『壹』 如何系統地自學 Python
是否非常想學好 Python,一方面被瑣事糾纏,一直沒能動手,另一方面,擔心學習成本太高,心裡默默敲著退堂鼓?
幸運的是,Python 是一門初學者友好的編程語言,想要完全掌握它,你不必花上太多的時間和精力。
Python 的設計哲學之一就是簡單易學,體現在兩個方面:
語法簡潔明了:相對 Ruby 和 Perl,它的語法特性不多不少,大多數都很簡單直接,不玩兒玄學。
切入點很多:Python 可以讓你可以做很多事情,科學計算和數據分析、爬蟲、Web 網站、游戲、命令行實用工具等等等等,總有一個是你感興趣並且願意投入時間的。
廢話不多說,學會一門語言的捷徑只有一個: Getting Started
¶ 起步階段
任何一種編程語言都包含兩個部分:硬知識和軟知識,起步階段的主要任務是掌握硬知識。
硬知識
「硬知識」指的是編程語言的語法、演算法和數據結構、編程範式等,例如:變數和類型、循環語句、分支、函數、類。這部分知識也是具有普適性的,看上去是掌握了一種語法,實際是建立了一種思維。例如:讓一個 Java 程序員去學習 Python,他可以很快的將 Java 中的學到的面向對象的知識 map 到 Python 中來,因此能夠快速掌握 Python 中面向對象的特性。
如果你是剛開始學習編程的新手,一本可靠的語法書是非常重要的。它看上去可能非常枯燥乏味,但對於建立穩固的編程思維是必不可少。
下面列出了一些適合初學者入門的教學材料:
廖雪峰的 Python 教程 Python 中文教程的翹楚,專為剛剛步入程序世界的小白打造。
笨方法學 Python 這本書在講解 Python 的語法成分時,還附帶大量可實踐的例子,非常適合快速起步。
The Hitchhiker』s Guide to Python! 這本指南著重於 Python 的最佳實踐,不管你是 Python 專家還是新手,都能獲得極大的幫助。
Python 的哲學:
學習也是一樣,雖然推薦了多種學習資料,但實際學習的時候,最好只選擇其中的一個,堅持看完。
必要的時候,可能需要閱讀講解數據結構和演算法的書,這些知識對於理解和使用 Python 中的對象模型有著很大的幫助。
軟知識
「軟知識」則是特定語言環境下的語法技巧、類庫的使用、IDE的選擇等等。這一部分,即使完全不了解不會使用,也不會妨礙你去編程,只不過寫出的程序,看上去顯得「傻」了些。
對這些知識的學習,取決於你嘗試解決的問題的領域和深度。對初學者而言,起步階段極易走火,或者在選擇 Python 版本時徘徊不決,一會兒看 2.7 一會兒又轉到 3.0,或者徜徉在類庫的大海中無法自拔,Scrapy,Numpy,Django 什麼都要試試,或者參與編輯器聖戰、大括弧縮進探究、操作系統辯論賽等無意義活動,或者整天跪舔語法糖,老想著怎麼一行代碼把所有的事情做完,或者去構想聖潔的性能安全通用性健壯性全部滿分的解決方案。
很多「大牛」都會告誡初學者,用這個用那個,少走彎路,這樣反而把初學者推向了真正的彎路。
還不如告訴初學者,學習本來就是個需要你去走彎路出 Bug,只能腳踏實地,沒有奇跡只有狗屎的過程。
選擇一個方向先走下去,哪怕臟丑差,走不動了再看看有沒有更好的解決途徑。
自己走了彎路,你才知道這么做的好處,才能理解為什麼人們可以手寫狀態機去匹配卻偏要發明正則表達式,為什麼面向過程可以解決卻偏要面向對象,為什麼我可以操縱每一根指針卻偏要自動管理內存,為什麼我可以嵌套回調卻偏要用 Promise...
