過在卷積時使用更大的步長也可以縮小特徵映射的尺寸,並不一定要用池化,有很多人不建議使用池化層。32*32在5*5卷積核步長為1下可得到28*28。

    池化操作可以逐漸降低數據體的空間尺寸,這樣的話就能減少網路中參數的數量,使得計算資源耗費變少,也能有效控制過擬合。

(3)全連接層

    通過全連接層將特徵圖轉化為類別輸出。全連接層不止一層,在這個過程中為了防止過擬合會引入DropOut。最新研究表明,在進入全連接層之前,使用全局平均池化可以有效降低過擬合。

(4)批歸一化BN——Batch Normal

    隨著神經網路訓練的進行,每個隱層的參數變化使得後一層的輸入發生變化,從而每一批的訓練數據的分布也隨之改變,致使網路在每次迭代中都需要擬合不同的數據分布,增大訓練復雜度和過擬合的風險,只能採用較小的學習率去解決。

    通常卷積層後就是BN層加Relu。BN已經是卷積神經網路中的一個標准技術。標准化的過程是可微的,因此可以將BN應用到每一層中做前向和反向傳播,同在接在卷積或者全連接層後,非線性層前。它對於不好的初始化有很強的魯棒性,同時可以加快網路收斂速度。

(5)DropOut

    Dropout對於某一層神經元,通過定義的概率來隨機刪除一些神經元,同時保持輸入層與輸出層神經元的個數不變,然後按照神經網路的學習方法進行參數更新,下一次迭代中,重新隨機刪除一些神經元,直至訓練結束。

(6)softmax層

    Softmax層也不屬於CNN中單獨的層,一般要用CNN做分類的話,我們習慣的方式是將神經元的輸出變成概率的形式,Softmax就是做這個的:  。顯然Softmax層所有的輸出相加為1,按照這個概率的大小確定到底屬於哪一類。

⑥ 神經網路:卷積神經網路(CNN)

神經網路 最早是由心理學家和神經學家提出的,旨在尋求開發和測試神經的計算模擬。

粗略地說, 神經網路 是一組連接的 輸入/輸出單元 ,其中每個連接都與一個 權 相關聯。在學習階段,通過調整權值,使得神經網路的預測准確性逐步提高。由於單元之間的連接,神經網路學習又稱 連接者學習。

神經網路是以模擬人腦神經元的數學模型為基礎而建立的,它由一系列神經元組成,單元之間彼此連接。從信息處理角度看,神經元可以看作是一個多輸入單輸出的信息處理單元,根據神經元的特性和功能,可以把神經元抽象成一個簡單的數學模型。

神經網路有三個要素: 拓撲結構、連接方式、學習規則

神經網路的拓撲結構 :神經網路的單元通常按照層次排列,根據網路的層次數,可以將神經網路分為單層神經網路、兩層神經網路、三層神經網路等。結構簡單的神經網路,在學習時收斂的速度快,但准確度低。

神經網路的層數和每層的單元數由問題的復雜程度而定。問題越復雜,神經網路的層數就越多。例如,兩層神經網路常用來解決線性問題,而多層網路就可以解決多元非線性問題

神經網路的連接 :包括層次之間的連接和每一層內部的連接,連接的強度用權來表示。

根據層次之間的連接方式,分為:

1)前饋式網路:連接是單向的,上層單元的輸出是下層單元的輸入,如反向傳播網路,Kohonen網路

2)反饋式網路:除了單項的連接外,還把最後一層單元的輸出作為第一層單元的輸入,如Hopfield網路

根據連接的范圍,分為:

1)全連接神經網路:每個單元和相鄰層上的所有單元相連

2)局部連接網路:每個單元只和相鄰層上的部分單元相連

神經網路的學習

根據學習方法分:

感知器:有監督的學習方法,訓練樣本的類別是已知的,並在學習的過程中指導模型的訓練

認知器:無監督的學習方法,訓練樣本類別未知,各單元通過競爭學習。

根據學習時間分:

