⑴ 數據之巔讀後感
細細品味一本名著後,大家心中一定是萌生了不少心得,此時需要認真思考讀後感如何寫了哦。你想好怎麼寫讀後感了嗎?以下是我幫大家整理的數據之巔讀後感範文,僅供參考,大家一起來看看吧。
大數據,一個近年來的流行詞彙,隨著互聯網信息技術的普及開始深入人心,又隨著互聯網對各類行業各種關系的顛覆和變革開始廣泛普及。當越來越多的人開始對大數據無比推崇的時候,其實只是跟著趨勢而已。這時候,如果能跳出來,看看這種趨勢的源頭和足跡,或許更容易找出一些能夠指導未來的價值。在如今這個數據浪潮之中,《數據之巔》就提供了這么一個別樣的視角。
要了解大數據,先得認清數據;要認清數據,先得看清數據的作用和價值。這方面,建國不過二百餘年但已然是超級大國的美國無疑是最好的標本。都說美國的文明是建立在印刷術的基礎上,這其實就是數據文化的基礎——信息可以通過便捷的紙張與文字組合,實現一種虛擬化和抽象化,而這種抽象化很快就得到了廣泛的信任。這是最早為數據創造價值准備的基礎。在此之上,美國建國的先賢們考慮到了權力的分配、社會的發展等各項因素,建立了民主、共和相互制約的執政體系。事實上,所有的美好都是限制之後的產物,自由、民主和平等這人類的三大追求之間就是相互制約的關系。那麼,該怎麼進行有效的制約?如何讓大家都能接納?這時候,最能代表客觀現實的數據就出現了。
《數據之巔》的第一部分就是這樣展開的,從各種歷史事件中數據的作用以及人們對數據的態度、反應、應用方式,勾勒出了數據文化的成長和成熟。解決權力分配的問題、決定改變歷史的戰爭、制定從戰略到戰術的安排、考慮政治的計算以及商業層面上的利用;從搜集、統計、篩選、量化、抽樣的方式方法演變到了解、安排、預測、准備、發掘、規范的效果體現,經歷的歷史似乎並不長,但造就的變革尤其精彩。數據其實一直都在,只在於人們是否需要它、重視它、願意聆聽它的意見……而人們往往也都在遇到了問題難以決斷的時候才會想到數據這個夥伴,這也是為什麼在第一部分的結尾中日本崛起的思考——二戰後空前繁榮的美國工業因為遇上了供不應求的狀態,自然走上了粗放型路徑,冷落了相應的數據應用,而戰敗的日本正因為深陷困境,在快速汲取先進知識的同時也迅速接納了數據文化,通過數據抽樣的方式快速提升了質量……日本的崛起可以看作窮則思變的例子,但變革中數據的作用尤其明顯。數據的優化作用由此可見一斑,書中更有很多案例,但要參透這一點,先得認識到數據的重要性才行,這可以算作是數據文化的入門吧!
可以說現實中的一切都是越用越少的,但看似虛擬的數據卻越用越多。所謂大數據時代,背景正是高度發展科技能讓更多的數據得以留存,這種留存和挖掘完全由機器實施,由此得到的結果也是嘆為觀止的。如果說科技的發展趨勢已經越來越超乎我們的想像,那總有一些規律或者原則可以抓住——比如數據。書中第二部分的大數據崛起便將重點放到了當下,由此展望未來的可能性。誠然,大數據是被技術發展所推動的,但更是被重視數據的人們所推動的。
技術降低了數據獲取、積累的成本,增加了計算的可能和利用的空間,但這只是一個表象。深層次需要在意的則是數據的開放,只有數據開放才有多元的整合,這需要由人來推動,而推動者必須有多元認知的思維方式、開放的心態——這是數據文化中尤為重要的一部分。如果之前我們認為智慧是屬於人的,那麼未來這個詞將更多的形容一些別的體系,比如「智慧城市」。其實人的'智慧依靠的是學習、理解和經驗,那麼機器的學習靠的就是數據,還有那些我們為其規劃的應用方式和我們的需要。如何確定我們的規劃和需求?靠數據,更得靠能夠深入人心的數據文化!
