Ⅰ 如何從零使用 Keras + TensorFlow 開發一個復雜深度學習模型
Keras 是提供一些高可用的 Python API ,能幫助你快速的構建和訓練自己的深度學習模型,它的後端是 TensorFlow 或者版 Theano 。本文假設權你已經熟悉了 TensorFlow 和卷積神經網路,如果,你還沒有熟悉,那麼可以先看看這個10分鍾入門 TensorFlow 教程和卷積神經網路教程,然後再回來閱讀這個文章。
在這個教程中,我們將學習以下幾個方面:
為什麼選擇 Keras?為什麼 Keras 被認為是深度學習的未來?
在Ubuntu上面一步一步安裝Keras。
Keras TensorFlow教程:Keras基礎知識。
了解 Keras 序列模型
4.1 實際例子講解線性回歸問題
使用 Keras 保存和回復預訓練的模型
Keras API
6.1 使用Keras API開發VGG卷積神經網路
6.2 使用Keras API構建並運行SqueezeNet卷積神經網路。
Ⅱ 如何學習tensorflow
Linux【公共基礎】:TensorFlow的主要運行平台之一就是Linux,但是正式版對Windows的支持日趨完善,真的沒時間學習Linux平台可以先在Windows上運行TensorFlow。不過,學習Linux真的用不了多久(當然是指做開發環境日常日用,立志做系統管理員還是要下一番功夫的)。推薦Ubuntu 16.04 LTS,這不僅是「新手友好」的發行版,也是Google很多產品的官方支持版本,官方支持就會帶來很多便捷以及少一些」坑「。LTS(長期支持版本)的加成保證了系統的穩定(穩定不僅指運行穩定,更是指軟體環境,例如python不會突然默認變成3.6,gcc不會突然就默認變成6,插一句,之所以這么說,是因為以前用的是Arch,裝了TensorFlow一直跑的很開心,直到有天突然發現跑不起來了,原來是Arch升級了一下Python的默認版本變成了3.6了XD。)
Ⅲ 如何在spyder中使用tensorflow
既然你問到了這個問題,說明你已經打開了Spyder
1.安裝tensorflow,這個可以在官網上查找,我不能放鏈接,說是違反知道規章. 注意你要下載的版本,是GPU還是CPU的
2.剩下的就簡單了:
importtensorflowastf#導入tensorflow模塊
3.學習教程推薦極客學院的tensorflo中文版,簡單易懂.
還有什麼不會的盡管問我.我現在就在用Spyder,下面是我的Spyder運行的tensorflow程序界面:
不懂得可以追問!
Ⅳ 如何用TensorFlow構建RNN
基本使用
使用 TensorFlow, 你必須明白 TensorFlow:
使用圖 (graph) 來表示計算任務.
在被稱之為 會話 (Session) 的上下文 (context) 中執行圖.
使用 tensor 表示數據.
通過 變數 (Variable) 維護狀態.
使用 feed 和 fetch 可以為任意的操作(arbitrary operation) 賦值或者從其中獲取數據.
綜述
TensorFlow 是一個編程系統, 使用圖來表示計算任務. 圖中的節點被稱之為 op
(operation 的縮寫). 一個 op 獲得 0 個或多個 Tensor, 執行計算,
產生 0 個或多個 Tensor. 每個 Tensor 是一個類型化的多維數組.
例如, 你可以將一小組圖像集表示為一個四維浮點數數組,
這四個維度分別是 [batch, height, width, channels].
一個 TensorFlow 圖描述了計算的過程. 為了進行計算, 圖必須在 會話 里被啟動.
會話 將圖的 op 分發到諸如 CPU 或 GPU 之類的 設備 上, 同時提供執行 op 的方法.
這些方法執行後, 將產生的 tensor 返回. 在 Python 語言中, 返回的 tensor 是
numpy ndarray 對象; 在 C 和 C++ 語言中, 返回的 tensor 是
tensorflow::Tensor 實例.
計算圖
TensorFlow 程序通常被組織成一個構建階段和一個執行階段. 在構建階段, op 的執行步驟
被描述成一個圖. 在執行階段, 使用會話執行執行圖中的 op.
例如, 通常在構建階段創建一個圖來表示和訓練神經網路, 然後在執行階段反復執行圖中的訓練 op.
