導航:首頁 > 科技大全 > 數據分析系統架構

數據分析系統架構

發布時間:2023-03-11 05:21:11

大數據分析架構需權衡四要素

大數據分析架構需權衡四要素

通過提供對更廣泛信息集的訪問,大數據就可以為數據分析師和業務用戶產生分析見解提供一臂之力。成功的大數據分析應用程序會揭示某些趨勢和模式,以此來為決策制定提供更好的服務,並會指出新的創收機會和讓企業領先於他們的商業競爭對手的方法。但首先,企業往往需要增強他們現有的IT基礎設施建設以及數據管理流程以支持大數據架構的規模和復雜性。

Hadoop系統和NoSQL資料庫已經成為管理大數據環境的重要工具。不過,在很多情況下,企業利用他們現有的數據倉庫設施,或是一個新老混合的技術來對大數據流入他們的系統進行管理。

無論一個公司部署什麼類型的大數據技術棧,有一些共通的因素必須加以考量,以保證為大數據分析工作提供一個有效的框架。在開始一個大數據項目之前,去審視項目所要承擔的新數據需求的更大圖景顯得尤為關鍵。下面來讓我們檢視四個需要加以考量的因素。

數據准確性

數據質量問題對於BI和數據管理專業人士來說一定不陌生。很多BI和分析團隊努力保證數據的有效性並說服業務使用人員去信任信息資產的准確性和可靠性。作為個性化分析庫而得以廣泛使用的電子表格或電子報表軟體可以對數據中信任缺乏的問題加以彌補:在Excel中存儲和操作分析數據的功能為支持自助分析能力創造了環境,但可能不會激發其他用戶對結果的自信心。數據倉庫與數據集成和數據質量工具一起,能夠通過為管理BI和分析數據提供標准化流程來幫助樹立信心。但是,由於不斷增加的數據容量和更廣泛多樣的數據類型,特別是當涉及結構化和非結構化數據混合時,就會對一個大數據的實施增加難度系數。建立評估數據質量標准以及對它們進行升級以處理那些更大、更多樣數據集,對於大數據實施的成功和分析框架的使用是至關重要的。

存儲適用

數據倉儲的一個核心要求是處理和存儲大數據集的能力。但並不是所有數據倉庫在這方面都滿足要求。一些是針對復雜查詢處理進行優化,而其他的則並非如此。並且在許多大數據應用程序中,相較於事務系統,由於添加了非結構化數據還有數據的創建和收集增速迅猛,用Hadoop和NoSQL技術增強數據倉庫就成為必要。對於一個希望獲取並分析大數據的組織來說,光有存儲容量是不夠的;而重要的部分在於將數據置於何處才是最佳的,這樣數據就可以轉化為有用信息並為數據科學家和其他用戶所利用。

查詢性能

大數據分析依賴於及時處理和查詢復雜數據的能力。一個很好地例子就是:一家公司開發了一個數據倉庫用來維護從能源使用計收集到的數據。在產品評估過程中,某供應商的系統有能力在15分鍾內處理七百萬條記錄,而另一家則在相同時間內可以處理最高三十萬條記錄。能否識別正確的基礎設施來支持快速的數據可用性和高性能查詢就意味著成功還是失敗。

穩定性

隨著許多組織中數據量和數據種類的增長,大數據平台的建立需要有對未來的考量。必須提前考慮和求證正在進行評估的大數據技術是否能夠進行擴展,以達到不斷向前發展的需求所要求的級別。這便超出了存儲容量的范疇,將性能也包含了進來,對那些從社交網路,感測器,系統日誌文件以及其他非事務源獲取數據作為其業務數據擴展的公司來說尤為如此。

分析多樣而復雜的數據集需要一個健壯且富有彈性的大數據架構。在籌劃項目時通過對這四個因素進行考量,組織可以確定他們是否已經擁有能夠處理如此嚴苛大數據的分析程序亦或是需要額外的軟硬體以及數據管理流程來達到他們的大數據目標。