正如作者提到中國社會要將「大數據」這個科技符號轉變為文化符號,因為只有文化才能真正驅動人們的成長和發展,科技只是手段而已。只有建立了數據文化,願意尊重數據、善於整合數據、敢於發掘數據中的異動……才能正真利用好大數據。數據文化是尊重事實、強調精確、推崇理性和邏輯的文化,這種文化將是發展最重要的動力,更是最好的參考。從《數據之巔》中,隱約可以看到一條隱約的軌跡,通向未知的遠方卻一直步步為營,這便是數據,來自於人而勝於人。
歌德把歷史稱為「上帝的神秘作坊」。在徐子沛先生新作《數據之巔》的精彩演繹下,關於數據文化如何形成、數據治國理念如何深入人心的歷史畫卷徐徐展開,令我們再次飽覽古今中外因數據成就的神奇瞬間,領略統計文史的山風水韻和數據文化的悠遠迴音。康德說,數字是重要的透視方式。此言不虛。
子沛先生一如既往把中國作為本書的重心和出發點。從中國歷史上的吉光片羽到第一次現代意義上的人口普查,從中國數據可視化先驅人物陳正祥的執著努力到民族復興能否量化的中國話題,這些元素無疑令中國讀者感到親切和溫暖。遺憾的是,在悠久的中華文明史上,這樣的「統計事件」不僅鳳毛麟角,亦未能帶動整個民族和社會形成用數據說話、以數據治事的風尚。即使今天,我們依然面對這樣一個不容迴避的事實:統計數據雖然證明了中國已經成為世界第二大經濟體,在數據使用上,特別是大數據的收集、分析、應用的手段、意識、水平和能力方面,我們與美國、歐洲,甚至同處亞洲的日本,仍有不小差距。作為統計人,在享受本書呈現的統計和數據文化盛宴時,無疑更平添了一份獨有的清醒與憂思。
中國需要進一步營造數據文化氛圍。美國的歷史,就是一部「善用數據」的歷史。說數據成就了共和政治、數據終結了南方的奴隸制度,尚屬見仁見智。「布蘭代斯訴訟方法」及後來的漢德公式,公共預算制度的普及,統計學理論方法用於公共政策的制定,以及成本效益分析方法在美國政府的推行等,實實在在證明了數據在保障公平正義、促進進步發展、增進自由和理性方面的決定性支撐作用,體現了數據治國的基本理念。黨的十八大把實現國家治理體系和治理能力的現代化作為新的奮斗目標,更加迫切需要大力弘揚建立在數據基礎上的科學與理性,需要建樹「尊重事實、強調精確、推崇理性和邏輯的數據文化」,需要進一步營造善用數據的社會氛圍,使注重數據、使用數據真正成為一種習慣和風尚。
中國統計人要做大數據的先行者和引領者。在統計的「純真年代」,政府統計是權威一般的存在,是統計生產的當然主導者。大數據時代,海量的網路化電子化信息使每一個人、每一個單位都可能成為信息的生產發布主體,政府統計包打天下的格局正在被打破。我們當然可以通過法律手段來「宣示主權」,但我相信大多數統計人憑著專業精神、職業尊嚴,將不屑於採取這么「簡單而直率」的方法,而更願意像一名「騎士」一樣為榮譽而戰。作為統計數據的生產者、發布者和使用者,沒有人比我們更了解大數據的意義、價值和力量。「用大數據打造統計基礎數據『第二軌』」,深刻闡明了國家統計局應用大數據的戰略思想和戰略思維。目前,國家統計局已經與17家企業簽訂利用大數據戰略合作框架協議,在貿易統計、價格統計、交通運輸統計、農業統計等多個領域取得重要進展。我們不僅要直接應用大數據,還要在推動數據開放和共享、建立和統一相關應用標准,實施國家大數據創新驅動戰略等方面,發揮應有作用。
中國統計人還要成為數據文化的倡導者和傳播者。在宣傳統計工作、弘揚數據文化方面,統計人有著天然的優勢和便利。家喻戶曉的GDP、CPI、PPI、PMI等統計拳頭產品,大型的經濟普查、人口普查、一套表聯網直報等重要統計事件,為宣傳統計、傳播數據文化發揮了重要而積極的作用。我們還可以做得更好,也有理由做得更好。中國統計也要創建類似美國普查局的LEHD—工作單位和家庭住址的縱向動態系統,當超級颶風「桑迪」來襲,該系統大顯神通,成功幫助紐約市政府組織救災,並迅速對災害影響作出准確評估。這樣的統計「明星」產品,能夠使人們更加信賴數據、依靠數據,推動數據融入政府管理、商業運營和社會治理以及人們的日常生活。
