導航:首頁 > 文件教程 > bdev偽文件系統

bdev偽文件系統

發布時間:2023-08-27 11:33:53

❶ Ubuntu編譯了新的內核,進入新內核時一直顯示載入linux 5.6.7,載入初始化內存檔咋回事

概述====1)當內核配置了內存檔時, 內核在初始化時可以將軟盤載入到內存檔中作為根盤.當同時配置了初始化內存檔(Initail RAM Disk)時, 內核在初始化時可以在安裝主盤之前,通過引導程序所載入的initrd文件建立一個內存初始化盤, 首先將它安裝成根文件系統, 然後執行其根目錄下的linuxrc 文件,可用於在安裝主盤之前載入一些內核模塊. 等到linuxrc 程序退出後, 再將主盤安裝成根文件系統,並將內存初始化盤轉移安裝到其/initrd目錄下.2)當主盤就是initrd所生成的內存初始化盤時, 不再進行重新安裝,在DOS下用loadlin載入的搶救盤就是這種工作方式.3)引導程序所載入的initrd為文件系統的映象文件, 可以是gzip壓縮的, 也可以是不壓縮的.能夠識別的文件系統有minix,ext2,romfs三種.4)當內核的根盤為軟盤時,內核初始化時會測試軟盤的指定部位是否存在文件系統或壓縮文件映象, 然後將之載入或解壓到內存檔中作為根盤. 這是單張搶救軟盤的工作方式.有關代碼========; init/main.c#ifdef CONFIG_BLK_DEV_INITRDkdev_t real_root_dev; 啟動參數所設定的根盤設備#endifasmlinkage void __init start_kernel(void){ char * command_line; unsigned long mempages; extern char saved_command_line[]; lock_kernel(); printk(linux_banner); setup_arch(&command_line);arch/i386/kernel/setup.c中,初始化initrd_start和initrd_end兩個變數 ...#ifdef CONFIG_BLK_DEV_INITRD if (initrd_start && !initrd_below_start_ok && initrd_start < min_low_pfn << PAGE_SHIFT) { ; min_low_pfn為內核末端_end所開始的物理頁號,initrd_start,initrd_end在rd.c中定義 printk(KERN_CRIT "initrd overwritten (0x%08lx < 0x%08lx) - " "disabling it./n",initrd_start,min_low_pfn << PAGE_SHIFT); initrd_start = 0; }#endif ... kernel_thread(init, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); 創建init進程 unlock_kernel(); current->need_resched = 1; cpu_idle();}static int init(void * unused){ lock_kernel(); do_basic_setup(); /* * Ok, we have completed the initial bootup, and * we're essentially up and running. Get rid of the * initmem segments and start the user-mode stuff.. */ free_initmem(); unlock_kernel(); if (open("/dev/console", O_RDWR, 0) < 0) printk("Warning: unable to open an initial console./n"); (void) p(0); (void) p(0); /* * We try each of these until one succeeds. * * The Bourne shell can be used instead of init if we are * trying to recover a really broken machine. */ if (execute_command) execve(execute_command,argv_init,envp_init); execve("/sbin/init",argv_init,envp_init); execve("/etc/init",argv_init,envp_init); execve("/bin/init",argv_init,envp_init); execve("/bin/sh",argv_init,envp_init); panic("No init found. Try passing init= option to kernel.");}static void __init do_basic_setup(void){#ifdef CONFIG_BLK_DEV_INITRD int real_root_mountflags;#endif ...#ifdef CONFIG_BLK_DEV_INITRD real_root_dev = ROOT_DEV; ROOT_DEV為所請求根文件系統的塊設備 real_root_mountflags = root_mountflags; if (initrd_start && mount_initrd) root_mountflags &= ~MS_RDONLY; else mount_initrd =0; #endif start_context_thread(); do_initcalls(); 會調用partition_setup()中載入內存檔 /* .. filesystems .. */ filesystem_setup(); /* Mount the root filesystem.. */ mount_root(); mount_devfs_fs ();#ifdef CONFIG_BLK_DEV_INITRD root_mountflags = real_root_mountflags; if (mount_initrd && ROOT_DEV != real_root_dev && MAJOR(ROOT_DEV) == RAMDISK_MAJOR && MINOR(ROOT_DEV) == 0) { ; 如果當前根盤為initrd所建立的內存檔 int error; int i, pid; pid = kernel_thread(do_linuxrc, "/linuxrc", SIGCHLD); 創建新的任務去執行程序/linuxrc if (pid>0) while (pid != wait(&i)); 等待linuxrc進程退出 if (MAJOR(real_root_dev) != RAMDISK_MAJOR || MINOR(real_root_dev) != 0) { ; 如果原來的根盤不是0號內存檔,則使用原來的根文件系統, ; 並且將內存檔轉移到其/initrd目錄下 error = change_root(real_root_dev,"/initrd"); if (error) printk(KERN_ERR "Change root to /initrd: " "error %d/n",error); } }#endif}#ifdef CONFIG_BLK_DEV_INITRDstatic int do_linuxrc(void * shell){ static char *argv[] = { "linuxrc", NULL, }; close(0);close(1);close(2); setsid(); 設置新的session號 (void) open("/dev/console",O_RDWR,0); (void) p(0); (void) p(0); return execve(shell, argv, envp_init);}#endif; arch/i386/kernel/setup.c#define RAMDISK_IMAGE_START_MASK 0x07FF#define RAMDISK_PROMPT_FLAG 0x8000#define RAMDISK_LOAD_FLAG 0x4000 #define PARAM ((unsigned char *)empty_zero_page)#define RAMDISK_FLAGS (*(unsigned short *) (PARAM+0x1F8)) 可用rdev設置的參數#define LOADER_TYPE (*(unsigned char *) (PARAM+0x210))#define INITRD_START (*(unsigned long *) (PARAM+0x218)) 初始化盤映象起始物理地址#define INITRD_SIZE (*(unsigned long *) (PARAM+0x21c)) 初始化盤位元組數void __init setup_arch(char **cmdline_p){ ...