離線網路:學習過程和使用過程是獨立的

在線網路:學習過程和使用過程是同時進行的

根據學習規則分:

相關學習網路:根據連接間的激活水平改變權系數

糾錯學習網路:根據輸出單元的外部反饋改變權系數

自組織學習網路:對輸入進行自適應地學習

摘自《數學之美》對人工神經網路的通俗理解:

神經網路種類很多,常用的有如下四種:

1)Hopfield網路,典型的反饋網路,結構單層,有相同的單元組成

2)反向傳播網路,前饋網路,結構多層,採用最小均方差的糾錯學習規則,常用於語言識別和分類等問題

3)Kohonen網路:典型的自組織網路,由輸入層和輸出層構成,全連接

4)ART網路:自組織網路

深度神經網路:

Convolutional Neural Networks(CNN)卷積神經網路

Recurrent neural Network(RNN)循環神經網路

Deep Belief Networks(DBN)深度信念網路

深度學習是指多層神經網路上運用各種機器學習演算法解決圖像,文本等各種問題的演算法集合。深度學習從大類上可以歸入神經網路,不過在具體實現上有許多變化。

深度學習的核心是特徵學習,旨在通過分層網路獲取分層次的特徵信息,從而解決以往需要人工設計特徵的重要難題。

Machine Learning vs. Deep Learning 

神經網路(主要是感知器)經常用於 分類

神經網路的分類知識體現在網路連接上,被隱式地存儲在連接的權值中。

神經網路的學習就是通過迭代演算法,對權值逐步修改的優化過程,學習的目標就是通過改變權值使訓練集的樣本都能被正確分類。

神經網路特別適用於下列情況的分類問題:

1) 數據量比較小,缺少足夠的樣本建立模型

2) 數據的結構難以用傳統的統計方法來描述

3) 分類模型難以表示為傳統的統計模型

缺點:

1) 需要很長的訓練時間,因而對於有足夠長訓練時間的應用更合適。

2) 需要大量的參數,這些通常主要靠經驗確定,如網路拓撲或「結構」。

3)  可解釋性差 。該特點使得神經網路在數據挖掘的初期並不看好。

優點:

1) 分類的准確度高

2)並行分布處理能力強

3)分布存儲及學習能力高

4)對噪音數據有很強的魯棒性和容錯能力

最流行的基於神經網路的分類演算法是80年代提出的 後向傳播演算法 。後向傳播演算法在多路前饋神經網路上學習。 

定義網路拓撲

在開始訓練之前,用戶必須說明輸入層的單元數、隱藏層數(如果多於一層)、每一隱藏層的單元數和輸出層的單元數,以確定網路拓撲。

對訓練樣本中每個屬性的值進行規格化將有助於加快學習過程。通常,對輸入值規格化,使得它們落入0.0和1.0之間。

離散值屬性可以重新編碼,使得每個域值一個輸入單元。例如,如果屬性A的定義域為(a0,a1,a2),則可以分配三個輸入單元表示A。即,我們可以用I0 ,I1 ,I2作為輸入單元。每個單元初始化為0。如果A = a0,則I0置為1;如果A = a1,I1置1;如此下去。

一個輸出單元可以用來表示兩個類(值1代表一個類,而值0代表另一個)。如果多於兩個類,則每個類使用一個輸出單元。

隱藏層單元數設多少個「最好」 ,沒有明確的規則。

網路設計是一個實驗過程,並可能影響准確性。權的初值也可能影響准確性。如果某個經過訓練的網路的准確率太低,則通常需要採用不同的網路拓撲或使用不同的初始權值,重復進行訓練。

後向傳播演算法學習過程:

迭代地處理一組訓練樣本,將每個樣本的網路預測與實際的類標號比較。

每次迭代後,修改權值,使得網路預測和實際類之間的均方差最小。

這種修改「後向」進行。即,由輸出層,經由每個隱藏層,到第一個隱藏層(因此稱作後向傳播)。盡管不能保證,一般地,權將最終收斂,學習過程停止。

演算法終止條件:訓練集中被正確分類的樣本達到一定的比例,或者權系數趨近穩定。

後向傳播演算法分為如下幾步:

1) 初始化權

網路的權通常被初始化為很小的隨機數(例如,范圍從-1.0到1.0,或從-0.5到0.5)。

每個單元都設有一個偏置(bias),偏置也被初始化為小隨機數。

2) 向前傳播輸入

對於每一個樣本X,重復下面兩步:

向前傳播輸入,向後傳播誤差

計算各層每個單元的輸入和輸出。輸入層:輸出=輸入=樣本X的屬性;即,對於單元j,Oj = Ij = Xj。隱藏層和輸出層:輸入=前一層的輸出的線性組合,即,對於單元j, Ij =wij Oi + θj,輸出=

3) 向後傳播誤差

計算各層每個單元的誤差。

輸出層單元j,誤差:

Oj是單元j的實際輸出,而Tj是j的真正輸出。

隱藏層單元j,誤差:

wjk是由j到下一層中單元k的連接的權,Errk是單元k的誤差

更新 權 和 偏差 ,以反映傳播的誤差。

權由下式更新:

 其中,△wij是權wij的改變。l是學習率,通常取0和1之間的值。

 偏置由下式更新:

  其中,△θj是偏置θj的改變。

Example

人類視覺原理:

深度學習的許多研究成果,離不開對大腦認知原理的研究,尤其是視覺原理的研究。1981 年的諾貝爾醫學獎,頒發給了 David Hubel(出生於加拿大的美國神經生物學家) 和Torsten Wiesel,以及Roger Sperry。前兩位的主要貢獻,是「發現了視覺系統的信息處理」, 可視皮層是分級的 。

人類的視覺原理如下:從原始信號攝入開始(瞳孔攝入像素Pixels),接著做初步處理(大腦皮層某些細胞發現邊緣和方向),然後抽象(大腦判定,眼前的物體的形狀,是圓形的),然後進一步抽象(大腦進一步判定該物體是只氣球)。

對於不同的物體,人類視覺也是通過這樣逐層分級,來進行認知的:

在最底層特徵基本上是類似的,就是各種邊緣,越往上,越能提取出此類物體的一些特徵(輪子、眼睛、軀乾等),到最上層,不同的高級特徵最終組合成相應的圖像,從而能夠讓人類准確的區分不同的物體。

可以很自然的想到:可以不可以模仿人類大腦的這個特點,構造多層的神經網路,較低層的識別初級的圖像特徵,若干底層特徵組成更上一層特徵,最終通過多個層級的組合,最終在頂層做出分類呢?答案是肯定的,這也是許多深度學習演算法(包括CNN)的靈感來源。

卷積神經網路是一種多層神經網路,擅長處理圖像特別是大圖像的相關機器學習問題。卷積網路通過一系列方法,成功將數據量龐大的圖像識別問題不斷降維,最終使其能夠被訓練。

CNN最早由Yann LeCun提出並應用在手寫字體識別上。LeCun提出的網路稱為LeNet,其網路結構如下:

這是一個最典型的卷積網路,由 卷積層、池化層、全連接層 組成。其中卷積層與池化層配合,組成多個卷積組,逐層提取特徵,最終通過若干個全連接層完成分類。

CNN通過卷積來模擬特徵區分,並且通過卷積的權值共享及池化,來降低網路參數的數量級,最後通過傳統神經網路完成分類等任務。

降低參數量級:如果使用傳統神經網路方式,對一張圖片進行分類,那麼,把圖片的每個像素都連接到隱藏層節點上,對於一張1000x1000像素的圖片,如果有1M隱藏層單元,一共有10^12個參數,這顯然是不能接受的。

