❶ 人工神經網路綜述
文章主要分為:
一、人工神經網路的概念;
二、人工神經網路的發展歷史;
三、人工神經網路的特點;
四、人工神經網路的結構。
。。
人工神經網路(Artificial Neural Network,ANN)簡稱神經網路(NN),是基於生物學中神經網路的基本原理,在理解和抽象了人腦結構和外界刺激響應機制後,以網路拓撲知識為理論基礎,模擬人腦的神經系統對復雜信息的處理機制的一種數學模型。該模型以並行分布的處理能力、高容錯性、智能化和自學習等能力為特徵,將信息的加工和存儲結合在一起,以其獨特的知識表示方式和智能化的自適應學習能力,引起各學科領域的關注。它實際上是一個有大量簡單元件相互連接而成的復雜網路,具有高度的非線性,能夠進行復雜的邏輯操作和非線性關系實現的系統。
神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激活函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重(weight),神經網路就是通過這種方式來模擬人類的記憶。網路的輸出則取決於網路的結構、網路的連接方式、權重和激活函數。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。神經網路的構築理念是受到生物的神經網路運作啟發而產生的。人工神經網路則是把對生物神經網路的認識與數學統計模型相結合,藉助數學統計工具來實現。另一方面在人工智慧學的人工感知領域,我們通過數學統計學的方法,使神經網路能夠具備類似於人的決定能力和簡單的判斷能力,這種方法是對傳統邏輯學演算的進一步延伸。
人工神經網路中,神經元處理單元可表示不同的對象,例如特徵、字母、概念,或者一些有意義的抽象模式。網路中處理單元的類型分為三類:輸入單元、輸出單元和隱單元。輸入單元接受外部世界的信號與數據;輸出單元實現系統處理結果的輸出;隱單元是處在輸入和輸出單元之間,不能由系統外部觀察的單元。神經元間的連接權值反映了單元間的連接強度,信息的表示和處理體現在網路處理單元的連接關系中。人工神經網路是一種非程序化、適應性、大腦風格的信息處理,其本質是通過網路的變換和動力學行為得到一種並行分布式的信息處理功能,並在不同程度和層次上模仿人腦神經系統的信息處理功能。
神經網路,是一種應用類似於大腦神經突觸連接結構進行信息處理的數學模型,它是在人類對自身大腦組織結合和思維機制的認識理解基礎之上模擬出來的,它是根植於神經科學、數學、思維科學、人工智慧、統計學、物理學、計算機科學以及工程科學的一門技術。
在介紹神經網路的發展歷史之前,首先介紹一下神經網路的概念。神經網路主要是指一種仿造人腦設計的簡化的計算模型,這種模型中包含了大量的用於計算的神經元,這些神經元之間會通過一些帶有權重的連邊以一種層次化的方式組織在一起。每一層的神經元之間可以進行大規模的並行計算,層與層之間進行消息的傳遞。
下圖展示了整個神經網路的發展歷程:
神經網路的發展有悠久的歷史。其發展過程大致可以概括為如下4個階段。
(1)、M-P神經網路模型:20世紀40年代,人們就開始了對神經網路的研究。1943 年,美國心理學家麥克洛奇(Mcculloch)和數學家皮茲(Pitts)提出了M-P模型,此模型比較簡單,但是意義重大。在模型中,通過把神經元看作個功能邏輯器件來實現演算法,從此開創了神經網路模型的理論研究。
(2)、Hebb規則:1949 年,心理學家赫布(Hebb)出版了《The Organization of Behavior》(行為組織學),他在書中提出了突觸連接強度可變的假設。這個假設認為學習過程最終發生在神經元之間的突觸部位,突觸的連接強度隨之突觸前後神經元的活動而變化。這一假設發展成為後來神經網路中非常著名的Hebb規則。這一法則告訴人們,神經元之間突觸的聯系強度是可變的,這種可變性是學習和記憶的基礎。Hebb法則為構造有學習功能的神經網路模型奠定了基礎。