更重要的是,你會明白,高層次的解決方法都是對低層次的封裝,並不是任何情況下都是最有效最合適的。
技術涌進就像波浪一樣,那些陳舊的封存已久的技術,消退了遲早還會涌回的。就像現在移動端應用、手游和 HTML5 的火熱,某些方面不正在重演過去 PC 的那些歷史么?
因此,不要擔心自己走錯路誤了終身,堅持並保持進步才是正道。
起步階段的核心任務是掌握硬知識,軟知識做適當了解,有了穩固的根,粗壯的枝幹,才能長出濃密的葉子,結出甜美的果實。
¶ 發展階段
完成了基礎知識的學習,必定會感到一陣空虛,懷疑這些語法知識是不是真的有用。
沒錯,你的懷疑是非常正確的。要讓 Python 發揮出它的價值,當然不能停留在語法層面。
發展階段的核心任務,就是「跳出 Python,擁抱世界」。
在你面前會有多個分支:科學計算和數據分析、爬蟲、Web 網站、游戲、命令行實用工具等等等等,這些都不是僅僅知道 Python 語法就能解決的問題。
拿爬蟲舉例,如果你對計算機網路,HTTP 協議,HTML,文本編碼,JSON 一無所知,你能做好這部分的工作么?而你在起步階段的基礎知識也同樣重要,如果你連循環遞歸怎麼寫都還要查文檔,連 BFS 都不知道怎麼實現,這就像工匠做石凳每次起錘都要思考錘子怎麼使用一樣,非常低效。
在這個階段,不可避免要接觸大量類庫,閱讀大量書籍的。
類庫方面
「Awesome Python 項目」:vinta/awesome-python · GitHub
這里列出了你在嘗試解決各種實際問題時,Python 社區已有的工具型類庫,如下圖所示:
vinta/awesome-python
你可以按照實際需求,尋找你需要的類庫。
至於相關類庫如何使用,必須掌握的技能便是閱讀文檔。由於開源社區大多數文檔都是英文寫成的,所以,英語不好的同學,需要惡補下。
書籍方面
這里我只列出一些我覺得比較有一些幫助的書籍,詳細的請看豆瓣的書評:
科學和數據分析:
❖「集體智慧編程」:集體智慧編程 (豆瓣)
❖「數學之美」:數學之美 (豆瓣)
❖「統計學習方法」:統計學習方法 (豆瓣)
❖「Pattern Recognition And Machine Learning」:Pattern Recognition And Machine Learning (豆瓣)
❖「數據科學實戰」:數據科學實戰 (豆瓣)
❖「數據檢索導論」:信息檢索導論 (豆瓣)
爬蟲:
❖「HTTP 權威指南」:HTTP權威指南 (豆瓣)
Web 網站:
❖「HTML & CSS 設計與構建網站」:HTML & CSS設計與構建網站 (豆瓣)
...
列到這里已經不需要繼續了。
聰明的你一定會發現上面的大部分書籍,並不是講 Python 的書,而更多的是專業知識。
事實上,這里所謂「跳出 Python,擁抱世界」,其實是發現 Python 和專業知識相結合,能夠解決很多實際問題。這個階段能走到什麼程度,更多的取決於自己的專業知識。
¶ 深入階段
這個階段的你,對 Python 幾乎了如指掌,那麼你一定知道 Python 是用 C 語言實現的。
可是 Python 對象的「動態特徵」是怎麼用相對底層,連自動內存管理都沒有的C語言實現的呢?這時候就不能停留在表面了,勇敢的拆開 Python 的黑盒子,深入到語言的內部,去看它的歷史,讀它的源碼,才能真正理解它的設計思路。
這里推薦一本書:
「Python 源碼剖析」:Python源碼剖析 (豆瓣)
這本書把 Python 源碼中最核心的部分,給出了詳細的闡釋,不過閱讀此書需要對 C 語言內存模型和指針有著很好的理解。
另外,Python 本身是一門雜糅多種範式的動態語言,也就是說,相對於 C 的過程式、 Haskell 等的函數式、Java 基於類的面向對象而言,它都不夠純粹。換而言之,編程語言的「道學」,在 Python 中只能有限的體悟。學習某種編程範式時,從那些面向這種範式更加純粹的語言出發,才能有更深刻的理解,也能了解到 Python 語言的根源。
這里推薦一門公開課
「編程範式」:斯坦福大學公開課:編程範式
講師高屋建瓴,從各種編程範式的代表語言出發,給出了每種編程範式最核心的思想。
值得一提的是,這門課程對C語言有非常深入的講解,例如C語言的范型和內存管理。這些知識,對閱讀 Python 源碼也有大有幫助。
Python 的許多最佳實踐都隱藏在那些眾所周知的框架和類庫中,例如 Django、Tornado 等等。在它們的源代碼中淘金,也是個不錯的選擇。
¶ 最後的話
每個人學編程的道路都是不一樣的,其實大都殊途同歸,沒有迷路的人只有不能堅持的人!