#ifdef CONFIG_BLK_DEV_RAM rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; 以塊為單位 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);#endif ...#ifdef CONFIG_BLK_DEV_INITRD if (LOADER_TYPE && INITRD_START) { if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { ; max_low_pfn表示內核空間1G范圍以下最大允許的物理頁號 reserve_bootmem(INITRD_START, INITRD_SIZE); initrd_start = INITRD_START ? INITRD_START + PAGE_OFFSET : 0; 轉變為內核邏輯地址 initrd_end = initrd_start+INITRD_SIZE; } else { printk("initrd extends beyond end of memory " "(0x%08lx > 0x%08lx)/ndisabling initrd/n", INITRD_START + INITRD_SIZE, max_low_pfn << PAGE_SHIFT); initrd_start = 0; } }#endif ...}; fs/partitions/check.c:int __init partition_setup(void){ device_init(); 包含ramdisk設備的初始化#ifdef CONFIG_BLK_DEV_RAM#ifdef CONFIG_BLK_DEV_INITRD if (initrd_start && mount_initrd) initrd_load(); ;如果啟動時載入了initrd文件,則用它去初始化根內存檔 else#endif rd_load(); 如果內核配置了內存檔並且根盤指定為軟盤則試圖將軟盤載入為根內存檔#endif return 0;}__initcall(partition_setup);; drivers/block/rd.c:int rd_doload; /* 1 = load RAM disk, 0 = don't load */int rd_prompt = 1; /* 1 = prompt for RAM disk, 0 = don't prompt */int rd_image_start; /* starting block # of image */#ifdef CONFIG_BLK_DEV_INITRDunsigned long initrd_start, initrd_end;int mount_initrd = 1; /* zero if initrd should not be mounted */int initrd_below_start_ok;void __init rd_load(void){ rd_load_disk(0); 載入到0號內存檔}void __init rd_load_secondary(void){ rd_load_disk(1); 載入到1號內存檔}static void __init rd_load_disk(int n){#ifdef CONFIG_BLK_DEV_INITRD extern kdev_t real_root_dev;#endif if (rd_doload == 0) return; if (MAJOR(ROOT_DEV) != FLOPPY_MAJOR 如果根盤是不軟盤#ifdef CONFIG_BLK_DEV_INITRD && MAJOR(real_root_dev) != FLOPPY_MAJOR#endif ) return; if (rd_prompt) {#ifdef CONFIG_BLK_DEV_FD floppy_eject();#endif#ifdef CONFIG_MAC_FLOPPY if(MAJOR(ROOT_DEV) == FLOPPY_MAJOR) swim3_fd_eject(MINOR(ROOT_DEV)); else if(MAJOR(real_root_dev) == FLOPPY_MAJOR) swim3_fd_eject(MINOR(real_root_dev));#endif printk(KERN_NOTICE "VFS: Insert root floppy disk to be loaded into RAM disk and press ENTER/n"); wait_for_keypress(); } rd_load_image(ROOT_DEV,rd_image_start, n); 將根軟盤載入到n號內存檔}void __init initrd_load(void){ ; 使用initrd設備盤作為源盤去建立內存根盤 rd_load_image(MKDEV(MAJOR_NR, INITRD_MINOR),rd_image_start,0);}static void __init rd_load_image(kdev_t device, int offset, int unit){ struct inode *inode, *out_inode; struct file infile, outfile; struct dentry in_dentry, out_dentry; mm_segment_t fs; kdev_t ram_device; int nblocks, i; char *buf; unsigned short rotate = 0; unsigned short devblocks = 0; char rotator[4] = { '|' , '/' , '-' , '//' }; ram_device = MKDEV(MAJOR_NR, unit); 建立輸出內存檔設備號 if ((inode = get_empty_inode()) == NULL) return; memset(&infile, 0, sizeof(infile)); memset(&in_dentry, 0, sizeof(in_dentry)); infile.f_mode = 1; /* read only */ infile.f_dentry = &in_dentry; in_dentry.d_inode = inode; infile.f_op = &def_blk_fops; init_special_inode(inode, S_IFBLK | S_IRUSR, kdev_t_to_nr(device)); if ((out_inode = get_empty_inode()) == NULL) goto free_inode; memset(&outfile, 0, sizeof(outfile)); memset(&out_dentry, 0, sizeof(out_dentry)); outfile.f_mode = 3; /* read/write */ outfile.f_dentry = &out_dentry; out_dentry.d_inode = out_inode; outfile.f_op = &def_blk_fops; init_special_inode(out_inode, S_IFBLK | S_IRUSR | S_IWUSR, kdev_t_to_nr(ram_device)); if (blkdev_open(inode, &infile) != 0) 打開輸入盤文件 goto free_inode; if (blkdev_open(out_inode, &outfile) != 0) 打開輸出內存檔文件 goto free_inodes; fs = get_fs(); set_fs(KERNEL_DS); nblocks = identify_ramdisk_image(device, &infile, offset); 鑒定輸入盤的文件類型 if (nblocks < 0) 出錯 goto done; if (nblocks == 0) { 表示輸入盤是gzip文件#ifdef BUILD_CRAMDISK if (crd_load(&infile, &outfile) == 0) 將輸入盤文件解壓到輸出盤文件中去 goto successful_load;#else printk(KERN_NOTICE "RAMDISK: Kernel does not support compressed " "RAM disk images/n");#endif goto done; } /* * NOTE