『壹』 目前國內的深度學習發展到什麼狀況了
深度學習的概念源於人工神經網路的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分布式特徵表示。[1]
『貳』 深度學習技術是是什麼及其發展現狀
簡單來說,機器學習是實現人工智慧的方法,深度學習是實現機器學習的技術。機器學習在實現人工智慧時中需要人工輔助(半自動),而深度學習使該過程完全自動化
三者關系:
舉個例子:通過機器學習演算法來識別水果是橘子還是蘋果,需要人工輸入水果的特徵數據,生成一定的演算法模型,進而可以准確預測具有這些特徵的水果的類型,而深度學習則能自動的去發現特徵進而判斷。
深度學習技術的發展現狀
其實咱們的實際生活中已經有很多應用深度學習技術的案例了。
比如電商行業,在瀏覽淘寶時,頁面中有很多都是符合你的愛好並且最近有意向購買的商品,這種個性化推薦中就涉及到深度學習技術,還有就是在購物界面能和你進行對話,解決疑問的淘寶智能機器人,也涉及深度學習技術。
比如交通領域,通過深度學習技術能監測到車輛停車、逆行等行為,甚至精確識別車輛的車牌號、顏色、車型、車輛里的人物等來輔助交通執法,甚至在發生交通事故和交通擁堵時進行報警等。
比如金融行業,銀行通過深度學習技術能對數以百萬的消費者數據(年齡,職業,婚姻狀況等)、金融借款和保險情況(是否有違約記錄,還款時間,車輛事故記錄等)進行分析進而判斷出是否能進行貸款服務。
比如家居行業,智能家居的應用也用到了深度學習技術,比如智能冰箱通過圖像識別等技術記錄食材種類和用戶日常飲食數據,進而分析用戶的飲食習慣,並根據多維度給出最全面的健康膳食建議。
比如製造行業,機器視覺已經長期應用在工業自動化系統中,如儀錶板智能集成測試、金屬板表面自動控傷、汽車車身檢測、紙幣印刷質量檢測、金相分析、流水線生產檢測等等,機器視覺自動化設備可以代替人工不知疲倦的進行重復性的工作,且在一些不適合於人工作業的危險工作環境或人工視覺難以滿足要求的場合,機器視覺可替代人工視覺。
還有教育行業、醫療行業等,深度學習技術已經滲透到各個行業和領域
『叄』 深度學習的職業發展方向有哪些
當前,人工智慧發展藉助深度學習技術突破得到了全面關注和助力推動,各國政府高度重視、資本熱潮仍在加碼,各界對其成為發展熱點也達成了共識。本文旨在分析深度學習技術現狀,研判深度學習發展趨勢,並針對我國的技術水平提出發展建議。
一、深度學習技術現狀
深度學習是本輪人工智慧爆發的關鍵技術。人工智慧技術在計算機視覺和自然語言處理等領域取得的突破性進展,使得人工智慧迎來新一輪爆發式發展。而深度學習是實現這些突破性進展的關鍵技術。其中,基於深度卷積網路的圖像分類技術已超過人眼的准確率,基於深度神經網路的語音識別技術已達到95%的准確率,基於深度神經網路的機器翻譯技術已接近人類的平均翻譯水平。准確率的大幅提升使得計算機視覺和自然語言處理進入產業化階段,帶來新產業的興起。
深度學習是大數據時代的演算法利器,成為近幾年的研究熱點。和傳統的機器學習演算法相比,深度學習技術有著兩方面的優勢。一是深度學習技術可隨著數據規模的增加不斷提升其性能,而傳統機器學習演算法難以利用海量數據持續提升其性能。二是深度學習技術可以從數據中直接提取特徵,削減了對每一個問題設計特徵提取器的工作,而傳統機器學習演算法需要人工提取特徵。因此,深度學習成為大數據時代的熱點技術,學術界和產業界都對深度學習展開了大量的研究和實踐工作。
深度學習各類模型全面賦能基礎應用。卷積神經網路和循環神經網路是兩類獲得廣泛應用的深度神經網路模型。計算機視覺和自然語言處理是人工智慧兩大基礎應用。卷積神經網路廣泛應用於計算機視覺領域,在圖像分類、目標檢測、語義分割等任務上的表現大大超越傳統方法。循環神經網路適合解決序列信息相關問題,已廣泛應用於自然語言處理領域,如語音識別、機器翻譯、對話系統等。
深度學習技術仍不完美,有待於進一步提升。一是深度神經網路的模型復雜度高,巨量的參數導致模型尺寸大,難以部署到移動終端設備。二是模型訓練所需的數據量大,而訓練數據樣本獲取、標注成本高,有些場景樣本難以獲取。三是應用門檻高,演算法建模及調參過程復雜繁瑣、演算法設計周期長、系統實施維護困難。四是缺乏因果推理能力,圖靈獎得主、貝葉斯網路之父Judea Pearl指出當前的深度學習不過只是「曲線擬合」。五是存在可解釋性問題,由於內部的參數共享和復雜的特徵抽取與組合,很難解釋模型到底學習到了什麼,但出於安全性考慮以及倫理和法律的需要,演算法的可解釋性又是十分必要的。因此,深度學習仍需解決以上問題。