(3)、感知器模型:1957 年,羅森勃拉特(Rosenblatt)以M-P 模型為基礎,提出了感知器(Perceptron)模型。感知器模型具有現代神經網路的基本原則,並且它的結構非常符合神經生理學。這是一個具有連續可調權值矢量的MP神經網路模型,經過訓練可以達到對一定的輸入矢量模式進行分類和識別的目的,它雖然比較簡單,卻是第一個真正意義上的神經網路。Rosenblatt 證明了兩層感知器能夠對輸入進行分類,他還提出了帶隱層處理元件的三層感知器這一重要的研究方向。Rosenblatt 的神經網路模型包含了一些現代神經計算機的基本原理,從而形成神經網路方法和技術的重大突破。
(4)、ADALINE網路模型: 1959年,美國著名工程師威德羅(B.Widrow)和霍夫(M.Hoff)等人提出了自適應線性元件(Adaptive linear element,簡稱Adaline)和Widrow-Hoff學習規則(又稱最小均方差演算法或稱δ規則)的神經網路訓練方法,並將其應用於實際工程,成為第一個用於解決實際問題的人工神經網路,促進了神經網路的研究應用和發展。ADALINE網路模型是一種連續取值的自適應線性神經元網路模型,可以用於自適應系統。
人工智慧的創始人之一Minsky和Papert對以感知器為代表的網路系統的功能及局限性從數學上做了深入研究,於1969年發表了轟動一時《Perceptrons》一書,指出簡單的線性感知器的功能是有限的,它無法解決線性不可分的兩類樣本的分類問題,如簡單的線性感知器不可能實現「異或」的邏輯關系等。這一論斷給當時人工神經元網路的研究帶來沉重的打擊。開始了神經網路發展史上長達10年的低潮期。
(1)、自組織神經網路SOM模型:1972年,芬蘭的KohonenT.教授,提出了自組織神經網路SOM(Self-Organizing feature map)。後來的神經網路主要是根據KohonenT.的工作來實現的。SOM網路是一類無導師學習網路,主要用於模式識別﹑語音識別及分類問題。它採用一種「勝者為王」的競爭學習演算法,與先前提出的感知器有很大的不同,同時它的學習訓練方式是無指導訓練,是一種自組織網路。這種學習訓練方式往往是在不知道有哪些分類類型存在時,用作提取分類信息的一種訓練。
(2)、自適應共振理論ART:1976年,美國Grossberg教授提出了著名的自適應共振理論ART(Adaptive Resonance Theory),其學習過程具有自組織和自穩定的特徵。
(1)、Hopfield模型:1982年,美國物理學家霍普菲爾德(Hopfield)提出了一種離散神經網路,即離散Hopfield網路,從而有力地推動了神經網路的研究。在網路中,它首次將李雅普諾夫(Lyapunov)函數引入其中,後來的研究學者也將Lyapunov函數稱為能量函數。證明了網路的穩定性。1984年,Hopfield 又提出了一種連續神經網路,將網路中神經元的激活函數由離散型改為連續型。1985 年,Hopfield和Tank利用Hopfield神經網路解決了著名的旅行推銷商問題(Travelling Salesman Problem)。Hopfield神經網路是一組非線性微分方程。Hopfield的模型不僅對人工神經網路信息存儲和提取功能進行了非線性數學概括,提出了動力方程和學習方程,還對網路演算法提供了重要公式和參數,使人工神經網路的構造和學習有了理論指導,在Hopfield模型的影響下,大量學者又激發起研究神經網路的熱情,積極投身於這一學術領域中。因為Hopfield 神經網路在眾多方面具有巨大潛力,所以人們對神經網路的研究十分地重視,更多的人開始了研究神經網路,極大地推動了神經網路的發展。
(2)、Boltzmann機模型:1983年,Kirkpatrick等人認識到模擬退火演算法可用於NP完全組合優化問題的求解,這種模擬高溫物體退火過程來找尋全局最優解的方法最早由Metropli等人1953年提出的。1984年,Hinton與年輕學者Sejnowski等合作提出了大規模並行網路學習機,並明確提出隱單元的概念,這種學習機後來被稱為Boltzmann機。
Hinton和Sejnowsky利用統計物理學的感念和方法,首次提出的多層網路的學習演算法,稱為Boltzmann 機模型。
(3)、BP神經網路模型:1986年,儒默哈特(D.E.Ru melhart)等人在多層神經網路模型的基礎上,提出了多層神經網路權值修正的反向傳播學習演算法----BP演算法(Error Back-Propagation),解決了多層前向神經網路的學習問題,證明了多層神經網路具有很強的學習能力,它可以完成許多學習任務,解決許多實際問題。