NOTE: nblocks suppose that the blocksize is BLOCK_SIZE, so * rd_load_image will work only with filesystem BLOCK_SIZE wide! * So make sure to use 1k blocksize while generating ext2fs * ramdisk-images. */ if (nblocks > (rd_length[unit] >> BLOCK_SIZE_BITS)) { ; 如果輸入盤的尺寸超過了輸出內存檔的允許尺寸 printk("RAMDISK: image too big! (%d/%ld blocks)/n", nblocks, rd_length[unit] >> BLOCK_SIZE_BITS); goto done; } /* * OK, time to in the data */ buf = kmalloc(BLOCK_SIZE, GFP_KERNEL); if (buf == 0) { printk(KERN_ERR "RAMDISK: could not allocate buffer/n"); goto done; } if (blk_size[MAJOR(device)]) devblocks = blk_size[MAJOR(device)][MINOR(device)]; 取輸入盤的容量#ifdef CONFIG_BLK_DEV_INITRD if (MAJOR(device) == MAJOR_NR && MINOR(device) == INITRD_MINOR) devblocks = nblocks; 如果輸入是初始化內存檔,則盤的容量為它的實際尺寸#endif if (devblocks == 0) { printk(KERN_ERR "RAMDISK: could not determine device size/n"); goto done; } printk(KERN_NOTICE "RAMDISK: Loading %d blocks [%d disk%s] into ram disk... ", nblocks, ((nblocks-1)/devblocks)+1, nblocks>devblocks ? "s" : ""); for (i=0; i < nblocks; i++) { if (i && (i % devblocks == 0)) { printk("done disk #%d./n", i/devblocks); rotate = 0; invalidate_buffers(device); 使輸入盤設備緩沖區無效 if (infile.f_op->release) infile.f_op->release(inode, &infile); printk("Please insert disk #%d and press ENTER/n", i/devblocks+1); wait_for_keypress(); if (blkdev_open(inode, &infile) != 0) { printk("Error opening disk./n"); goto done; } infile.f_pos = 0; printk("Loading disk #%d... ", i/devblocks+1); } infile.f_op->read(&infile, buf, BLOCK_SIZE, &infile.f_pos); outfile.f_op->write(&outfile, buf, BLOCK_SIZE, &outfile.f_pos);#if !defined(CONFIG_ARCH_S390) if (!(i % 16)) { printk("%c/b", rotator[rotate & 0x3]); rotate++; }#endif } printk("done./n"); kfree(buf);successful_load: invalidate_buffers(device); ROOT_DEV = MKDEV(MAJOR_NR, unit); 將根盤設備設置為當前載入的內存檔 if (ROOT_DEVICE_NAME != NULL) strcpy (ROOT_DEVICE_NAME, "rd/0");done: if (infile.f_op->release) infile.f_op->release(inode, &infile); set_fs(fs); return;free_inodes: /* free inodes on error */ iput(out_inode); blkdev_put(inode->i_bdev, BDEV_FILE);free_inode: iput(inode);}int __init identify_ramdisk_image(kdev_t device, struct file *fp, int start_block){ const int size = 512; struct minix_super_block *minixsb; struct ext2_super_block *ext2sb; struct romfs_super_block *romfsb; int nblocks = -1; unsigned char *buf; buf = kmalloc(size, GFP_KERNEL); if (buf == 0) return -1; minixsb = (struct minix_super_block *) buf; ext2sb = (struct ext2_super_block *) buf; romfsb = (struct romfs_super_block *) buf; memset(buf, 0xe5, size); /* * Read block 0 to test for gzipped kernel */ if (fp->f_op->llseek) fp->f_op->llseek(fp, start_block * BLOCK_SIZE, 0); fp->f_pos = start_block * BLOCK_SIZE; fp->f_op->read(fp, buf, size, &fp->f_pos); ; 讀取offset開始的512位元組 /* * If it matches the gzip magic numbers, return -1 */ if (buf[0] == 037 && ((buf[1] == 0213) || (buf[1] == 0236))) { printk(KERN_NOTICE "RAMDISK: Compressed image found at block %d/n", start_block); nblocks = 0; goto done; } /* romfs is at block zero too */ if (romfsb->word0 == ROMSB_WORD0 && romfsb->word1 == ROMSB_WORD1) { printk(KERN_NOTICE "RAMDISK: romfs filesystem found at block %d/n", start_block); nblocks = (ntohl(romfsb->size)+BLOCK_SIZE-1)>>BLOCK_SIZE_BITS; goto done; } /* * Read block 1 to test for minix and ext2 superblock */ if (fp->f_op->llseek) fp->f_op->llseek(fp, (start_block+1) * BLOCK_SIZE, 0); fp->f_pos = (start_block+1) * BLOCK_SIZE; fp->f_op->read(fp, buf, size, &fp->f_pos); /* Try minix */ if (minixsb->s_magic == MINIX_SUPER_MAGIC || minixsb->s_magic == MINIX_SUPER_MAGIC2) { printk(KERN_NOTICE "RAMDISK: Minix filesystem found at block %d/n", start_block); nblocks = minixsb->s_nzones << minixsb->s_log_zone_size; goto done; } /* Try ext2 */ if (ext2sb->s_magic == cpu_to_le16(EXT2_SUPER_MAGIC)) { printk(KERN_NOTICE "RAMDISK: ext2 filesystem found at block %d/n", start_block); nblocks = le32_to_cpu(ext2sb->s_blocks_count); goto done; } printk(KERN_NOTICE "RAMDISK: Couldn't find valid RAM disk image starting at %d./n", start_block);done: if (fp->f_op->llseek) fp->f_op->llseek(fp, start_block * BLOCK_SIZE, 0); fp->f_pos = start_block * BLOCK_SIZE; kfree(buf); return nblocks;}; fs/super.cvoid __init mount_root(void){ struct file_system_type * fs_type; struct super_block * sb; struct vfsmount *vfsmnt; struct block_device *bdev = NULL; mode_t mode; int retval; void *handle; char path[64]; int path_start = -1;#ifdef CONFIG_BLK_DEV_FD if (MAJOR(ROOT_DEV) == FLOPPY_MAJOR) { 當根盤還是軟盤,表示沒有載入過內存檔#ifdef CONFIG_BLK_DEV_RAM extern int rd_doload; extern void rd_load_secondary(void);#endif floppy_eject();#ifndef CONFIG_BLK_DEV_RAM printk(KERN_NOTICE "(Warning, this kernel has no ramdisk support)/n");#else /* rd_doload is 2 for a al initrd/ramload setup */ ; 只有當載入了initrd但沒有釋放到內存檔中(mount_inird=0)才有可能到這一步 if(rd_doload==2) rd_load_secondary(); 載入另一張軟盤到1號內存檔作為根盤 else#endif { printk(KERN_NOTICE "VFS: Insert root floppy and press ENTER/n"); wait_for_keypress(); } }#endif devfs_make_root (root_device_name); handle = devfs_find_handle (NULL, ROOT_DEVICE_NAME, MAJOR (ROOT_DEV), MINOR (ROOT_DEV), DEVFS_SPECIAL_BLK, 1); if (handle) /* Sigh: bd*() functions only paper over the cracks */ { unsigned major, minor; devfs_get_maj_min (handle, &major, &minor); ROOT_DEV = MKDEV (major, minor); } /* * Probably pure paranoia, but I'm less than happy about delving into * devfs crap and checking it right now. Later. */ if (!ROOT_DEV) panic("I have no root and I want to scream"); bdev = bdget(kdev_t_to_nr(ROOT_DEV)); if (!bdev) panic(__FUNCTION__ ": unable to allocate root device"); bdev->bd_op = devfs_get_ops (handle); path_start = devfs_generate_path (handle, path + 5, sizeof (path) - 5); mode = FMODE_READ; if (!(root_mountflags & MS_RDONLY)) mode |= FMODE_WRITE; retval = blkdev_get(bdev, mode, 0, BDEV_FS); if (retval == -EROFS) { root_mountflags |= MS_RDONLY; retval = blkdev_get(bdev, FMODE_READ, 0, BDEV_FS); } if (retval) { /* * Allow the user to distinguish between failed open * and bad superblock on root device. */ printk ("VFS: Cannot open root device /"%s/" or %s/n", root_device_name, kdevname (ROOT_DEV)); printk ("Please append a correct /"root=/" boot option/n"); panic("VFS: Unable to mount root fs on %s", kdevname(ROOT_DEV)); } check_disk_change(ROOT_DEV); sb = get_super(ROOT_DEV); 取根盤的超級塊 if (sb) { fs_type = sb->s_type; goto mount_it; } read_lock(&file_systems_lock); for (fs_type = file_systems ; fs_type ; fs_type = fs_type->next) { if (!(fs_type->fs_flags & FS_REQUIRES_DEV)) continue; 根文件系統必須依賴於塊設備 if (!try_inc_mod_count(fs_type->owner)) continue; 當文件系統模塊正在刪除過程中 read_unlock(&file_systems_lock); sb = read_super(ROOT_DEV,bdev,fs_type,root_mountflags,NULL,1);建立根盤的超級塊結構 if (sb) goto mount_it; read_lock(&file_systems_lock); put_filesystem(fs_type); 釋放對文件系統模塊的引用 } read_unlock(&file_systems_lock); panic("VFS: Unable to mount root fs on %s", kdevname(ROOT_DEV));mount_it: printk ("VFS: Mounted root (%s filesystem)%s./n", fs_type->name, (sb->s_flags & MS_RDONLY) ? " readonly" : ""); if (path_start >= 0) { devfs_mk_symlink (NULL, "root", DEVFS_FL_DEFAULT, path + 5 + path_start, NULL, NULL); memcpy (path + path_start, "/dev/", 5); vfsmnt = add_vfsmnt(NULL, sb->s_root, path + path_start); } else vfsmnt = add_vfsmnt(NULL, sb->s_root, "/dev/root"); 建立根盤的安裝結構 /* FIXME: if something will try to umount us right now... */ if (vfsmnt) { set_fs_root(current->fs, vfsmnt, sb->s_root); 設置當前進程的根盤和根目錄 set_fs_pwd(current->fs, vfsmnt, sb->s_root); 設置當前進程的當前盤和當前目錄 if (bdev) bdput(bdev); /* sb holds a reference */ return; } panic("VFS: add_vfsmnt failed for root fs");}#ifdef CONFIG_BLK_DEV_INITRDint __init change_root(kdev_t new_root_dev,const char *put_old){ 以new_root_dev作為根盤重新安裝根文件系統,原來的根轉移到put_old目錄下 struct vfsmount *old_rootmnt; struct nameidata devfs_nd, nd; int error = 0; read_lock(¤t->fs->lock); old_rootmnt = mntget(current->fs->rootmnt); 取當前進程的根盤安裝結構 read_unlock(¤t->fs->lock); /* First unmount devfs if mounted */ if (path_init("/dev", LOOKUP_FOLLOW|LOOKUP_POSITIVE, &devfs_nd)) error = path_walk("/dev", &devfs_nd); if (!error) { if (devfs_nd.mnt->mnt_sb->s_magic == DEVFS_SUPER_MAGIC && devfs_nd.dentry == devfs_nd.mnt->mnt_root) { dput(devfs_nd.dentry); down(&mount_sem); /* puts devfs_nd.mnt */ do_umount(devfs_nd.mnt, 0, 0); up(&mount_sem); } else path_release(&devfs_nd); } ROOT_DEV = new_root_dev; mount_root(); 改變根盤設備重新安裝根文件系統#if 1 shrink_dcache(); 清除目錄項緩沖中所有自由的目錄項 printk("change_root: old root has d_count=%d/n", atomic_read(&old_rootmnt->mnt_root->d_count));#endif mount_devfs_fs (); /* * Get the new mount directory */ error = 0; if (path_init(put_old, LOOKUP_FOLLOW|LOOKUP_POSITIVE|LOOKUP_DIRECTORY, &nd)) error = path_walk(put_old, &nd); 在新的根盤中尋找put_old目錄 if (error) { int blivet; printk(KERN_NOTICE "Trying to unmount old root ... "); blivet = do_umount(old_rootmnt, 1, 0); 卸載原始的根盤 if (!blivet) { printk("okay/n"); return 0; } printk(KERN_ERR "error %d/n", blivet); return error; } /* FIXME: we should hold i_zombie on nd.dentry */ move_vfsmnt(old_rootmnt, nd.dentry, nd.mnt, "/dev/root.old"); mntput(old_rootmnt); path_release(&nd); return 0;}#endifstatic struct vfsmount *add_vfsmnt(struct nameidata *nd, 在虛擬文件系統中的安裝點 struct dentry *root, 安裝盤的根目錄項 const char *dev_name) 安裝盤名稱{ struct vfsmount *mnt;
————————————————
版權聲明:本文為CSDN博主「huanghaibin」的原創文章,遵循 CC 4.0 BY-SA 版權協議,轉載請附上原文出處鏈接及本聲明。
原文鏈接:https://blog.csdn.net/huanghaibin/java/article/details/478215

❷ 嵌入式系統Linux內核開發實戰指南的目錄

第1部分 嵌入式系統硬體開發
第1章 嵌入式系統概述 2
這一章對嵌入式系統的概念及其特點和應用作了概括介紹,筆者根據自己多年的經驗闡述了對嵌入式系統的理解,並對一些常見的嵌入式處理器的硬體數據進行了比較。
1.1 嵌入式系統概念 2
1.2 嵌入式處理器 3
1.3 嵌入式系統應用 4
1.4 嵌入式系統發展 4
1.5 一些嵌入式處理器的硬體特性比較 5
第2章 ARM處理器概述 16
為了使本書內容完整,從第2章到第7章中的內容大部分是筆者閱讀《ARM體系結構與編程》(詳情參見附錄中的參考文獻)的筆記和心得,把與嵌入式系統開發和Linux內核密切相關的硬體知識進行了概括和整理,本章主要介紹了ARM處理器的特點、ARM處理器的體系架構版本和ARM處理器系列。
2.1 ARM發展歷程 16
2.2 ARM處理器特點 17
2.3 ARM處理器應用 17
2.4 ARM體系架構 18
2.4.1 ARM體系架構版本 18
2.4.2 ARM體系架構變種(Variant) 20
2.4.3 ARM體系架構版本命名格式 22
2.5 ARM處理器 22
2.5.1 ARM7系列處理器 23
2.5.2 ARM9系列處理器 24
2.5.3 ARM9E系列處理器 24
2.5.4 ARM10E系列處理器 25
2.5.5 SecurCore系列處理器 25
2.5.6 StrongARM處理器 26
2.5.7 Xscale處理器 26
第3章 ARM指令及其定址方式 27
本章主要介紹了ARM處理器的指令和定址方式以及ARM匯編偽指令,這是做ARM處理器應用系統底層軟體開發必備的知識。
3.1 ARM處理器的程序狀態寄存器(PSR) 27
3.2 ARM指令的條件碼 28
3.3 ARM指令介紹 29
3.3.1 跳轉指令 29
3.3.2 數據處理指令 30
3.3.3 乘法指令 31
3.3.4 雜類算術指令 32
3.3.5 狀態寄存器訪問指令 32
3.3.6 Load/Store內存訪問指令 33
3.3.7 批量Load/Store內存訪問指令 34
3.3.8 LDREX和STREX指令 35
3.3.9 信號量操作指令 37
3.3.10 異常中斷產生指令 37
3.3.11 ARM協處理器指令 37
3.4 ARM指令定址方式 39
3.4.1 數據處理指令的操作數的定址方式 39
3.4.2 字及無符號位元組的Load/Store指令的定址方式 43
3.4.3 雜類Load/Store指令的定址方式 47
3.4.4 批量Load/Store指令的定址方式 49
3.4.5 協處理器Load/Store指令的定址方式 51
3.4.6 ARM指令的定址方式總結 52
3.5 ARM匯編偽操作(Directive) 53
3.5.1 符號定義偽操作 54
3.5.2 數據定義偽操作 54
3.5.3 匯編控制偽操作 56
3.5.4 棧中數據幀描述偽操作 57
3.5.5 信息報告偽操作 57
3.5.6 其他偽操作 58
3.6 ARM匯編偽指令 59
3.7 Thumb指令介紹 60
第4章 ARM處理器內存管理單元(MMU) 61
本章主要介紹了ARM處理器內存管理單元(MMU)的工作原理,Linux內存管理功能是通過處理器硬體MMU實現的,在沒有MMU的處理器系統中,Linux只能工作在物理地址模式,沒有虛擬(線性)地址空間的概念。
4.1 ARM處理器中CP15協處理器的寄存器 61
4.1.1 訪問CP15寄存器的指令 61
4.1.2 CP15寄存器介紹 62
4.2 MMU簡介 70
4.3 系統訪問存儲空間的過程 71
4.3.1 使能MMU時的情況 71
4.3.2 禁止MMU時的情況 71
4.3.3 使能/禁止MMU時應注意的問題 72
4.4 ARM處理器地址變換過程 72
4.4.1 MMU的一級映射描述符 73
4.4.2 MMU的二級映射描述符 74
4.4.3 基於段的地址變換過程 75
4.4.4 粗粒度大頁地址變換過程 75
4.4.5 粗粒度小頁地址變換過程 76
4.4.6 細粒度大頁地址變換過程 76
4.4.7 細粒度小頁地址變換過程 77
4.4.8 細粒度極小頁地址變換過程 77
4.5 ARM存儲空間訪問許可權控制 78
4.6 TLB操作 79
4.6.1 使TLB內容無效 79
4.6.2 鎖定TLB內容 79
4.6.3 解除TLB中被鎖定的地址變換條目 80
4.7 存儲訪問失效 80
4.7.1 MMU失效(MMU Fault) 80
4.7.2 外部存儲訪問失效(External Abort) 81
第5章 ARM處理器的Cache和Write Buffer 82
本章主要介紹了ARM處理器高速緩存(Cache)和寫緩存(Write Buffer)的工作原理,使讀者了解如何提高處理器的性能。
5.1 Cache和Write Buffer一般性介紹 82
5.1.1 Cache工作原理 82
5.1.2 地址映像方式 83
5.1.3 Cache寫入方式原理簡介 84
5.1.4 關於Write-through和Write-back 85
5.1.5 Cache替換策略 86
5.1.6 使用Cache的必要性 87
5.1.7 使用Cache的可行性 87
5.2 ARM處理器中的Cache和Write Buffer 88
5.2.1 基本概念 88
5.2.2 Cache工作原理 88
5.2.3 Cache地址映射和變換方法 89