希望想學 Python 想學編程的同學,不要猶豫了,看完這篇文章,
Just Getting Started !!!
『貳』 TRIZ法簡明教程圖書目錄
TRIZ法簡明教程目錄概覽:
第1章,深入理解TRIZ法:
1.1 TRIZ法的起源與核心理念,闡述其理論基礎和問題分析工具的運用。
1.2 定義了TRIZ法的基本概念,包括其問題解決流程和科學思維的應用。
第2章,專利與系統進化分析:
2.1 專利等級的劃分,技術系統進化的S曲線介紹,包括系統進化和多維曲線的應用實例。
第3章,技術系統進化的模式探討:
3.1 技術系統與產品演化的基礎,深入解析八種主要的進化模式及其實際應用。
第4章,解決矛盾的TRIZ法原理:
4.1 介紹矛盾的分類,物理矛盾和技術矛盾的解決原理,以及技術矛盾矩陣的使用方法和實例。
第5章,物質-場模型詳解:
5.1 物質-場模型的介紹,包括其分析模式、描述和工作流程,以及實際應用案例。
第6章,ARIZ演算法的概覽:
6.1 ARIZ演算法的背景和主導思想,闡述其流程以及特色與局限性。
第7章,TRIZ法的歷史與未來發展:
7.1 回顧TRIZ法的誕生,追蹤其傳播和應用的演變,以及對TRIZ法的評價。
附錄部分提供了詳細的工具和資源,如技術矛盾矩陣表、標准解集和效應知識庫。
『叄』 matlab入門 有沒有推薦的書籍
《Matlab綜合教程》
MATLAB是美國MathWorks公司自20世紀80年代中期推出的數學軟體,優秀的數值計算能力和卓越的數據可視化能力使其很快在數學軟體中脫穎而出。到目前為止,其最高版本6.0版已經推出。隨著版本的不斷升級,它在數值計算及符號計算功能上得到了進一步完善。MATLAB已經發展成為多學科、多種工作平台的功能強大的大型軟體。在歐美等高校,MATLAB已經成為線性代數、自動控制理論、概率論及數理統計、數字信號處理、時間序列分析、動態系統模擬等高級課程的基本教學工具,是攻讀學位的大學生、碩士生、博士生必須掌握的基本技能。
MATLAB的主要特點是:
有高性能數值計算的高級演算法,特別適合矩陣代數領域;
有大量事先定義的數學函數,並且有很強的用戶自定義函數的能力;
有強大的繪圖功能以及具有教育、科學和藝術學的圖解和可視化的二維、三維圖;
基於HTML的完整的幫助功能;
適合個人應用的強有力的面向矩陣(向量)的高級程序設計語言;
與其它語言編寫的程序結合和輸入輸出格式化數據的能力;
有在多個應用領域解決難題的工具箱。
本教程提供了使用MATLAB的實踐性指導,它基於MATLAB6.0版,內容由淺入深,特別是本書對每一條命令的使用格式都作了詳細而又簡單明了的說明,並配備了例題加以說明其用法,因此,對於初學者自學是很有幫助的;同時,又對數學中的一些深入問題如數值分析、稀疏矩陣、優化理論以及模糊數學等問題進行了較為詳細的論述,因此,該書也可作為科技工作者的科學計算工具書。
本教程的具體特點是:
它是以簡明方法寫就的一本易於掌握的數學手冊;
編寫邏輯性強,內容由淺入深,對於初學者能很快掌握MATLAB的用法;
易於查找命令和問題,給讀者靈感與啟迪,以解決實際問題;
對每一條命令,都進行了詳細論述;
對於每一條命令,幾乎都有易懂的實例;
內容按數學分類進行描述。
本教程包括以下書籍:
★MATLAB6.0數學手冊
★MATLAB語言與控制系統模擬
★MatLab工程數學應用
★MATLAB命令大全
★MATLAB應用程序介面用戶指南
還有圖片上的都不錯
『肆』 有哪些 Python 經典書籍
《Python編程入門:從入門到實踐》
【同時使用Python 2.X和3.X講解】
Amazon編程入門類榜首圖書,最值得關注的Python入門書