(4)、並行分布處理理論:1986年,由Rumelhart和McCkekkand主編的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,該書中,他們建立了並行分布處理理論,主要致力於認知的微觀研究,同時對具有非線性連續轉移函數的多層前饋網路的誤差反向傳播演算法即BP演算法進行了詳盡的分析,解決了長期以來沒有權值調整有效演算法的難題。可以求解感知機所不能解決的問題,回答了《Perceptrons》一書中關於神經網路局限性的問題,從實踐上證實了人工神經網路有很強的運算能力。
(5)、細胞神經網路模型:1988年,Chua和Yang提出了細胞神經網路(CNN)模型,它是一個細胞自動機特性的大規模非線性計算機模擬系統。Kosko建立了雙向聯想存儲模型(BAM),它具有非監督學習能力。
(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初產生了很大的影響,他建立了一種神經網路系統理論。
(7)、1988年,Linsker對感知機網路提出了新的自組織理論,並在Shanon資訊理論的基礎上形成了最大互信息理論,從而點燃了基於NN的信息應用理論的光芒。
(8)、1988年,Broomhead和Lowe用徑向基函數(Radialbasis function, RBF)提出分層網路的設計方法,從而將NN的設計與數值分析和線性適應濾波相掛鉤。
(9)、1991年,Haken把協同引入神經網路,在他的理論框架中,他認為,認知過程是自發的,並斷言模式識別過程即是模式形成過程。
(10)、1994年,廖曉昕關於細胞神經網路的數學理論與基礎的提出,帶來了這個領域新的進展。通過拓廣神經網路的激活函數類,給出了更一般的時滯細胞神經網路(DCNN)、Hopfield神經網路(HNN)、雙向聯想記憶網路(BAM)模型。
(11)、90年代初,Vapnik等提出了支持向量機(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)維數的概念。
經過多年的發展,已有上百種的神經網路模型被提出。
深度學習(Deep Learning,DL)由Hinton等人於2006年提出,是機器學習的一個新領域。深度學習本質上是構建含有多隱層的機器學習架構模型,通過大規模數據進行訓練,得到大量更具代表性的特徵信息。深度學習演算法打破了傳統神經網路對層數的限制,可根據設計者需要選擇網路層數。
突觸是神經元之間相互連接的介面部分,即一個神經元的神經末梢與另一個神經元的樹突相接觸的交界面,位於神經元的神經末梢尾端。突觸是軸突的終端。
大腦可視作為1000多億神經元組成的神經網路。神經元的信息傳遞和處理是一種電化學活動.樹突由於電化學作用接受外界的刺激,通過胞體內的活動體現為軸突電位,當軸突電位達到一定的值則形成神經脈沖或動作電位;再通過軸突末梢傳遞給其它的神經元.從控制論的觀點來看;這一過程可以看作一個多輸入單輸出非線性系統的動態過程。
神經元的功能特性:(1)時空整合功能;(2)神經元的動態極化性;(3)興奮與抑制狀態;(4)結構的可塑性;(5)脈沖與電位信號的轉換;(6)突觸延期和不應期;(7)學習、遺忘和疲勞。
神經網路從兩個方面模擬大腦:
(1)、神經網路獲取的知識是從外界環境中學習得來的。
(2)、內部神經元的連接強度,即突觸權值,用於儲存獲取的知識。
神經網路系統由能夠處理人類大腦不同部分之間信息傳遞的由大量神經元連接形成的拓撲結構組成,依賴於這些龐大的神經元數目和它們之間的聯系,人類的大腦能夠收到輸入的信息的刺激由分布式並行處理的神經元相互連接進行非線性映射處理,從而實現復雜的信息處理和推理任務。
對於某個處理單元(神經元)來說,假設來自其他處理單元(神經元)i的信息為Xi,它們與本處理單元的互相作用強度即連接權值為Wi, i=0,1,…,n-1,處理單元的內部閾值為θ。那麼本處理單元(神經元)的輸入為:
,而處理單元的輸出為:
式中,xi為第i個元素的輸入,wi為第i個處理單元與本處理單元的互聯權重即神經元連接權值。f稱為激活函數或作用函數,它決定節點(神經元)的輸出。θ表示隱含層神經節點的閾值。
神經網路的主要工作是建立模型和確定權值,一般有前向型和反饋型兩種網路結構。通常神經網路的學習和訓練需要一組輸入數據和輸出數據對,選擇網路模型和傳遞、訓練函數後,神經網路計算得到輸出結果,根據實際輸出和期望輸出之間的誤差進行權值的修正,在網路進行判斷的時候就只有輸入數據而沒有預期的輸出結果。神經網路一個相當重要的能力是其網路能通過它的神經元權值和閾值的不斷調整從環境中進行學習,直到網路的輸出誤差達到預期的結果,就認為網路訓練結束。
對於這樣一種多輸入、單輸出的基本單元可以進一步從生物化學、電生物學、數學等方面給出描述其功能的模型。利用大量神經元相互連接組成的人工神經網路,將顯示出人腦的若干特徵,人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重wij值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以至超過設計者原有的知識水平。通常,它的學習(或訓練)方式可分為兩種,一種是有監督(supervised)或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督(unsupervised)學習或稱無導師學習,這時,只規定學習方式或某些規則,而具體的學習內容隨系統所處環境(即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似於人腦的功能。
在人工神經網路設計及應用研究中,通常需要考慮三個方面的內容,即神經元激活函數、神經元之間的連接形式和網路的學習(訓練)。
❷ 神經網路是什麼
神經網路是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
生物神經網路主要是指人腦的神經網路,它是人工神經網路的技術原型。人腦是人類思維的物質基礎,思維的功能定位在大腦皮層,後者含有大約10^11個神經元,每個神經元又通過神經突觸與大約103個其它神經元相連,形成一個高度復雜高度靈活的動態網路。作為一門學科,生物神經網路主要研究人腦神經網路的結構、功能及其工作機制,意在探索人腦思維和智能活動的規律。
人工神經網路是生物神經網路在某種簡化意義下的技術復現,作為一門學科,它的主要任務是根據生物神經網路的原理和實際應用的需要建造實用的人工神經網路模型,設計相應的學習演算法,模擬人腦的某種智能活動,然後在技術上實現出來用以解決實際問題。因此,生物神經網路主要研究智能的機理;人工神經網路主要研究智能機理的實現,兩者相輔相成。
(2)神經網路主要工作有哪些擴展閱讀:
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:
1、生物原型
從生理學、心理學、解剖學、腦科學、病理學等方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
2、建立模型
根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
3、演算法
在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
神經網路用到的演算法就是向量乘法,並且廣泛採用符號函數及其各種逼近。並行、容錯、可以硬體實現以及自我學習特性,是神經網路的幾個基本優點,也是神經網路計算方法與傳統方法的區別所在。
❸ 神經網路主要用於什麼問題的求解
神經網路的研究可以分為理論研究和應用研究兩大方面。
理論研究可分為以下兩專類:
1、利用神屬經生理與認知科學研究人類思維以及智能機理。
2、利用神經基礎理論的研究成果,用數理方法探索功能更加完善、性能更加優越的神經網路模型,深入研究網路演算法和性能,如:穩定性、收斂性、容錯性、魯棒性等;開發新的網路數理理論,如:神經網路動力學、非線性神經場等。
應用研究可分為以下兩類:
1、神經網路的軟體模擬和硬體實現的研究。
2、神經網路在各個領域中應用的研究。這些領域主要包括:
模式識別、信號處理、知識工程、專家系統、優化組合、機器人控制等。隨著神經網路理論本身以及相關理論、相關技術的不斷發展,神經網路的應用定將更加深入。
http://ke..com/view/5348.htm?fr=ala0_1
❹ 深度神經網路的工作
多層的好處是可以用較少的參數表示復雜的函數。
在監督學習中,以前的多層神經網路的問題是容易陷入局部極值點。如果訓練樣本足夠充分覆蓋未來的樣本,那麼學到的多層權重可以很好的用來預測新的測試樣本。但是很多任務難以得到足夠多的標記樣本,在這種情況下,簡單的模型,比如線性回歸或者決策樹往往能得到比多層神經網路更好的結果(更好的泛化性,更差的訓練誤差)。
非監督學習中,以往沒有有效的方法構造多層網路。多層神經網路的頂層是底層特徵的高級表示,比如底層是像素點,上一層的結點可能表示橫線,三角; 而頂層可能有一個結點表示人臉。一個成功的演算法應該能讓生成的頂層特徵最大化的代表底層的樣例。如果對所有層同時訓練,時間復雜度會太高; 如果每次訓練一層,偏差就會逐層傳遞。這會面臨跟上面監督學習中相反的問題,會嚴重欠擬合。
2006年,hinton提出了在非監督數據上建立多層神經網路的一個有效方法,簡單的說,分為兩步,一是每次訓練一層網路,二是調優使原始表示x向上生成的高級表示r和該高級表示r向下生成的x'盡可能一致。方法是
1,首先逐層構建單層神經元,這樣每次都是訓練一個單層網路。
2,當所有層訓練完後,hinton使用wake-sleep演算法進行調優。將除最頂層的其它層間的權重變為雙向的,這樣最頂層仍然是一個單層神經網路,而其它層則變為了圖模型。向上的權重用於」認知「,向下的權重用於」生成「。然後使用Wake-Sleep演算法調整所有的權重。讓認知和生成達成一致,也就是保證生成的最頂層表示能夠盡可能正確的復原底層的結點。比如頂層的一個結點表示人臉,那麼所有人臉的圖像應該激活這個結點,並且這個結果向下生成的圖像應該能夠表現為一個大概的人臉圖像。Wake-Sleep演算法分為醒(wake)和睡(sleep)兩個部分。
2.1,wake階段,認知過程,通過外界的特徵和向上的權重(認知權重)產生每一層的抽象表示(結點狀態),並且使用梯度下降修改層間的下行權重(生成權重)。也就是「如果現實跟我想像的不一樣,改變我的權重使得我想像的東西就是這樣的「。
2.2,sleep階段,生成過程,通過頂層表示(醒時學得的概念)和向下權重,生成底層的狀態,同時修改層間向上的權重。也就是「如果夢中的景象不是我腦中的相應概念,改變我的認知權重使得這種景象在我看來就是這個概念「。
由於自動編碼器(auto-encoder,即上面說的神經網路。廣義上的自動編碼器指所有的從低級表示得到高級表示,並能從高級表示生成低級表示的近似的結構,狹義上指的是其中的一種,谷歌的人臉識別用的)有聯想功能,也就是缺失部分輸入也能得到正確的編碼,所以上面說的演算法也可以用於有監督學習,訓練時y做為頂層網路輸入的補充,應用時頂層網路生成y'。
❺ 想問一下學神經網路的研究生畢業的工作就業方向是哪些類!!
同聲傳譯:同聲傳譯員被稱為「21世紀第一大緊缺人才」。
「同傳的薪金是按照小時和分鍾來算的,現在的價碼是每小時4000元到8000元。」相關人士如是說。「4年之後入駐中國和北京的外國大公司越來越多,這一行肯定會更吃香。」
3G工程師:據計世資訊發布的相關研究報告稱,估計國內3G人才缺口將達到50萬人以上。由於目前3G人才比較少,尤其是復合型人才奇缺,預計4年之後3G工程師的基本年薪會在15萬元至20萬元。「
網路媒體人才:目前,網路編輯的月薪一般都在5000元左右、中等職位的收入在8000元至10000元。「相信4年之後整個網路媒體的廣告收入越來越多的時候,從業人員會有一個更好的回報。」
物流師:物流人才的需求量為600餘萬人。相關統計顯示,目前物流從業人員當中擁有大學學歷以上的僅佔21%。許多物流部門的管理人員是半路出家,很少受過專業的培訓。據相關人士透露,對此類人才有需求的某知名企業在國內招聘的應屆大學生目前的薪金是每月6000元到8000元,在一年之後還會有相當大的提升空間。「現在一年就能掙個7萬元至10萬元,估計4年之後只會多不會少,因為能源越來越緊俏。」
這是以後比較會吃香的行業,趁現在能學習,多學點這方面的,以後可能會好找工作!!加油嘍!!