5.2.4 Cache分類 90
5.2.5 Cache替換演算法 91
5.2.6 Cache內容鎖定 91
5.2.7 MMU映射描述符中B位和C位的含義 92
5.2.8 Cache和Writer Buffer編程介面 93
5.3 ARM處理器的快速上下文切換技術 94
5.3.1 FCSE概述 94
5.3.2 FCSE原理 94
5.3.3 FCSE編程介面 95
第6章 ARM處理器存儲訪問一致性問題 97
本章介紹了在支持MMU、Cache和DMA的系統中可能出現的存儲訪問一致性問題,以及Linux中解決類似問題的方法。
6.1 存儲訪問一致性問題介紹 97
6.1.1 地址映射關系變化造成的數據不一致性 97
6.1.2 指令cache的數據不一致性問題 98
6.1.3 DMA造成的數據不一致問題 99
6.1.4 指令預取和自修改代碼 99
6.2 Linux中解決存儲訪問一致性問題的方法 99
第7章 ARM處理器工作模式與異常中斷處理 101
本章主要介紹了ARM處理器的工作模式和異常中斷處理過程,這是ARM處理器系統啟動程序編寫者或Bootloader開發人員的必備知識。
7.1 ARM處理器工作模式 101
7.2 ARM處理器異常中斷向量表和優先順序 103
7.3 ARM處理器異常中斷處理 104
7.3.1 進入異常中斷處理 104
7.3.2 退出異常中斷處理 105
7.4 ARM處理器的中斷(IRQ或FIQ) 109
第8章 ARM處理器啟動過程 110
本章根據筆者的開發經驗介紹了ARM處理器系統的啟動過程以及編寫ARM處理器系統啟動程序需要注意的事項。
8.1 ARM處理器上電/復位操作 110
8.2 ARM處理器系統初始化過程 111
8.3 ARM處理器系統初始化編程注意事項 111
第9章 嵌入式系統設計與調試 113
本章根據筆者10多年的開發經驗介紹了嵌入式系統的設計流程和調試方法,列舉了大量筆者工作中碰到的實際案例。本章內容對於嵌入式系統硬體開發和調試有較高的參考、指導價值。
9.1 嵌入式系統設計流程 113
9.2 嵌入式系統硬體原理設計與審核 114
9.3 硬體設計工具軟體 117
9.4 嵌入式系統調試模擬工具 117
9.5 嵌入式系統調試診斷方法 118
第10章 自製簡易JTAG下載燒寫工具 123
本章根據筆者自己製作簡易JTAG線纜的經驗,介紹了簡易JTAG線纜的硬體原理和軟體流程,這是初學者必備的最廉價的工具,必須掌握。
10.1 JTAG簡介 123
10.1.1 一些基本概念 124
10.1.2 JTAG介面信號 124
10.1.3 TAP控制器的狀態機 125
10.1.4 JTAG介面指令集 129
10.2 簡易JTAG線纜原理 130
10.2.1 PC並口定義 130
10.2.2 PC並口的寄存器 131
10.2.3 簡易JTAG線纜原理圖 133
10.2.4 簡易JTAG線纜燒寫連接圖(見圖10-5) 134
10.3 簡易JTAG燒寫代碼分析 135
10.3.1 簡易JTAG燒寫程序(flashp)使用說明 135
10.3.2 flash與CPU連接及flash屬性描述文件 136
10.3.3 簡易JTAG燒寫程序的執行邏輯和流程 138
第2部分 Linux內核開發初步
第11章 Bootloader 142
本章根據筆者的工作經驗介紹了流行的幾種Bootloader、Bootloader應該具備的基本功能以及Bootloader的裁剪與移植。
11.1 Bootloader的任務和作用 142
11.2 各種各樣的Bootloader 143
11.3 Bootloader編譯環境 144
11.4 Bootloader的移植與裁減 145
11.5 編譯Bootloader 145
11.6 燒寫Bootloader 146
11.7 Bootloader使用舉例 148
11.8 Bootloader修改舉例 149
第12章 創建嵌入式Linux開發環境 151
本章介紹了如何創建嵌入式系統Linux內核交叉開發環境,本章和後續3章的內容是嵌入式系統Linux內核開發的基礎,必須掌握。
12.1 安裝Linux host 151
12.2 在虛擬機中安裝Linux host 152
12.3 安裝Linux交叉編譯環境 157
12.4 在主機上設置TFTP Server 160
12.5 在主機上設置DHCP Server 161
12.6 在主機上設置Telnet server 161
12.7 在開發過程中使用NFS 162
12.8 設置超級終端 163
第13章 編譯Linux內核 166
本章介紹了Linux內核的配置和編譯方法。
13.1 獲取Linux內核源代碼 166
13.2 Linux內核目錄結構 166
13.3 配置Linux內核 167
13.4 編譯Linux內核 168
第14章 創建Linux根文件系統 170
本章介紹了Linux的根文件系統的結構以及創建根文件系統的方法。
14.1 根文件系統概述 170
14.2 根文件系統目錄結構 171
14.3 獲取根文件系統組件源代碼 171
14.4 編譯根文件系統源代碼 171
14.5 創建一個32MB的RAMDISK根文件系統 173
14.6 在根文件系統中添加驅動模塊或者應用程序 173
第15章 固化Linux內核和根文件系統 174
本章介紹了固化(燒寫)Linux內核和根文件系統的方法。
第16章 關於Clinux 176
本章簡要介紹了Clinux與標准Linux的區別。
16.1 Clinux簡介 176
16.2 Clinux源代碼目錄結構 177
16.3 Clinux與標准Linux的區別 178
16.4 編譯Clinux 179
第3部分 Linux 2.6內核原理
第17章 Linux 2.6.10@ARM啟動過程 182
本章以start_kernel()和init()函數中調用到的函數說明的方式,介紹了從Linux匯編代碼入口到init內核進程最後調用用戶空間init命令的Linux整個啟動過程。本章內容是筆者第一次閱讀Linux內核源代碼時對這些函數的注釋,僅供讀者了解start_kernel()和init()函數中調用到的每個函數的大致功能時使用。
17.1 Linux 2.6.10中與ARM處理器平台硬體相關的結構和全局變數 182
17.1.1 相關數據結構 182
17.1.2 相關全局變數 187
17.2 Linux匯編代碼入口 189
17.3 Linux匯編入口處CPU的狀態 189
17.4 start_kernel()函數之前的匯編代碼執行過程 190
17.5 start_kernel()函數中調用的函數介紹 192
17.5.1 lock_kernel()函數 192
17.5.2 page_address_init()函數 192
17.5.3 printk(linux_banner) 193
17.5.4 setup_arch(&command_line)函數 193
17.5.5 setup_per_cpu_areas()函數 198
17.5.6 smp_prepare_boot_cpu()函數 199
17.5.7 sched_init()函數 199
17.5.8 build_all_zonelists()函數 200
17.5.9 page_alloc_init()函數 200
17.5.10 printk(Kernel command line: %s , saved_command_line) 201
17.5.11 parse_early_param()函數 201
17.5.12 parse_args()函數 201
17.5.13 sort_main_extable()函數 202
17.5.14 trap_init()函數 202
17.5.15 rcu_init()函數 202
17.5.16 init_IRQ()函數 203
17.5.17 pidhash_init()函數 203
17.5.18 init_timers()函數 203
17.5.19 softirq_init()函數 204
17.5.20 time_init()函數 204
17.5.21 console_init()函數 205
17.5.22 profile_init()函數 206
17.5.23 local_irq_enable()函數 207
17.5.24 vfs_caches_init_early()函數 207
17.5.25 mem_init()函數 208
17.5.26 kmem_cache_init()函數 210
17.5.27 numa_policy_init()函數 225
17.5.28 calibrate_delay()函數 227
17.5.29 pidmap_init()函數 228
17.5.30 pgtable_cache_init()函數 229
17.5.31 prio_tree_init()函數 229
17.5.32 anon_vma_init()函數 229