從基本概念到完整項目開發,幫助零基礎讀者迅速掌握Python編程,開發實際項目
這本書分兩部分:
第一部分介紹用Python編程所必須了解的基本概念,包括matplotlib、NumPy和Pygal等強大的Python庫和工具介紹,以及列表、字典、if語句、類、文件與異常、代碼測試等內容;
第二部分將理論付諸實踐,講解如何開發三個項目,包括簡單的Python 2D游戲開發,如何利用數據生成互動式的信息圖,以及創建和定製簡單的Web應用,並幫讀者解決常見編程問題和困惑。
《Python基礎教程(第2版·修訂版)》
【Python 2.5講解,Python 3上也能運行】
各大網店最暢銷的Python入門書
全書分為三部分。
第一部分講述Python語法,沒有廢話,還摻入了一些Python 3.0要注意的細節。
第二部分介紹了常用的GUI、框架等應用,點到即止,算是為第三部分做鋪墊了,從數目眾多的應用中可以了解到Python的強大。
第三部分是Project,全書最大的亮點,大家肯定喜歡。
作者將前面講述的內容應用到10個引人入勝的項目中,並以模板的形式介紹了項目的開發過程,手把手教授Python開發。
《Python語言及其應用》
【Python 3.X】
語言風格輕松詼諧,講解多種Python工具和第三方庫
實例涉及商業、科研以及藝術領域使用Python開發各種應用
亞馬遜最受歡迎的Python編程書之一,評分4.5
書中首先介紹了Python的基礎知識,然後逐漸深入多種主題,結合教程和攻略式風格來講解Python 3中的概念。每章結尾的練習可以幫助你鞏固所學的知識。
本書會為你學習Python打下堅實的基礎,包括測試、調試、代碼復用的最佳實踐以及其他開發技巧。
《Python編程入門(第3版)》
【Python 3.X 】
從算術運算、字元串、變數,到函數、數據結構、輸入輸出和異常處理,應有盡有
《父與子的編程之旅:與小卡特一起學Python》
【Python 2.X 】
原版Amazon 最受歡迎的青少年編程圖書
最簡單易學的內容組織方式,老少皆宜
第一版獲Jolt大獎
本書中,Warren和Carter父子以親切的筆調、通俗的語言,透徹全面地介紹了計算機編程世界。
他們以簡單易學的Python語言為例,通過可愛的漫畫、有趣的例子,生動地介紹了變數、循環、輸入和輸出、數據結構以及圖形用戶界面等編程的基本概念。
只要懂得計算機的基本操作,如啟動程序、保存文件,任何人都可以跟隨本書,由簡入難,學會編寫程序,甚至製作游戲。
本書內容經過教育專家的評審,經過孩子的親身檢驗,並得到了家長的認可。
《編程導論》
【Python 2.7】
以麻省理工學院開放式課程(OpenCourseWare)中最受歡迎的計算機科學課程為基礎,旨在培養讀者的編程思維,使讀者擁有計算機科學家的視野
本書涵蓋了Python的大部分特性,重點介紹如何使用Python這門語言,共包含編程基礎、Python程序設計語言、理解計算的關鍵概念、計算問題的解決技術等四個方面。
本書將Python語言特性和編程方法貫穿全書,目的是幫助讀者在學習Python的同時掌握如何使用計算來解決有趣的問題。
《流暢的Python》
【兼顧Python 3和Python 2】
PSF研究員、知名PyCon演講者心血之作
Python核心開發人員擔綱技術審校
全面深入,對Python語言關鍵特性剖析到位
大量詳盡代碼示例,並附有主題相關高質量參考文獻和視頻鏈接
本書致力於幫助Python開發人員挖掘這門語言及相關程序庫的優秀特性,避免重復勞動,同時寫出簡潔、流暢、易讀、易維護,並且具有地道Python風格的代碼。本書尤其深入探討了Python語言的高級用法,涵蓋數據結構、Python風格的對象、並行與並發,以及元編程等不同的方面。