❻ 神經網路的主要內容特點
(1) 神經網路的一般特點
作為一種正在興起的新型技術神經網路有著自己的優勢,他的主要特點如下:
① 由於神經網路模仿人的大腦,採用自適應演算法。使它較之專家系統的固定的推理方式及傳統計算機的指令程序方式更能夠適應化環境的變化。總結規律,完成某種運算、推理、識別及控制任務。因而它具有更高的智能水平,更接近人的大腦。
② 較強的容錯能力,使神經網路能夠和人工視覺系統一樣,根據對象的主要特徵去識別對象。
③ 自學習、自組織功能及歸納能力。
以上三個特點是神經網路能夠對不確定的、非結構化的信息及圖像進行識別處理。石油勘探中的大量信息就具有這種性質。因而,人工神經網路是十分適合石油勘探的信息處理的。
(2) 自組織神經網路的特點
自組織特徵映射神經網路作為神經網路的一種,既有神經網路的通用的上面所述的三個主要的特點又有自己的特色。
① 自組織神經網路共分兩層即輸入層和輸出層。
② 採用競爭學記機制,勝者為王,但是同時近鄰也享有特權,可以跟著競爭獲勝的神經元一起調整權值,從而使得結果更加光滑,不想前面的那樣粗糙。
③ 這一網路同時考慮拓撲結構的問題,即他不僅僅是對輸入數據本身的分析,更考慮到數據的拓撲機構。
權值調整的過程中和最後的結果輸出都考慮了這些,使得相似的神經元在相鄰的位置,從而實現了與人腦類似的大腦分區響應處理不同類型的信號的功能。
④ 採用無導師學記機制,不需要教師信號,直接進行分類操作,使得網路的適應性更強,應用更加的廣泛,尤其是那些對於現在的人來說結果還是未知的數據的分類。頑強的生命力使得神經網路的應用范圍大大加大。
❼ 深度神經網路具體的工作流程是什麼樣的
所謂神經網路演算法,就是對人類學習能力的一種模擬演算法。理論認為人的認知模式,處事方式是存儲在神經元與神經元之間的連接上的,稱為「神經元連接權重」,人腦神經布局類似網狀結構,神經元是網的交叉點,權重就是網的連線,這些連線有粗有細,也就是權重的大小不同。而人類的學習能力就是去不斷改變權重的值,從而改變自己的認知模式和處事方式,簡單的說,不同人對同一個外部事物有不同看法,就是因為同樣的初始信號,在不同粗細的神經元連線放大或縮小後,變成了側重點不同的最終信號。最開始的「感知機"只用了2層神經元,即輸入層和輸出層,發現很多問題無法模擬,最著名的就是「異或」問題。 後來聰明的人在輸入層和輸出層之間加了一層神經元叫做隱藏層,3層的神經網路已經可以模擬二維上的任意函數曲線。只不過此時對「連接權重」的訓練過程就變得非常復雜,通常使用一種叫「誤差反傳」的計算方法。參考人腦,人腦大概有億級層數的神經元(當然,人腦是多任務處理器集合,某些特定的任務如人臉識別,只需用到大腦的某個局部)。於是人們會猜想,更多的隱藏層是否會有更高的學習效果。事實證明的確如此,隨著隱藏層數的增加,一些圖片,語音的識別率越來越高。因此,就有了深度神經網路這一概念。但隱藏層數越多訓練過程也越復雜,且誤差會在多層傳遞的時候衰減,導致GradientVanish問題,最終導致訓練結果收斂在局部最優或者難以收斂。後來又有聰明的人不斷改進誤差訓練演算法,神經網路的層數深度越來越大,現在最NB的是微軟的「殘差神經網路」,已經將隱藏層提高至152層。
❽ 神經網路原理及應用
神經網路原理及應用
1. 什麼是神經網路?
神經網路是一種模擬動物神經網路行為特徵,進行分布式並行信息處理的演算法。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
人類的神經網路
2. 神經網路基礎知識
構成:大量簡單的基礎元件——神經元相互連接
工作原理:模擬生物的神經處理信息的方式
功能:進行信息的並行處理和非線性轉化
特點:比較輕松地實現非線性映射過程,具有大規模的計算能力
神經網路的本質:
神經網路的本質就是利用計算機語言模擬人類大腦做決定的過程。
3. 生物神經元結構
4. 神經元結構模型
xj為輸入信號,θi為閾值,wij表示與神經元連接的權值,yi表示輸出值
判斷xjwij是否大於閾值θi
5. 什麼是閾值?
臨界值。
神經網路是模仿大腦的神經元,當外界刺激達到一定的閾值時,神經元才會受刺激,影響下一個神經元。
6. 幾種代表性的網路模型
單層前向神經網路——線性網路
階躍網路
多層前向神經網路(反推學習規則即BP神經網路)
Elman網路、Hopfield網路、雙向聯想記憶網路、自組織競爭網路等等
7. 神經網路能幹什麼?