17.5.33 fork_init(num_physpages)函數 229
17.5.34 proc_caches_init()函數 230
17.5.35 buffer_init()函數 231
17.5.36 unnamed_dev_init()函數 231
17.5.37 security_init()函數 231
17.5.38 vfs_caches_init(num_physpages)函數 232
17.5.39 radix_tree_init()函數 237
17.5.40 signals_init()函數 237
17.5.41 page_writeback_init()函數 237
17.5.42 proc_root_init()函數 238
17.5.43 check_bugs()函數 240
17.5.44 acpi_early_init()函數 244
17.5.45 rest_init()函數 244
17.6 init()進程執行過程 265
17.6.1 smp_prepare_cpus(max_cpus)函數 265
17.6.2 do_pre_smp_initcalls()函數 265
17.6.3 fixup_cpu_present_map()函數 267
17.6.4 smp_init()函數 267
17.6.5 sched_init_smp()函數 268
17.6.6 populate_rootfs()函數 268
17.6.7 do_basic_setup()函數 283
17.6.8 sys_access()函數 292
17.6.9 free_initmem()函數 301
17.6.10 unlock_kernel()函數 301
17.6.11 numa_default_policy()函數 302
17.6.12 sys_p()函數 302
17.6.13 execve()函數 302
第18章 Linux內存管理 305
從本章開始,筆者將帶領讀者走進神秘的Linux內核世界。筆者在閱讀內核源代碼以及兩本相關參考書(見參考文獻)的基礎上,以自己的理解和語言總結概括了Linux內核每個組件的原理。筆者對與每個內核組件相關的關鍵數據結構和全局變數作了盡量詳盡的說明,並且對核心函數進行了詳細注釋,在向讀者灌輸理論知識的同時引導讀者自己去閱讀、分析Linux內核源代碼。本章講解了Linux內核第一大核心組件「內存管理」的原理和實現內幕。
18.1 Linux內存管理概述 305
18.1.1 Linux內存管理的一些基本概念 305
18.1.2 內存管理相關數據結構 309
18.1.3 內存管理相關宏和全局變數 330
18.1.4 Linux內存管理的任務 341
18.1.5 Linux中的物理和虛擬存儲空間布局 341
18.2 為虛擬(線性地址)存儲空間建立頁表 345
18.3 設置存儲空間的訪問控制屬性 348
18.4 Linux中的內存分配和釋放 350
18.4.1 在系統啟動初期申請內存 350
18.4.2 系統啟動之後的內存分配與釋放 360
第19章 Linux進程管理 480
本章講解了Linux內核第二大核心組件「進程管理」的原理和實現內幕。
19.1 進程管理概述 480
19.1.1 進程相關概念 480
19.1.2 進程分類 481
19.1.3 0號進程 481
19.1.4 1號進程 481
19.1.5 其他一些內核線程 482
19.1.6 進程描述符(struct task_struct) 482
19.1.7 進程狀態 482
19.1.8 進程標識符(PID) 483
19.1.9 current宏定義 484
19.1.10 進程鏈表 484
19.1.11 PID hash表和鏈表 485
19.1.12 硬體上下文(Hardware Context) 485
19.1.13 進程資源限制 485
19.1.14 進程管理相關數據結構 486
19.1.15 進程管理相關宏定義 502
19.1.16 進程管理相關全局變數 514
19.2 進程管理相關初始化 520
19.3 進程創建與刪除 529
19.4 進程調度 551
19.4.1 進程類型 553
19.4.2 進程調度類型 554
19.4.3 基本時間片計算方法 555
19.4.4 動態優先順序演算法 556
19.4.5 互動式進程 556
19.4.6 普通進程調度 557
19.4.7 實時進程調度 557
19.4.8 進程調度函數分析 558
19.5 進程切換 576
19.6 用戶態進程間通信 581
19.6.1 信號(Signal) 581
19.6.2 管道(pipe)和FIFO(命名管道) 627
19.6.3 進程間通信原語(System V IPC) 641
第20章 Linux文件管理 651
本章講解了Linux內核第三大核心組件「文件系統」的原理和實現內幕。
20.1 文件系統概述 651
20.1.1 Linux文件管理相關概念 652
20.1.2 Linux文件管理相關數據結構 657
20.1.3 Linux文件管理相關宏定義 682
20.1.4 Linux文件管理相關全局變數 691
20.2 文件管理相關初始化 699
20.3 文件系統類型注冊 711
20.4 掛接文件系統 712
20.5 文件系統類型超級塊讀取 730
20.5.1 get_sb_single()通用超級塊讀取函數 731
20.5.2 get_sb_nodev()通用超級塊讀取函數 737
20.5.3 get_sb_bdev()通用超級塊讀取函數 738
20.5.4 get_sb_pseudo()通用超級塊讀取函數 740
20.6 路徑名查找 747
20.7 訪問文件操作 759
20.7.1 打開文件 759
20.7.2 關閉文件 766
20.7.3 讀文件 768
20.7.4 寫文件 785
20.8 非同步I/O系統調用 792
20.9 Linux特殊文件系統 792
20.9.1 rootfs文件系統 793
20.9.2 sysfs文件系統 797
20.9.3 devfs設備文件系統 800
20.9.4 bdev塊設備文件系統 803
20.9.5 ramfs文件系統 804
20.9.6 proc文件系統 804
20.10 磁碟文件系統 813
20.10.1 ext2文件系統相關數據結構 813
20.10.2 ext2文件系統磁碟分區格式 819
20.10.3 ext2文件系統的各種文件 820
20.10.4 創建ext2文件系統 821
20.10.5 ext2文件系統的操作方法 822
20.11 關於initramfs 824
20.11.1 initramfs概述 824
20.11.2 initramfs與initrd的區別 824
20.11.3 initramfs相關全局變數 825
20.11.4 initramfs被編譯鏈接的位置 825
20.11.5 initramfs文件的生成過程 825
20.11.6 initramfs二進制文件格式說明(cpio格式) 828
20.11.7 initramfs二進制文件和列表文件對照示例 829
20.11.8 initramfs利弊 830
20.12 關於initrd 830
20.12.1 initrd概述 830
20.12.2 initrd相關全局變數 831
20.13 關於gzip壓縮文件 832
第21章 Linux模塊設計 834
本章講解了Linux內核模塊程序與應用程序的區別以及如何編寫和載入Linux內核模塊程序。
21.1 Linux模塊設計概述 834
21.2 Linux的內核空間和用戶空間 834
21.3 內核模塊與應用程序的區別 835
21.4 編譯模塊 837
21.5 裝載和卸載模塊 837
21.6 模塊層疊 838
21.7 模塊版本依賴 839
21.8 模塊編程示例 839
第22章 Linux系統異常中斷管理 841
本章講解了Linux內核如何管理系統異常中斷以及Linux系統調用的實現內幕。
22.1 Linux異常中斷處理 841
22.2 指令預取和數據訪問中止異常中斷處理 849
22.2.1 指令預取中止異常中斷處理 850
22.2.2 數據訪問中止異常中斷處理 858
22.3 Linux中斷處理 863
22.3.1 內核模式下的中斷處理 863
22.3.2 用戶模式下的中斷處理 867
22.4 從中斷返回 868
22.5 Linux中斷管理 869
22.5.1 Linux中斷管理相關數據結構與全局變數 870
22.5.2 Linux中斷管理初始化 872
22.5.3 安裝和卸載中斷處理程序 874
22.5.4 使能和禁止中斷 878
22.6 Linux系統調用 880
22.6.1 Linux系統調用內核實現過程 880
22.6.2 從系統調用返回 889
22.6.3 Linux系統調用用戶程序介面函數 890
22.6.4 Linux系統調用用戶介面函數與內核實現函數之間參數傳遞 899
第23章 Linux軟中斷和工作隊列 901