TensorFlow 支持 C, C++, Python 編程語言. 目前, TensorFlow 的 Python 庫更加易用,
它提供了大量的輔助函數來簡化構建圖的工作, 這些函數尚未被 C 和 C++ 庫支持.
三種語言的會話庫 (session libraries) 是一致的.
構建圖
構建圖的第一步, 是創建源 op (source op). 源 op 不需要任何輸入, 例如 常量 (Constant). 源 op 的輸出被傳遞給其它 op 做運算.
Python 庫中, op 構造器的返回值代表被構造出的 op 的輸出, 這些返回值可以傳遞給其它
op 構造器作為輸入.
TensorFlow Python 庫有一個默認圖 (default graph), op 構造器可以為其增加節點. 這個默認圖對
許多程序來說已經足夠用了. 閱讀 Graph 類 文檔
來了解如何管理多個圖.
import tensorflow as tf
# 創建一個常量 op, 產生一個 1x2 矩陣. 這個 op 被作為一個節點
# 加到默認圖中.
#
# 構造器的返回值代表該常量 op 的返回值.
matrix1 = tf.constant([[3., 3.]])
# 創建另外一個常量 op, 產生一個 2x1 矩陣.
matrix2 = tf.constant([[2.],[2.]])
# 創建一個矩陣乘法 matmul op , 把 'matrix1' 和 'matrix2' 作為輸入.
# 返回值 'proct' 代表矩陣乘法的結果.
proct = tf.matmul(matrix1, matrix2)
默認圖現在有三個節點, 兩個 constant() op, 和一個matmul() op. 為了真正進行矩陣相乘運算, 並得到矩陣乘法的
結果, 你必須在會話里啟動這個圖.
在一個會話中啟動圖
構造階段完成後, 才能啟動圖. 啟動圖的第一步是創建一個 Session 對象, 如果無任何創建參數,
會話構造器將啟動默認圖.
欲了解完整的會話 API, 請閱讀Session 類.
# 啟動默認圖.
sess = tf.Session()
# 調用 sess 的 'run()' 方法來執行矩陣乘法 op, 傳入 'proct' 作為該方法的參數.
# 上面提到, 'proct' 代表了矩陣乘法 op 的輸出, 傳入它是向方法表明, 我們希望取回
# 矩陣乘法 op 的輸出.
#
# 整個執行過程是自動化的, 會話負責傳遞 op 所需的全部輸入. op 通常是並發執行的.
#
# 函數調用 'run(proct)' 觸發了圖中三個 op (兩個常量 op 和一個矩陣乘法 op) 的執行.
#
# 返回值 'result' 是一個 numpy `ndarray` 對象.
result = sess.run(proct)
print result
# ==> [[ 12.]]
# 任務完成, 關閉會話.
sess.close()
Session 對象在使用完後需要關閉以釋放資源. 除了顯式調用 close 外, 也可以使用 "with" 代碼塊
來自動完成關閉動作.
with tf.Session() as sess:
result = sess.run([proct])
print result
在實現上, TensorFlow 將圖形定義轉換成分布式執行的操作, 以充分利用可用的計算資源(如 CPU
或 GPU). 一般你不需要顯式指定使用 CPU 還是 GPU, TensorFlow 能自動檢測. 如果檢測到 GPU, TensorFlow
會盡可能地利用找到的第一個 GPU 來執行操作.
如果機器上有超過一個可用的 GPU, 除第一個外的其它 GPU 默認是不參與計算的. 為了讓 TensorFlow
使用這些 GPU, 你必須將 op 明確指派給它們執行. withDevice 語句用來指派特定的 CPU 或 GPU
執行操作:
with tf.Session() as sess:
with tf.device("/gpu:1"):
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
proct = tf.matmul(matrix1, matrix2)
設備用字元串進行標識. 目前支持的設備包括:
"/cpu:0": 機器的 CPU.
"/gpu:0": 機器的第一個 GPU, 如果有的話.
"/gpu:1": 機器的第二個 GPU, 以此類推.
閱讀使用GPU章節, 了解 TensorFlow GPU 使用的更多信息.
互動式使用
文檔中的 Python 示例使用一個會話 Session 來
啟動圖, 並調用 Session.run() 方法執行操作.
為了便於使用諸如 IPython 之類的 Python 交互環境, 可以使用
InteractiveSession 代替
Session 類, 使用 Tensor.eval()
和 Operation.run() 方法代替
Session.run(). 這樣可以避免使用一個變數來持有會話.