運用這些網路模型可實現函數逼近、數據聚類、模式分類、優化計算等功能。因此,神經網路廣泛應用於人工智慧、自動控制、機器人、統計學等領域的信息處理中。雖然神經網路的應用很廣,但是在具體的使用過程中到底應當選擇哪種網路結構比較合適是值得考慮的。這就需要我們對各種神經網路結構有一個較全面的認識。
8. 神經網路應用
❾ 什麼是神經網路,舉例說明神經網路的應用
我想這可能是你想要的神經網路吧!
什麼是神經網路:
人工神經網路( Neural Networks,簡寫為ANNs)也簡稱為神經網路(NNs)或稱作連接模型(Connection Model),它是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
神經網路的應用:
應用
在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人、復雜系統控制等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:
生物原型
從生理學、心理學、解剖學、腦科學、病理學等方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
建立模型
根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
演算法
在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
神經網路用到的演算法就是向量乘法,並且廣泛採用符號函數及其各種逼近。並行、容錯、可以硬體實現以及自我學習特性,是神經網路的幾個基本優點,也是神經網路計算方法與傳統方法的區別所在。
❿ 人工神經網路的作用
人工神經網路(Artificial Neural Network,即ANN ),是20世紀80 年代以來人工智慧領域興起的研究熱點。它從信息處理角度對人腦神經元網路進行抽象, 建立某種簡單模型,按不同的連接方式組成不同的網路。在工程與學術界也常直接簡稱為神經網路或類神經網路。神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。
最近十多年來,人工神經網路的研究工作不斷深入,已經取得了很大的進展,其在模式識別、智能機器人、自動控制、預測估計、生物、醫學、經濟等領域已成功地解決了許多現代計算機難以解決的實際問題,表現出了良好的智能特性。
中文名
人工神經網路
外文名
artificial neural network
別稱
ANN
應用學科
人工智慧
適用領域范圍
模式分類
精品薦讀
「蠢萌」的神經網路
作者:牛油果進化論
快速
導航
基本特徵
發展歷史
網路模型
學習類型
分析方法
特點優點
研究方向
發展趨勢
應用分析
神經元
如圖所示
a1~an為輸入向量的各個分量
w1~wn為神經元各個突觸的權值
b為偏置
f為傳遞函數,通常為非線性函數。以下默認為hardlim()
t為神經元輸出
數學表示 t=f(WA'+b)
W為權向量
A為輸入向量,A'為A向量的轉置
b為偏置
f為傳遞函數
可見,一個神經元的功能是求得輸入向量與權向量的內積後,經一個非線性傳遞函數得到一個標量結果。
單個神經元的作用:把一個n維向量空間用一個超平面分割成兩部分(稱之為判斷邊界),給定一個輸入向量,神經元可以判斷出這個向量位於超平面的哪一邊。
該超平面的方程: Wp+b=0
W權向量
b偏置
p超平面上的向量
基本特徵
人工神經網路是由大量處理單元互聯組成的非線性、自適應信息處理系統。它是在現代神經科學研究成果的基礎上提出的,試圖通過模擬大腦神經網路處理、記憶信息的方式進行信息處理。
人工神經網路具有四個基本特徵:
(1)非線性 非線性關系是自然界的普遍特性。大腦的智慧就是一種非線性現象。人工神經元處於激活或抑制二種不同的狀態,這種行為在數學上表現為一種非線性關系。具有閾值的神經元構成的網路具有更好的性能,可以提高容錯性和存儲容量。
人工神經網路
(2)非局限性 一個神經網路通常由多個神經元廣泛連接而成。一個系統的整體行為不僅取決於單個神經元的特徵,而且可能主要由單元之間的相互作用、相互連接所決定。通過單元之間的大量連接模擬大腦的非局限性。聯想記憶是非局限性的典型例子。
(3)非常定性 人工神經網路具有自適應、自組織、自學習能力。神經網路不但處理的信息可以有各種變化,而且在處理信息的同時,非線性動力系統本身也在不斷變化。經常採用迭代過程描寫動力系統的演化過程。
(4)非凸性 一個系統的演化方向,在一定條件下將取決於某個特定的狀態函數。例如能量函數,它的極值相應於系統比較穩定的狀態。非凸性是指這種函數有多個極值,故系統具有多個較穩定的平衡態,這將導致系統演化的多樣性