但是在CNN里,可以大大減少參數個數,基於以下兩個假設:

1)最底層特徵都是局部性的,也就是說,用10x10這樣大小的過濾器就能表示邊緣等底層特徵

2)圖像上不同小片段,以及不同圖像上的小片段的特徵是類似的,也就是說,能用同樣的一組分類器來描述各種各樣不同的圖像

基於以上兩個假設,就能把第一層網路結構簡化

用100個10x10的小過濾器,就能夠描述整幅圖片上的底層特徵。

卷積運算的定義如下圖所示:

如上圖所示,一個5x5的圖像,用一個3x3的 卷積核 :

   101

   010

   101

來對圖像進行卷積操作(可以理解為有一個滑動窗口,把卷積核與對應的圖像像素做乘積然後求和),得到了3x3的卷積結果。

這個過程可以理解為使用一個過濾器(卷積核)來過濾圖像的各個小區域,從而得到這些小區域的特徵值。在實際訓練過程中, 卷積核的值是在學習過程中學到的。

在具體應用中,往往有多個卷積核,可以認為, 每個卷積核代表了一種圖像模式 ,如果某個圖像塊與此卷積核卷積出的值大,則認為此圖像塊十分接近於此卷積核。如果設計了6個卷積核,可以理解為這個圖像上有6種底層紋理模式,也就是用6種基礎模式就能描繪出一副圖像。以下就是24種不同的卷積核的示例:

池化 的過程如下圖所示:

可以看到,原始圖片是20x20的,對其進行采樣,采樣窗口為10x10,最終將其采樣成為一個2x2大小的特徵圖。

之所以這么做,是因為即使做完了卷積,圖像仍然很大(因為卷積核比較小),所以為了降低數據維度,就進行采樣。

即使減少了許多數據,特徵的統計屬性仍能夠描述圖像,而且由於降低了數據維度,有效地避免了過擬合。

在實際應用中,分為最大值采樣(Max-Pooling)與平均值采樣(Mean-Pooling)。

LeNet網路結構:

注意,上圖中S2與C3的連接方式並不是全連接,而是部分連接。最後,通過全連接層C5、F6得到10個輸出,對應10個數字的概率。

卷積神經網路的訓練過程與傳統神經網路類似,也是參照了反向傳播演算法

第一階段,向前傳播階段:

a)從樣本集中取一個樣本(X,Yp),將X輸入網路;

b)計算相應的實際輸出Op

第二階段,向後傳播階段

a)計算實際輸出Op與相應的理想輸出Yp的差;

b)按極小化誤差的方法反向傳播調整權矩陣。

閱讀全文

與卷積神經網路是如何更新參數的相關的資料

熱點內容
一個文件盒省內寄順豐多少錢 瀏覽:41
誅仙62坐騎怎麼升級到63 瀏覽:926
linux以日期查看日誌記錄 瀏覽:446
工業大數據是什麼東西 瀏覽:881
魅族note3怎麼重置網路 瀏覽:510
c語言程序設計模 瀏覽:92
兒童怎麼做可編程機 瀏覽:603
數據計算屬於什麼統計學 瀏覽:921
07word怎麼去掉標記 瀏覽:979
qq緩存的數據是什麼 瀏覽:348
LED主Kv文件多少兆 瀏覽:856
蘋果edge怎麼刪除下載文件 瀏覽:471
sas邏輯回歸代碼 瀏覽:572
用於keil下的stc器件資料庫 瀏覽:400
新聞網站後台如何操作前台 瀏覽:539
在剪映app中怎麼查看視頻尺寸 瀏覽:9
linux文件成分包括 瀏覽:886
文件轉換免費的軟體 瀏覽:644
linuxwpsxlsx 瀏覽:482
小米手機怎麼上移動網路連接失敗怎麼辦 瀏覽:598

友情鏈接