# 進入一個互動式 TensorFlow 會話.
import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.Variable([1.0, 2.0])
a = tf.constant([3.0, 3.0])
# 使用初始化器 initializer op 的 run() 方法初始化 'x'
x.initializer.run()
# 增加一個減法 sub op, 從 'x' 減去 'a'. 運行減法 op, 輸出結果
sub = tf.sub(x, a)
print sub.eval()
# ==> [-2. -1.]
Tensor
TensorFlow 程序使用 tensor 數據結構來代表所有的數據, 計算圖中, 操作間傳遞的數據都是 tensor.
你可以把 TensorFlow tensor 看作是一個 n 維的數組或列表. 一個 tensor 包含一個靜態類型 rank, 和
一個 shape. 想了解 TensorFlow 是如何處理這些概念的, 參見
Rank, Shape, 和 Type.
變數
Variables for more details.
變數維護圖執行過程中的狀態信息. 下面的例子演示了如何使用變數實現一個簡單的計數器. 參見
變數 章節了解更多細節.
# 創建一個變數, 初始化為標量 0.
state = tf.Variable(0, name="counter")
# 創建一個 op, 其作用是使 state 增加 1
one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)
# 啟動圖後, 變數必須先經過`初始化` (init) op 初始化,
# 首先必須增加一個`初始化` op 到圖中.
init_op = tf.initialize_all_variables()
# 啟動圖, 運行 op
with tf.Session() as sess:
# 運行 'init' op
sess.run(init_op)
# 列印 'state' 的初始值
print sess.run(state)
# 運行 op, 更新 'state', 並列印 'state'
for _ in range(3):
sess.run(update)
print sess.run(state)
# 輸出:
# 0
# 1
# 2
# 3
代碼中 assign() 操作是圖所描繪的表達式的一部分, 正如 add() 操作一樣. 所以在調用 run()
執行表達式之前, 它並不會真正執行賦值操作.
通常會將一個統計模型中的參數表示為一組變數. 例如, 你可以將一個神經網路的權重作為某個變數存儲在一個 tensor 中.
在訓練過程中, 通過重復運行訓練圖, 更新這個 tensor.
Fetch
為了取回操作的輸出內容, 可以在使用 Session 對象的 run() 調用 執行圖時, 傳入一些 tensor,
這些 tensor 會幫助你取回結果. 在之前的例子里, 我們只取回了單個節點 state, 但是你也可以取回多個
tensor:
input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)
intermed = tf.add(input2, input3)
mul = tf.mul(input1, intermed)
with tf.Session() as sess:
result = sess.run([mul, intermed])
print result
# 輸出:
# [array([ 21.], dtype=float32), array([ 7.], dtype=float32)]
需要獲取的多個 tensor 值,在 op 的一次運行中一起獲得(而不是逐個去獲取 tensor)。
Feed
上述示例在計算圖中引入了 tensor, 以常量或變數的形式存儲. TensorFlow 還提供了 feed 機制, 該機制
可以臨時替代圖中的任意操作中的 tensor 可以對圖中任何操作提交補丁, 直接插入一個 tensor.
feed 使用一個 tensor 值臨時替換一個操作的輸出結果. 你可以提供 feed 數據作為 run() 調用的參數.
feed 只在調用它的方法內有效, 方法結束, feed 就會消失. 最常見的用例是將某些特殊的操作指定為 "feed" 操作,
標記的方法是使用 tf.placeholder() 為這些操作創建佔位符.
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.mul(input1, input2)
with tf.Session() as sess:
print sess.run([output], feed_dict={input1:[7.], input2:[2.]})
# 輸出:
# [array([ 14.], dtype=float32)]
for a larger-scale example of feeds.
如果沒有正確提供 feed, placeholder() 操作將會產生錯誤.
MNIST 全連通 feed 教程
(source code)
給出了一個更大規模的使用 feed 的例子.
Ⅳ tensorflow 怎麼使用
TF目前的編程模型是符號編程 (symbolic computation)。大致的想法就是使用符號API去描述計算通過計算流圖的方式,以及更新邏輯,然後通過像伺服器去發送計算流圖的方式來進行計算。原因是所有的計算全部需要通過計算流圖來描述,也就是其實通pyt...