近年來,國家統計局在統計文化宣傳方面做了大量工作,精心打造了統計網站、中國統計開放日、統計微訊微信等一系列新的統計宣傳平台,政府統計的形象和公信力不斷提升。今後更要以啟沃公眾數據意識為己任,以記錄中華民族復興的偉大進程為使命,從更大的視野,以更宏大的敘事,講述中國的統計故事,書寫中國的統計歷史,把數據文化理念播撒得更廣、更深、更遠。
尼採在《查拉圖斯特拉如是說》中有這樣一句話:在有力量的地方,數字這位女主人就會生成,她更有力量。數據不僅代表「真正的事實」,還蘊藏著事物的發展規律。隨著大數據時代的到來,數據資源及其開發利用正逐漸成為決定和影響各國核心競爭力的關鍵因素。中國不僅要做數據大國,更要成為數據強國。
我們這代統計人註定無法甘於淡泊和平凡,唯有順應時代要求,以更先進的理念、更開放的姿態、更高超的技術積極擁抱大數據,廣泛應用大數據,生產出更多更具競爭力的統計產品,才能在智能時代、智慧城市建設以及實現國家治理現代化的進程中,續寫政府統計新的輝煌。
最近我讀了塗子沛先生的《數據之巔》這本書,我深深的被作者的思考的深度和數據的力量所震撼。全書從數據角度出發,以美國政府歷史以來「依數治國」的成功經驗來闡釋數據帶給社會帶來的挑戰與變革。
進入21世紀第二個十年以來,隨著互聯網信息技術的普及與廣泛應用,大數據時代正式到來。時代的變革意味著新的發展機遇與挑戰,要想在數據浪潮當中立於不敗之地,這就需要我們在精確的掌握數據之後,通過數據的創新來創造未來。
精確的掌握數據,需要從認識數據開始。簡而言之,數據就是體現客觀事實的表象,是客觀性與抽象性有機結合的產物,容不得半點虛假。我們不能否認的是,所有的美好都是在限制之後的,而能夠有效地進行限制,且又能夠得到大家的一致認可客觀現實,唯有那一張便捷的紙片上數據與文字的組合體,其實這就是數據文化的基礎。數據創造價值准備的基礎從側面印證了中國的四大發明印刷術是西方國家文明的基礎。
所謂的大數據時代就是在當下高度發展科技能讓更多的數據得以保存。保存下來的數據是一種依據,更是一種工具。世間萬物的發展都呈現各種各樣的規律性,數量龐大且規律復雜,很難讓我們掌握,但是一旦轉換成數據保存之後,從數據的角度去分析規律變化的軌跡,能夠很容易掌握並加以運用。而我作為基層執法工作者,運用數據進行執法,以控制數據達到預期管理預期,是這本書給予我最大的啟發。
古代中國傳統的執法者,是通過簡單甚至帶有粗暴的手段對執法對象進行強制管理,執法效果雖然容易操作,且直觀,但是這是一種凌駕於規律之上,片面的追求短期效果的低級執法模式。進入新中國以來,尤其是改革開放以來,我國堅持依法治國,黨的十八屆四中全會更提出了全面推進依法治國的新常態,這是數據文化的有力體現,是我黨在大數據時代下,一項重大舉措。
我認為,大數據時代下運用數據進行執法,是執法能力現代化的利器。我從事交通執法這個職業已經數載,經歷過從無到有,又逐漸的從有變成無。這個前後並不矛盾,從前的「無」是法律不健全,無章可循,有章難循狀態。只能夠自身黨性約束和對事物客觀理解進行執法,甚至有的時候片面的依靠上級,人類對事物的理解具有局限性,這難免會造成決策錯誤。
從無到有,是法律慢慢健全,法律的約束更加全面,但有的時候簡單的照本宣科,眉毛鬍子一把抓,也就成了教條主義。而從有到無,是一種利用客觀的數據,以法律為准則,通過科學執法,將數據調整趨於合理。類似國家利用經濟規律宏觀調控國民經濟,用一隻看不見的「大手」將全國的經濟發展形勢引導至合理增長的區間。數據合理了,管理預期也就達到了。相對於我們有肉眼去觀察,顯得更為精確,且具很高的可信度。這樣一來,對我們基層執法工作者帶來的巨大的福利,我們從此以後再也不用擔心對工作進展情況不了解而心急火燎了。