《Python項目開發實戰(第2版)》
【Python 2.7】
網羅Python項目開發中的流程,讓你的編程事半功倍
Python項目與封裝/團隊開發環境/問題驅動開發/源碼管理(Mercurial) Jenkins持續集成(CI)/環境搭建與部署的自動化(Ansible)/Django框架……
這是一本偏工程的圖書,沒怎麼講Python語言基礎知識,直接告訴你怎麼搭建開發環境,做好代碼管理和文檔管理以及缺陷管理等工作。
《Python網路編程攻略》
【Python 2.7】
可作為任何一門網路編程課程中培養實踐技能的補充材料
需要讀者對Python語言及TCP/IP等基本的網路概念有了解,但即使不精通也能通過本書理解相關概念
本書全面介紹了Python網路編程涉及的重要問題,包括網路編程、系統和網路管理、網路監控以及Web應用開發。作者通過70多篇攻略,清晰簡明地描述了各種網路任務和問題,提出了可用於多種場景的解決方案,並細致地分析了整個操作過程。
《Python網路編程(第3版)》
【Python 3.X】
涵蓋網路編程所有經典話題,提供大量代碼清單及示例
從應用開發角度介紹網路編程基本概念、模塊以及第三方庫
本書針對想要深入理解使用Python來解決網路相關問題或是構建網路應用程序的技術人員,結合實例講解了網路協議、網路數據及錯誤、電子郵件、伺服器架構和HTTP及Web應用程序等經典話題。
具體內容包括:全面介紹Python3中最新提供的SSL支持,非同步I/O循環的編寫,用Flask框架在Python代碼中配置URL,跨站腳本以及跨站請求偽造攻擊網站的原理及保護方法,等等。
《Python性能分析與優化》
【Python 2.X】
全面掌握Python代碼性能分析和優化方法
消除性能瓶頸,迅速改善程序性能
本書首先介紹什麼是性能分析,性能分析如何在項目開發周期中發揮作用,以及通過在項目中進行性能分析實踐能夠取得的效果。
緊接著介紹分析性能所需的核心工具(性能分析器和可視化性能分析器)。
然後介紹一系列性能優化技術,最後一章會介紹一個具有實際意義的優化案例。
《精通Python設計模式》
【Python 3.X】
用現實例子展示各模式的關鍵特性
16種基本設計模式,輕松解決軟體設計常見問題
本書分三部分,共16章介紹一些常用的設計模式。
第一部分介紹處理對象創建的設計模式,包括工廠模式、建造者模式、原型模式;
第二部分介紹處理一個系統中不同實體(類、對象等)之間關系的設計模式,包括外觀模式、享元模式等;
第三部分介紹處理系統實體之間通信的設計模式,包括責任鏈模式、觀察者模式等。
《Flask Web開發:基於Python的Web應用開發實戰》
【Python 2.7和3.3】
從安裝與環境設置講起,一步一步搭建伺服器端Web應用
全流程講解Web應用開發,給出最佳實踐
本書共分三部分,全面介紹如何基於Python微框架Flask進行Web開發。
第一部分是Flask簡介,介紹使用Flask框架及擴展開發Web程序的必備基礎知識。
第二部分則給出一個實例,真正帶領大家一步步開發完整的博客和社交應用Flasky,從而將前述知識融會貫通,付諸實踐。
第三部分介紹了發布應用之前必須考慮的事項,如單元測試策略、性能分析技術、Flask程序的部署方式等。
《Python Web開發:測試驅動方法》
【(Django、Selenium)相關部分使用Python 3.3講解】
亞馬遜4.8星評好書
實戰式TDD開發指南,使用Django等流行框架開發現代Web應用!