本章講解了Linux內核中的兩種延遲處理機制「軟中斷」和「工作隊列」的原理和實現。
23.1 概述 901
23.2 Linux軟中斷 902
23.2.1 軟中斷相關數據結構和全局變數 903
23.2.2 軟中斷初始化 904
23.2.3 軟中斷的核心操作函數do_softirq() 908
23.2.4 軟中斷看護進程執行函數ksoftirqd() 912
23.2.5 如何使用軟中斷 913
23.3 Linux工作隊列 918
23.3.1 Linux工作隊列相關數據結構和全局變數 918
23.3.2 Linux工作隊列初始化 921
23.3.3 將工作加入到工作隊列中 924
23.3.4 工作者進程執行函數worker_thread() 928
23.3.5 使用Linux工作隊列 931
第24章 Linux並發與競態 933
本章講解了Linux內核同步機制,包括幾種鎖定技術以及免鎖演算法。
24.1 並發與競態概述 933
24.1.1 Linux中的並發源 934
24.1.2 競態可能導致的後果 934
24.1.3 避免競態的規則 934
24.2 消除競態的「鎖定」技術 935
24.2.1 信號量(semphore)和互斥體(mutual exclusion) 935
24.2.2 讀寫信號量(rw_semaphore) 938
24.2.3 完成量(completion) 941
24.2.4 自旋鎖(spinlock_t) 942
24.2.5 讀寫自旋鎖(rwlock_t) 946
24.2.6 使用「鎖定」技術的注意事項 949
24.3 消除競態的非「鎖定」方法 949
24.3.1 免鎖演算法 949
24.3.2 原子操作 950
24.3.3 位操作 951
24.3.4 順序鎖 952
24.3.5 讀-復制-更新(Read-Copy-Update,RCU) 954
第25章 Linux設備驅動程序 958
本章講解了Linux內核第四大核心組件「設備驅動」的原理和實現內幕。同時還總結歸納了編寫各種設備驅動程序的方法和步驟。
25.1 設備驅動程序概述 958
25.1.1 設備驅動程序組成部分 959
25.1.2 設備號 959
25.1.3 設備文件 960
25.1.4 編寫設備驅動程序的關鍵 961
25.2 字元設備驅動程序 961
25.2.1 字元設備相關數據結構 961
25.2.2 字元設備相關全局變數 963
25.2.3 字元設備驅動程序全局初始化 963
25.2.4 為字元設備分配設備號 964
25.2.5 注冊字元設備驅動程序 968
25.2.6 字元設備的操作方法 971
25.2.7 用戶對字元設備驅動程序的調用過程 972
25.2.8 如何編寫字元設備驅動程序 974
25.2.9 關於TTY設備驅動程序 974
25.2.10 控制台設備驅動程序 975
25.3 塊設備驅動程序 986
25.3.1 塊設備相關數據結構 986
25.3.2 塊設備相關宏定義 997
25.3.3 塊設備相關全局變數 999
25.3.4 塊設備驅動程序全局初始化 1004
25.3.5 為塊設備分配主設備號 1006
25.3.6 注冊塊設備驅動程序 1009
25.3.7 塊設備驅動程序的操作方法 1017
25.3.8 調用塊設備驅動程序過程 1017
25.3.9 I/O調度 1031
25.3.10 如何編寫塊設備驅動程序 1032
25.4 網路設備驅動程序 1033
25.4.1 網路設備驅動程序概述 1033
25.4.2 網路設備相關數據結構 1034
25.4.3 網路設備相關宏定義 1044
25.4.4 網路設備相關全局變數 1045
25.4.5 創建net_device結構 1046
25.4.6 注冊網路設備 1048
25.4.7 網路設備的操作方法 1050
25.4.8 網路設備中斷服務程序 1051
25.4.9 如何編寫網路設備驅動程序 1051
25.5 PCI設備驅動程序 1052
25.5.1 PCI介面定義 1053
25.5.2 PCI設備的三個地址空間 1057
25.5.3 PCI匯流排仲裁 1058
25.5.4 PCI設備編號 1059
25.5.5 如何訪問PCI配置空間 1059
25.5.6 如何配置PCI設備 1061
25.5.7 PCI驅動程序相關數據結構 1062
25.5.8 PCI驅動程序相關宏定義 1068
25.5.9 PCI驅動程序相關全局變數 1068
25.5.10 Bootloader和內核做的事 1069
25.5.11 PCI驅動程序注冊 1069
25.5.12 PCI驅動程序介面函數 1071
25.5.13 如何編寫PCI驅動程序 1072
第4部分 Linux內核開發高級指南
第26章 Linux系統參數設置 1076
從本章開始的後續章節主要講解了比較高級或者平時較少關注的Linux內核方面的知識,本章講解了Linux中的4種系統參數格式和設置方法。
26.1 旗語系統參數(tag) 1076
26.1.1 與旗語系統參數相關數據結構和全局變數 1076
26.1.2 旗語系統參數說明 1082
26.1.3 旗語系統參數設置方法 1084
26.2 前期命令行設置的系統參數 1084
26.2.1 與前期命令行系統參數相關數據結構和全局變數 1084
26.2.2 前期命令行設置的系統參數說明 1085
26.2.3 前期命令行系統參數設置方法 1086
26.2.4 如何添加自己的前期命令行設置的系統參數 1087
26.3 老式命令行系統參數 1087
26.3.1 與老式命令行系統參數相關數據結構和全局變數 1087
26.3.2 老式命令行設置的系統參數說明 1088
26.3.3 老式命令行設置的系統參數設置方法 1089
26.3.4 如何添加自己的老式命令行設置的系統參數 1089
26.4 命令行系統參數 1089
26.4.1 與命令行系統參數相關數據結構和全局變數 1089
26.4.2 命令行設置的系統參數說明 1090
26.4.3 命令行設置的系統參數設置方法 1090
第27章 Linux內核調試 1091
本章介紹了Linux內核的調試方法。
27.1 打開Linux內核及其各模塊自帶的調試開關 1091
27.2 內核剖析(Profiling) 1093
27.3 通過列印調試(printk) 1095
27.3.1 關於printk() 1095
27.3.2 內核信息級別 1096
27.3.3 列印速度限制 1097
27.3.4 控制台重定向 1098
27.4 使用proc文件系統調試 1098
27.5 oops消息 1098
27.6 通過跟蹤命令strace調試 1099
27.7 使用gdb、kdb、kgdb調試 1099
第28章 Linux內核移植 1101
本章介紹了Linux內核的移植方法。
第29章 Linux內核優化 1104
本章介紹了Linux內核的優化方法。
29.1 編譯優化 1104
29.2 根據CPU特性進行優化 1105
29.3 對內核進行裁減 1105
29.4 優化系統內存配置 1106
29.5 優化系統啟動過程以縮減系統啟動時間 1106
29.6 內存映射優化 1107
29.7 工具軟體輔助優化 1107
第30章 Linux定時器 1109
本章介紹了Linux內核的軟體定時器。
30.1 定時器相關數據結構 1109
30.2 定時器相關宏定義 1111
30.3 定時器相關全局變數 1112
30.4 定時器和時鍾初始化 1113
30.5 獲取系統時間 1114
30.6 延遲函數 1115
30.7 與定時器相關系統調用 1115
30.8 使用定時器方法 1116
第31章 雜項 1117
本章介紹了PER_CPU變數以及Linux中的數據類型定義。
31.1 per_cpu變數 1117
31.2 Linux中的數據類型定義 1118
第32章 編譯鏈接文件說明 1119
本章注釋了ARM處理器系統中Linux內核的鏈接文件,以幫助讀者了解編譯出來的Linux內核各區段在內存中的存放位置。
參考文獻 1125

閱讀全文

與bdev偽文件系統相關的資料

熱點內容
吉林文件箱多少錢 瀏覽:113
ae模板版本 瀏覽:204
手機qq步數功能在哪裡 瀏覽:721
c程序設計04737 瀏覽:403
女孩什麼年齡學編程 瀏覽:976
安慶如何做網路營銷推廣 瀏覽:620
什麼是數據標准化 瀏覽:708
aecc三維功能實例視頻教程 瀏覽:719
iphone6s靜音鍵用法 瀏覽:560
油卡盒子APP是什麼公司名下的 瀏覽:597
怪物獵人wp文件夾什麼意思 瀏覽:108
設置密碼的pdf文件如何轉換成word 瀏覽:876
多個文件合並到一起後叫什麼 瀏覽:387
資料庫位是什麼意思 瀏覽:104
如何改變手機上的網路連接 瀏覽:908
某網站圖片侵權如何舉報 瀏覽:820
zemax宏編程有什麼用 瀏覽:874
做保函為什麼要獲取招標文件 瀏覽:921
魔獸世界數據是哪個文件夾 瀏覽:439
oppor9s手機系統升級 瀏覽:728

友情鏈接