在大數據時代變革的今天,客觀、精確、理性和邏輯的「數據文化」理念是推進國家治理體系和治理能力的現代化利器。大數據時代下的執法行為更是離不開數據,只有充分的利用數據化管理、數據化創新,才能在當前數據浪潮當中主動適應新常態,科學地實現新突破和新作為。
《數據之巔》讀後感這是塗子沛先生關於大數據的第二本書,讀了以後可以說是振聾發聵,醍醐灌頂。
第一本書本身就寫得很棒了,其主要是從美國現代社會應用大數據成功解決的許多問題入手,說出了大數據的實際用處。而這本書抽絲剝繭從歷史上美國對於數據的發展帶給我們啟迪。
1、數據分權
何為民主,何為共和,如何防範多數人的暴政?基於這個問題美國給出了參議院代表的共和與眾議院代表的民主,權利與義務統一,即投票與納稅都按所代表的的人口來。
這里就誕生了對精確人口掌控的需求。基於這一點,逐漸養成了按數據說話的傳統。並逐漸將單一的人口數量統計擴展到宗教,種族,性別,年齡。
2、數據引領改革
之前是北美大陸種植煙草亟需黑奴,美國解放後煙草行業敗落。後來棉花興起,死灰復燃。北方工業化也需要勞動力。黑人自由就發瘋的言論源於統計上的失誤,錯誤稀釋原因因基數不同。一項戰役向大海進軍完全依靠准確數據搶掠補給。謝爾曼格蘭特。背後的原因:維護美國的統一,(解放黑奴後其的生計太難),動員黑奴使其轉敗為勝。
3、數據推動技術
用數據研究社會,普通人的歷史。統計學將研究粒度縮小到一個個人。加菲爾德將普查上升到了專業部門。迅速上升的統計內容,不斷增加的人口給數據處理提出了挑戰。於是技術創新製表機誕生了(數據處理),依靠這個IBM發展壯大,商業模式:只租不賣設備及服務。
4、數據爭取權益
量化提高質量。經濟發展帶來勞資沖突,政治,道德失范。這時候為了改善工人生活又依靠數據興起了數據分析法,成本收益分析法又在美國水利方面大顯身手,繼而福特車的風波也加速了成本收益分析法傳播同時依靠數據公開使得企業不斷提升產品質量,並將人的價值考慮進來。
5、抽樣
運用抽樣的方法降低數據處理的工作量,省時省力。蓋洛普引領的總統預測,亂世佳人的精準預測,准確定位。把數據引入電影工業。質量管理大師戴明將統計方法引入質量管理領域,成就日本經濟奇跡。
⑵ 《智能時代》讀後心得
吳軍博士的《智能時代》一書,介紹了數據的產生,發展以及過渡到大數據的過程;詳細介紹了大數據的特點,及人工智慧對思維方式的促進轉變;闡明了技術革命對各類型產業發展的推動;從辯證的角度詳列大數據智能時代帶來的負面影響和對策;展望了大數據的前景和對知識精英的素質要求。整體上深入淺出,通俗易懂。對我這個「門外漢」來說,技術科普類書籍寫出了故事性,加深了興趣,收獲頗多!
一、數據引起的對抗。 數據成為重要資源,那麼佔有了大規模,各類型的數據信息,就把握了商機,把握了主動。因此數據資源的爭奪必將趨於激烈,並且波及政治、經濟、生活等方面。美國打著信息安全的幌子,制約華為在5G領域的全面鋪開,根本上還是數據信息領域的主動權爭奪。「棱鏡門」,「維基解密」等系列曝光的信息安全問題,都是由美國主導。利用技術優勢,美國佔有了大量數據資源全球監控,甚至不顧及敵我,不顧及外交,不顧及游戲規則,幾近「瘋狂」。因為他們看到了大數據發展的潛在影響,想要大量佔有數據資源。有爭奪就有保護,保護更多的建立在技術層面。我國的中興被美國晶元公司「卡了脖子」,龐大的「軀體」轟然倒下。現在「列強們」又故技重施,想要制裁華為,理由還是數據安全。所以數據的保護擴展到技術、科技層面,對抗和突破也趨於白熱化。對於數據本身,在互聯網時代本身就真假難辨,那麼數據質量的差異也會產生對抗。同領域、同模式的項目,質量差異導致的結果不盡相同,誰能夠把握數據背後的真相,這要根據數據的數量規模、維度、時效來製作模型,那麼收集數據的手段必然帶來多樣的爭奪。所有智能化的設備都成為感測器、記錄儀,誰又能佔有最大的份額呢?