學習Django、Selenium、Git、jQuery和Mock,以及其他當前流行Web開發技術
「這本書很棒、很有趣,所講的全都是重點知識。如果有人想用Python做測試、學習Django或者想使用Selenium,我極力推薦這本書。要使開發者保持頭腦清醒,測試可謂至關重要。Harry完成了一項不可思議的工作,他不僅吸引了我們對測試的關注,而且還探索了切實可行的測試實踐方案。」
——Michael Foord,Python核心開發者,unittest維護者
《數據科學入門》
【Python 2.7】
Google數據科學家、軟體工程師Joel Grus作品
用Python從零開始講解數據科學的重量級讀本
數據科學、機器學習、模式識別領域必備
本書從零開始講解數據科學。
具體內容包括Python簡介,可視化數據,線性代數,統計,概率,假設與推斷,梯度下降法,如何獲取數據,k近鄰法,樸素貝葉斯演算法等。
作者藉助大量具體例子以及數據挖掘、統計學、機器學習等領域的重要概念,通過講解基礎數據科學工具和演算法實現,帶你快速跨入數據科學大門。
書中含大量數據科學領域的庫、框架、模塊和工具包。
《機器學習實戰》
【Python 2.7】
最暢銷機器學習圖書
介紹並實現機器學習的主流演算法
面向日常任務的高效實戰內容
全書通過精心編排的實例,切入日常工作任務,摒棄學術化語言,利用高效的可復用Python代碼來闡釋如何處理統計數據,進行數據分析及可視化。
通過各種實例,讀者可從中學會機器學習的核心演算法,並能將其運用於一些策略性任務中,如分類、預測、推薦。另外,還可用它們來實現一些更高級的功能,如匯總和簡化等。
《機器學習系統設計》
【Python 2.7及以上】
微軟Bing核心團隊成員推出
聚焦演算法編寫和編程方式
結合大量實例學會解決實際問題
本書將向讀者展示如何從原始數據中發現模式,首先從Python與機器學習的關系講起,再介紹一些庫,然後就開始基於數據集進行比較正式的項目開發了,涉及建模、推薦及改進,以及聲音與圖像處理。通過流行的開源庫,我們可以掌握如何高效處理文本、圖片和聲音。同時,讀者也能掌握如何評估、比較和選擇適用的機器學習技術。
《Python數據處理》
【Python 2.7】
將數據處理過程自動化!
全面掌握用Python進行爬蟲抓取以及數據清洗與分析的方法,輕松實現高效數據處理!