二、深度學習發展趨勢
深度神經網路呈現層數越來越深,結構越來越復雜的發展趨勢。為了不斷提升深度神經網路的性能,業界從網路深度和網路結構兩方面持續進行探索。神經網路的層數已擴展到上百層甚至上千層,隨著網路層數的不斷加深,其學習效果也越來越好,2015年微軟提出的ResNet以152層的網路深度在圖像分類任務上准確率首次超過人眼。新的網路設計結構不斷被提出,使得神經網路的結構越來越復雜。如:2014年穀歌提出了Inception網路結構、2015年微軟提出了殘差網路結構、2016年黃高等人提出了密集連接網路結構,這些網路結構設計不斷提升了深度神經網路的性能。
深度神經網路節點功能不斷豐富。為了克服目前神經網路存在的局限性,業界探索並提出了新型神經網路節點,使得神經網路的功能越來越豐富。2017年,傑弗里辛頓提出了膠囊網路的概念,採用膠囊作為網路節點,理論上更接近人腦的行為,旨在克服卷積神經網路沒有空間分層和推理能力等局限性。2018年,DeepMind、谷歌大腦、MIT的學者聯合提出了圖網路的概念,定義了一類新的模塊,具有關系歸納偏置功能,旨在賦予深度學習因果推理的能力。
深度神經網路工程化應用技術不斷深化。深度神經網路模型大都具有上億的參數量和數百兆的佔用空間,運算量大,難以部署到智能手機、攝像頭和可穿戴設備等性能和資源受限的終端類設備。為了解決這個問題,業界採用模型壓縮技術降低模型參數量和尺寸,減少運算量。目前採用的模型壓縮方法包括對已訓練好的模型做修剪(如剪枝、權值共享和量化等)和設計更精細的模型(如MobileNet等)兩類。深度學習演算法建模及調參過程繁瑣,應用門檻高。為了降低深度學習的應用門檻,業界提出了自動化機器學習(AutoML)技術,可實現深度神經網路的自動化設計,簡化使用流程。
深度學習與多種機器學習技術不斷融合發展。深度學習與強化學習融合發展誕生的深度強化學習技術,結合了深度學習的感知能力和強化學習的決策能力,克服了強化學習只適用於狀態為離散且低維的缺陷,可直接從高維原始數據學習控制策略。為了降低深度神經網路模型訓練所需的數據量,業界引入了遷移學習的思想,從而誕生了深度遷移學習技術。遷移學習是指利用數據、任務或模型之間的相似性,將在舊領域學習過的模型,應用於新領域的一種學習過程。通過將訓練好的模型遷移到類似場景,實現只需少量的訓練數據就可以達到較好的效果。
三、未來發展建議
加強圖網路、深度強化學習以及生成式對抗網路等前沿技術研究。由於我國在深度學習領域缺乏重大原創性研究成果,基礎理論研究貢獻不足,如膠囊網路、圖網路等創新性、原創性概念是由美國專家提出,我國研究貢獻不足。在深度強化學習方面,目前最新的研究成果大都是由DeepMind和OpenAI等國外公司的研究人員提出,我國尚沒有突破性研究成果。近幾年的研究熱點生成式對抗網路(GAN)是由美國的研究人員Goodfellow提出,並且谷歌、facebook、twitter和蘋果等公司紛紛提出了各種改進和應用模型,有力推動了GAN技術的發展,而我國在這方面取得的研究成果較少。因此,應鼓勵科研院所及企業加強深度神經網路與因果推理模型結合、生成式對抗網路以及深度強化學習等前沿技術的研究,提出更多原創性研究成果,增強全球學術研究影響力。
加快自動化機器學習、模型壓縮等深度學習應用技術研究。依託國內的市場優勢和企業的成長優勢,針對具有我國特色的個性化應用需求,加快對深度學習應用技術的研究。加強對自動化機器學習、模型壓縮等技術的研究,加快深度學習的工程化落地應用。加強深度學習在計算機視覺領域應用研究,進一步提升目標識別等視覺任務的准確率,以及在實際應用場景中的性能。加強深度學習在自然語言處理領域的應用研究,提出性能更優的演算法模型,提升機器翻譯、對話系統等應用的性能。
來源:產業智能官
END
更多精彩內容請登錄http://www.innov100.com官方網站
往期精選▼
1. 飲鹿網2018-2019年中國人工智慧產業創新百強榜單發布!
2. 飲鹿網2018-2019年中國人工智慧產業Top20投資機構榜單發布!
3. 飲鹿網2018-2019年中國大數據產業創新百強榜單發布!
4. 飲鹿網2018-2019年中國大數據產業Top20投資機構榜單發布!
5. 飲鹿網2018-2019年中國物聯網產業創新百強榜單發布!
6. 飲鹿網2018-2019年中國5G與物聯網產業TOP20投資機構榜單發布!
7. 飲鹿網2018-2019年中國集成電路產業創新百強榜單發布!