二、 數據展示的力量。 閱讀《智能時代》,我忽然眼界開闊了。因為過往的典型故事背後是大數據智能分析的支撐。以色列農業的驚人成就給人類食品生產供應帶來了福音;美國勇士籃球隊短期高效的成績提高給了籃球愛好者超高的震撼。 華爾街投資大神、對沖基金公司橋水創始人瑞·達利歐在其代表作《原則》中提到了自己工作的方法,其實也是大數據思維的一種模式,可以說,他的成功也是大數據使用的一個成功版本。生活中,商業采購,個人定製,精準貼心服務哪一件都有大數據在展示力量,我們已經與大數據「水乳交融」。目前大數據智能時代才剛剛興起,它的力量在未來各領域必將帶來更多更大的變化。
三、數據帶來的隱憂。 沒有人、集團、國家喜歡赤裸裸地暴露在公眾面前,沒有一點隱私。本書中也提到了保護隱私的一些方法,有很強的借鑒意義。但是大數據確實讓我們享受了便利,同時又不得不模糊了隱私保護的概念,甚至根本意識不到便利背後的隱私泄露。作為國家機器的重要部分,國防和軍隊面對大數據該怎麼權衡呢?保守秘密——毋庸置疑。怎麼保護?這個課題就有點復雜,管理、教育、技術防範、制度約束都不能缺失。我認為關鍵在人,關鍵在忠誠。任何科技的影響都有規律可循,都可以有防範措施方法,但是忠誠缺失,任何方法都無濟於事。有了忠誠,就有了自覺,提高了警覺,警醒自己不觸紅線。——所以政治合格是根本。當然利用大數據分析竊取國防軍隊秘密的案例肯定會有,那麼研究保護技術,做好內部風險防控是必不可少的。真心期盼在智能時代有合理、人性的解決辦法。
四、迎接智能時代。 二十年以前,人們的交流方式以寫信為主,當時人們的文字寫作能力應該很強;後來有了BP機,可以留言,有事可以找公用電話交流,感覺到聯系起來挺方便,只是月服務費不少,設備的價格不菲;那時的網路流行QQ聊天,發郵件,時髦的年輕人喜歡到遍地開花的網吧泡一泡;十年前手機開始流行,打電話發信息讓許多人愛不釋手,就是信號不太好,價格挺貴,一般人不好「養活」;同時期還出現了價格優惠的「小靈通」,但是流行兩三年後消失在勞苦大眾的記憶里;再後來智能手機發展起來,生活方式徹底變了天——智能時代改變了太多生活。聊天用微信,購物用微信,視頻用微信,看書用手機,游戲用手機,看電視機電影用手機——手機已經無所不能。特別是駕車出行,高德、網路、騰訊三家導航軟體非常給力,「路盲」基本消失,雖然偶爾也有導錯的現象,但是如果細心些,你會發現只要每次版本更新,它的服務越來越可心。這是科技發展的成果,它的背後是大數據的影子。今後,只要感覺到生活方便了,你就說那是大數據時代的標志,准沒錯。大數據智能時代來了,我們做點什麼呢?首先要 做到融入不能排斥 。比如智能駕駛,許多搞這項研究的學者也懷著深深的擔憂——一旦智能識別出錯,將會帶來災難性問題——但是仍然積極投入到智能駕駛的研究測試當中,更多引入復雜模型來確保真正的萬無一失。這種科學精神就是面對科技發展的良好狀態。作為普通公眾,積極的學習大數據的知識,搞清來龍去脈,用尊重科學的心態融入大數據智能時代,充分運用大數據成果就是最好的科學素養。另外 大數據也帶來新的思維,我們需要熟練運用這樣的思維 。太多的不確定性是人類恐懼的根源。但是大數據研究的方法在數據足夠充分的時候能夠降低不確定性,減少人類思維上的畏懼感。所以提供客觀真實的數據也是普通大眾的一項工作。經常用大數據的思維來澆灌一下傳統的腦袋,相信也會帶來滿滿的新科技感。 大數據促使人類創新創業拓展發展領域 。不要擔心智能時代搶走了多數人的工作,智能時代是個漸進的過程,在工作崗位淘汰的過程中,新的崗位會被「擠」出來,人類的創新能力會被「壓」出來;物質領域豐富了,精神領域的開發前景廣闊。