本書採用基於項目的方法,介紹用Python完成數據獲取、數據清洗、數據探索、數據呈現、數據規模化和自動化的過程。
主要內容包括:Python基礎知識,如何從CSV、Excel、XML、JSON和PDF文件中提取數據,如何獲取與存儲數據,各種數據清洗與分析技術,數據可視化方法,如何從網站和API中提取數據。
《Python數據分析基礎教程:NumPy學習指南(第2版)》
【Python 2.7】
NumPy中文入門教程,Python數據分析首選
從最基礎的知識講起,手把手帶你進入大數據挖掘領域
囊括大量具有啟發性與實用價值的實戰案例
本書從NumPy安裝講起,逐漸過渡到數組對象、常用函數、矩陣運算、線性代數、金融函數、窗函數、質量控制等內容,致力於向初中級Python編程人員全面講述NumPy及其使用。
另外,通過書中豐富的示例,你還將學會Matplotlib繪圖,並結合使用其他Python科學計算庫(如SciPy和Scikits),讓工作更有成效,讓代碼更加簡潔而高效。
《Python數據挖掘入門與實踐》
【Python 3.4】
全面釋放Python的數據分析能力
掌握大數據時代核心技術,輕松入門數據挖掘技術並將其應用於實際項目
本書使用簡單易學且擁有豐富第三方庫和良好社區氛圍的Python語言,由淺入深,以真實數據作為研究對象,真刀實槍地向讀者介紹Python數據挖掘的實現方法。通過本書,讀者將邁入數據挖掘的殿堂,透徹理解數據挖掘基礎知識,掌握解決數據挖掘實際問題的最佳實踐!
《Python科學計算基礎教程》
【Python 2.7及以上】
精彩案例展示Numpy等科學計算模塊的強大功能和廣泛應用
剖析Python關於並行與大數據計算的方法
總結科學計算的任務、難點以及最佳實踐經驗
本書是將Python用於科學計算的實用指南,既介紹了相關的基礎知識,又提供了豐富的精彩案例,並為讀者總結了最佳實踐經驗。
其主要內容包括:科學計算的基本概念與選擇Python的理由,科學工作流和科學計算的結構,科學項目相關數據的各個方面,用於科學計算的API和工具包,如何利用Python的NumPy和SciPy包完成數值計算,用Python做符號計算,數據分析與可視化,並行與大規模計算,等等。
《Python數據分析實戰》
【Python 2.X】
了解Python在信息處理、管理和檢索方面的強大功能
學會如何利用Python及其衍生工具處理、分析數據
三個真實Python數據分析案例,將理論付諸實踐
《Python數據分析實戰》展示了如何利用Python 語言的強大功能,以最小的編程代價進行數據的提取、處理和分析,主要內容包括:數據分析和Python 的基本介紹,NumPy 庫,pandas 庫,如何使用pandas 讀寫和提取數據,用matplotlib 庫和scikit-learn 庫分別實現數據可視化和機器學習,以實例演示如何從原始數據獲得信息、D3 庫嵌入和手寫體數字的識別。
《Python網路數據採集》
【Python 3.X】
原書4.6星好評,一本書搞定數據採集
涵蓋數據抓取、數據挖掘和數據分析
提供詳細代碼示例,快速解決實際問題
本書介紹網路數據採集,並為採集新式網路中的各種數據類型提供了全面的指導。
第一部分重點介紹網路數據採集的基本原理:如何用Python從網路伺服器請求信息,如何對伺服器的響應進行基本處理,以及如何以自動化手段與網站進行交互。
第二部分介紹如何用網路爬蟲測試網站,自動化處理,以及如何通過更多的方式接入網路。
《Python計算機視覺編程》
【Python 2.6及以上】
亞馬遜計算機視覺類圖書No.1
詳細剖析多種計算機視覺工具
大量示例極易上手
本書是計算機視覺編程的權威實踐指南,通過Python語言講解了基礎理論與演算法,並通過大量示例細致分析了對象識別、基於內容的圖像搜索、光學字元識別、光流法、跟蹤、3D重建、立體成像、增強現實、姿態估計、全景創建、圖像分割、降噪、圖像分組等技術。