8. 飲鹿網2018-2019年中國集成電路產業Top20投資機構榜單發布!
9. 飲鹿網2018-2019年中國企業服務產業創新百強榜單發布!
10. 飲鹿網2018-2019年中國企業服務產業TOP20投資機構榜單發布!
『肆』 深度學習的現狀和趨勢
論壇
活動
招聘
專題
打開CSDN APP
Copyright © 1999-2020, CSDN.NET, All Rights Reserved
搜索博文/帖子/用戶
登錄
喜歡打醬油的老鳥
關注
深度學習技術發展趨勢淺析 轉載
2019-04-09 08:37:11
1點贊
喜歡打醬油的老鳥
碼齡2年
關注
https://mp.weixin.qq.com/s/FtIhKiENv483iHE053RPkg
當前,人工智慧發展藉助深度學習技術突破得到了全面關注和助力推動,各國政府高度重視、資本熱潮仍在加碼,各界對其成為發展熱點也達成了共識。本文旨在分析深度學習技術現狀,研判深度學習發展趨勢,並針對我國的技術水平提出發展建議。
一、深度學習技術現狀
深度學習是本輪人工智慧爆發的關鍵技術。人工智慧技術在計算機視覺和自然語言處理等領域取得的突破性進展,使得人工智慧迎來新一輪爆發式發展。而深度學習是實現這些突破性進展的關鍵技術。其中,基於深度卷積網路的圖像分類技術已超過人眼的准確率,基於深度神經網路的語音識別技術已達到95%的准確率,基於深度神經網路的機器翻譯技術已接近人類的平均翻譯水平。准確率的大幅提升使得計算機視覺和自然語言處理進入產業化階段,帶來新產業的興起。
深度學習是大數據時代的演算法利器,成為近幾年的研究熱點。和傳統的機器學習演算法相比,深度學習技術有著兩方面的優勢。一是深度學習技術可隨著數據規模的增加不斷提升其性能,而傳統機器學習演算法難以利用海量數據持續提升其性能。二是深度學習技術可以從數據中直接提取特徵,削減了對每一個問題設計特徵提取器的工作,而傳統機器學習演算法需要人工提取特徵。因此,深度學習成為大數據時代的熱點技術,學術界和產業界都對深度學習展開了大量的研究和實踐工作。
深度學習各類模型全面賦能基礎應用。卷積神經網路和循環神經網路是兩類獲得廣泛應用的深度神經網路模型。計算機視覺和自然語言處理是人工智慧兩大基礎應用。卷積神經網路廣泛應用於計算機視覺領域,在圖像分類、目標檢測、語義分割等任務上的表現大大超越傳統方法。循環神經網路適合解決序列信息相關問題,已廣泛應用於自然語言處理領域,如語音識別、機器翻譯、對話系統等。
二、深度學習發展趨勢
深度神經網路呈現層數越來越深,結構越來越復雜的發展趨勢。為了不斷提升深度神經網路的性能,業界從網路深度和網路結構兩方面持續進行探索。神經網路的層數已擴展到上百層甚至上千層,隨著網路層數的不斷加深,其學習效果也越來越好,2015年微軟提出的ResNet以152層的網路深度在圖像分類任務上准確率首次超過人眼。新的網路設計結構不斷被提出,使得神經網路的結構越來越復雜。如:2014年穀歌提出了Inception網路結構、2015年微軟提出了殘差網路結構、2016年黃高等人提出了密集連接網路結構,這些網路結構設計不斷提升了深度神經網路的性能。
深度神經網路節點功能不斷豐富。為了克服目前神經網路存在的局限性,業界探索並提出了新型神經網路節點,使得神經網路的功能越來越豐富。2017年,傑弗里•辛頓提出了膠囊網路的概念,採用膠囊作為網路節點,理論上更接近人腦的行為,旨在克服卷積神經網路沒有空間分層和推理能力等局限性。2018年,DeepMind、谷歌大腦、MIT的學者聯合提出了圖網路的概念,定義了一類新的模塊,具有關系歸納偏置功能,旨在賦予深度學習因果推理的能力。
深度神經網路工程化應用技術不斷深化。深度神經網路模型大都具有上億的參數量和數百兆的佔用空間,運算量大,難以部署到智能手機、攝像頭和可穿戴設備等性能和資源受限的終端類設備。為了解決這個問題,業界採用模型壓縮技術降低模型參數量和尺寸,減少運算量。目前採用的模型壓縮方法包括對已訓練好的模型做修剪(如剪枝、權值共享和量化等)和設計更精細的模型(如MobileNet等)兩類。深度學習演算法建模及調參過程繁瑣,應用門檻高。為了降低深度學習的應用門檻,業界提出了自動化機器學習(AutoML)技術,可實現深度神經網路的自動化設計,簡化使用流程。
『伍』 深度學習未來的發展方向是什麼
目前的方向是在各行業應用
比如圖像領域,人臉識別,人體關鍵點檢測
比如自然語言處理,識別各種信息,生成文章
比如做翻譯,做預測 都越來越用到深度學習技術