㈠ 人臉識別系統的工作原理是什麼
當今社會,人臉識別系統已經是遍地可見。不論是進出辦公樓的門禁,還是乘坐地鐵時可以刷臉乘坐。人臉識別系統大大的提高了通行的效率,是一項很先進的技術。公眾一直以來好奇人臉識別系統的工作原理,認為這是一項黑科技。但其實認真說起來,他也只是數學運算的概率問題。人臉識別系統的工作原理主要有以下這幾部分組成。
一、深度學習模型。
人臉識別系統當中的核心和靈魂部分就是深度學習的神經網路模型。所謂神經網路模型其實就是一個運算器,在這個運算器當中,我們可以把它看作一個黑盒子,其中存儲著很多的參數,這些參數是可以自動調整的。這個學習模型主要用來進行訓練,訓練的目的就是能夠達到一個人的兩張照片輸入之後,它的輸出結果概率無限接近1。
人臉識別系統是近些年來深度學習和計算機科學發展的集大成者,其原理很復雜。
㈡ 人臉識別系統的核心是什麼
人臉識別特指利用分析比較人臉視覺特徵信息進行身份鑒別的計算機技術。人臉識別是一項熱門的計算機技術研究領域,它屬於生物特徵識別技術,是對生物體(一般特指人)本身的生物特徵來區分生物體個體。
人臉識技術中被廣泛採用的區域特徵分析演算法,它融合了計算機圖像處理技術與生物統計學原理於一體,利用計算機圖像處理技術從視頻中提取人像特徵點,利
用生物統計學的原理進行分析建立數學模型,即人臉特徵模板。利用已建成的人臉特徵模板與被測者的人的面像進行特徵分析,根據分析的結果來給出一個相似值。
通過這個值即可確定是否為同一人。
主要的功能模塊
人臉捕獲與跟蹤功能:
人臉捕獲是指在一幅圖像或視頻流的一幀中檢測出人像並將人像從背景中分離出來,並自動地將其保存。人像跟蹤是指利用人像捕獲技術,當指定的人像在攝像頭拍攝的范圍內移動時自動地對其進行跟蹤。
人臉識別比對:
人臉識別分核實式和搜索式二種比對模式。核實式是對指將捕獲得到的人像或是指定的人像與資料庫中已登記的某一對像作比對核實確定其是否為同一人。搜索式的比對是指,從資料庫中已登記的所有人像中搜索查找是否有指定的人像存在。
人臉的建模與檢索:
可以將登記入庫的人像數據進行建模提取人臉的特徵,並將其生成人臉模板(人臉特徵文件)保存到資料庫中。在進行人臉搜索時(搜索式),將指定的人像進行建模,再將其與資料庫中的所有人的模板相比對識別,最終將根據所比對的相似值列出最相似的人員列表。
真人鑒別功能:
系統可以識別得出攝像頭前的人是一個真正的人還是一幅照片。以此杜絕使用者用照片作假。此項技術需要使用者作臉部表情的配合動作。
圖像質量檢測:
圖像質量的好壞直接影響到識別的效果,圖像質量的檢測功能能對即將進行比對的照片進行圖像質量評估,並給出相應的建議值來輔助識別。
人臉識別的優勢
人臉識別的優勢在於其自然性和不被被測個體察覺的特點。
所謂自然性,是指該識別方式同人類(甚至其他生物)進行個體識別時所利用的生物特徵相同。例如人臉識別,人類也是通過觀察比較人臉區分和確認身份的,
另外具有自然性的識別還有語音識別、體形識別等,而指紋識別、虹膜識別等都不具有自然性,因為人類或者其他生物並不通過此類生物特徵區別個體。
不被察覺的特點對於一種識別方法也很重要,這會使該識別方法不令人反感,並且因為不容易引起人的注意而不容易被欺騙。人臉識別具有這方面的特點,它完
全利用可見光獲取人臉圖像信息,而不同於指紋識別或者虹膜識別,需要利用電子壓力感測器採集指紋,或者利用紅外線採集虹膜圖像,這些特殊的採集方式很容易
被人察覺,從而更有可能被偽裝欺騙。
人臉識別困難性
人臉識別被認為是生物特徵識別領域甚至人工智慧領域最困難的研究課題之一。人臉識別的困難主要是人臉作為生物特徵的特點所帶來的。
相似性
不同個體之間的區別不大,所有的人臉的結構都相似,甚至人臉器官的結構外形都很相似。這樣的特點對於利用人臉進行定位是有利的,但是對於利用人臉區分人類個體是不利的。
易變性
人臉的外形很不穩定,人可以通過臉部的變化產生很多表情,而在不同觀察角度,人臉的視覺圖像也相差很大,另外,人臉識別還受光照條件(例如白天和夜晚,室內和室外等)、人臉的很多遮蓋物(例如口罩、墨鏡、頭發、胡須等)、年齡等多方面因素的影響。
希望能夠幫助到你。
㈢ 人臉識別入門簡介-基於百度AI
人臉識別(Face Recognition)是一種依據人的面部特徵(如統計或幾何特徵等),自動進行身份識別的一種生物識別技術,又稱為面像識別、人像識別、相貌識別、面孔識別、面部識別等。通常我們所說的人臉識別是基於光學人臉圖像的仿枯凳身份識別與驗證的簡稱。
人臉識別利用攝像機或攝像頭採集含有人臉的圖像或視頻流,並自動在圖像中檢測和跟蹤人臉,進而對檢測到的人臉圖像進行一系列的相關應用操作。技術上包括圖像採集、特徵定位、身份的確認和查找等等。簡單來說,就是從照片中提取人臉中的特徵,比如眉毛高度、嘴角等等,再通過特徵的對比輸出結敗清果。
網路人臉識備旅別demo