以上是小編為大家分享的關於大數據分析架構需權衡四要素的相關內容,更多信息可以關注環球青藤分享更多干貨

⑵ 數據分析系統架構包含內容涉及哪些

1、數據源


所有大數據架構都從源代碼開始。這可以包含來源於資料庫的數據、來自實時源(如物聯網設備)的數據,及其從應用程序(如Windows日誌)生成的靜態文件。


2、實時消息接收


假如有實時源,則需要在架構中構建一種機制來攝入數據。


3、數據存儲


公司需要存儲將通過大數據架構處理的數據。一般而言,數據將存儲在數據湖中,這是一個可以輕松擴展的大型非結構化資料庫。


4、批處理和實時處理的組合


公司需要同時處理實時數據和靜態數據,因而應在大數據架構中內置批量和實時處理的組合。這是由於能夠應用批處理有效地處理大批量數據,而實時數據需要立刻處理才能夠帶來價值。批處理涉及到長期運轉的作業,用於篩選、聚合和准備數據開展分析。


5、分析數據存儲


准備好要分析的數據後,需要將它們放到一個位置,便於對整個數據集開展分析。分析數據儲存的必要性在於,公司的全部數據都聚集在一個位置,因而其分析將是全面的,而且針對分析而非事務進行了優化。這可能採用基於雲計算的數據倉庫或關系資料庫的形式,具體取決於公司的需求。


6、分析或報告工具


在攝入和處理各類數據源之後,公司需要包含一個分析數據的工具。一般而言,公司將使用BI(商業智能)工具來完成這項工作,而且或者需要數據科學家來探索數據。

⑶ 大數據系統架構

轉: https://www.sohu.com/a/227887005_487103

數據分析工作雖然隱藏在業務系統背後,但是具有非常重要的作用,數據分析的結果對決策、業務發展有著舉足輕重的作用。隨著大數據技術的發展,數據挖掘、數據探索等專有名詞曝光度越來越高,但是在類似於Hadoop系列的大數據分析系統大行其道之前,數據分析工作已經經歷了長足的發展,尤其是以BI系統為主的數據分析,已經有了非常成熟和穩定的技術方案和生態系統,對於BI系統來說,大概的架構圖如下:

總的來說,目前圍繞Hadoop體系的大數據架構大概有以下幾種:
傳統大數據架構

Lambda架構算是大數據系統裡面舉足輕重的架構,大多數架構基本都是Lambda架構或者基於其變種的架構。Lambda的數據通道分為兩條分支:實時流和離線。實時流依照流式架構,保障了其實時性,而離線則以批處理方式為主,保障了最終一致性。什麼意思呢?流式通道處理為保障實效性更多的以增量計算為主輔助參考,而批處理層則對數據進行全量運算,保障其最終的一致性,因此Lambda最外層有一個實時層和離線層合並的動作,此動作是Lambda里非常重要的一個動作
優點: 既有實時又有離線,對於數據分析場景涵蓋的非常到位。
缺點: 離線層和實時流雖然面臨的場景不相同,但是其內部處理的邏輯卻是相同,因此有大量榮譽和重復的模塊存在。
適用場景: 同時存在實時和離線需求的情況。

Kappa架構

Unifield架構

總結
以上幾種架構為目前數據處理領域使用比較多的幾種架構,當然還有非常多其他架構,不過其思想都會或多或少的類似。數據領域和機器學習領域會持續發展,以上幾種思想或許終究也會變得過時。

⑷ 數據架構是什麼

從整公司的角度來看,企業架構包含業務架構、技術架構和數據架構。數據架構應該是面向業務數據定義、數據生產、數據分析、數據使用的整體架構,與業務架構、技術架構相輔相成,密不可分,故大數據架構和資料庫架構都只是數據架構的個子集。

閱讀全文

與數據分析系統架構相關的資料

熱點內容
電腦太大的文件怎麼上傳微信 瀏覽:514
索尼lt26ixperias刷機教程 瀏覽:246
win10uefi文件下載 瀏覽:713
顯示文件大小的軟體 瀏覽:194
最早的soul聊天app是怎麼樣的 瀏覽:489
網路雲盤大小 瀏覽:420
去美國准備什麼app 瀏覽:461
米8如何復制u盤文件 瀏覽:523
導航的o文件是什麼 瀏覽:435
Re舊版本下載 瀏覽:416
電子血壓表怎麼讀數據 瀏覽:610
軟體開發和編程哪個前景好 瀏覽:30
手機保存圖片在相冊里找不到文件 瀏覽:42
xp桌面圖案保存哪個文件夾 瀏覽:136
dnf70版本紅眼 瀏覽:484
越來越不懂兩個版本 瀏覽:258
javabigdecimal位數 瀏覽:316
學好編程需要學哪些東西 瀏覽:186
概預算教程 瀏覽:893
90版本國服第一驅魔 瀏覽:436

友情鏈接