⑶ 如何踐行教育家精神心得體會
踐行教育家精神的心得體會可以歸納為以下幾點:
一、以學生為中心,關注全面發展
二、追求教育創新,提升教育質量
三、勇於承擔社會責任,促進教育公平
綜上所述,踐行教育家精神需要我們深入理解教育家的核心理念,將其融入日常教育實踐,並不斷反思與提升。只有這樣,我們才能成為具有教育家精神的教育工作者,為培養更多優秀人才貢獻自己的力量。
⑷ 新媒體遇上大數據 隱私保護仍是「痛點」
新媒體遇上大數據隱私保護仍是「痛點」_數據分析師考試
大數據並不是簡單地買幾台伺服器把數據存下來,而是要將大數據與實際接軌,突出工具化、服務化和實用化,讓大數據能解決具體問題。
新媒體在運用大數據過程中,一個非常關鍵的問題是隱私保護。在使用大數據過程中保護個人隱私,需要司法機關發布有效的法律判例,對侵犯隱私行為形成輿論壓力;同時要加強大數據隱私保護研究
7月9日,金磚國家領導人第七次會晤在俄羅斯烏法舉行。
當天,人民日報全媒體平台「烹」出一張圖解:《金磚國家大數據》。
這並非新媒體與大數據的第一次結合。
前不久由中國社會科學院發布的《中國新媒體發展報告(2015)》稱,中國新媒體已超越「跨行業」,初步呈現「全產業」發展新趨勢。移動化、大數據化和智能化的新媒體已成為具備高強滲透度的產業基因,可深度融合於經濟產業各領域之中。
專注研究新媒體與數據新聞的清華大學新聞與傳播學院教授沈陽認為,當前,大數據在新媒體中應用廣泛,貫穿於新媒體發展的各個方面。
大數據運用廣泛
人民日報全媒體平台發布的《金磚國家大數據》,只是近期新媒體運用大數據的一個例子。
早在大數據這一概念進入公眾視野不久,便有媒體將大數據運用於新聞報道之中。
2014年春運期間,互聯網上就出現了一張可以呈現國內春節人口遷徙實況的地圖,這張盡顯中國春運遷徙實景的圖片更是登上央視《新聞聯播》進行權威盤點。自從春運開始,這張地圖多次被電視、報紙等媒體引用,成為用數據解讀春運狀況的一個樣本。據稱,這是國內首個運用大數據播報國內春節人口遷徙實況的地圖。
相較於電視、報紙等傳統媒體,新媒體對大數據的運用更加頻繁,作為新媒體代表之一的「澎湃新聞」便是如此:今年2月,「澎湃新聞」出品了《大數據告訴你,梅西的右腳現在有多恐怖》;3月,《落馬老虎大數據:除「軍虎」外,69人共花兩千多年入省部級》「走」下生產線。
在沈陽看來,將大數據應用於報道內容,只是新媒體運用大數據的一個方面。
在與《法制日報》記者交談過程中,沈陽列出了新媒體「遇上」大數據的多個「場景」:在做新媒體功能研發時,哪些要素需要增強、哪些需要減弱,可以運用大數據分析進行修正;在策劃選題時,可以通過大數據分析篩選出哪些話題關注度高、最熱門;在內容推送過程中,可以利用大數據對用戶興趣進行分析並梳理出來;新聞發出後,受眾有哪些評論、轉發多少、分享情況,這些都可以通過大數據獲得結果;即便是在廣告投放環節,也可以通過大數據分析、預判廣告與用戶是否匹配、廣告對新媒體品牌價值是否會有影響。
「大數據貫穿於新媒體的各個方面。」沈陽說。
「完美」並非絕對
盡管大數據很重要、很管用,但沈陽很早就發現,「大數據,沒有看起來那麼美」。
「數據真實性是一個不可迴避的問題。目前,水軍、僵屍粉、刷閱讀量等情況都有存在,這在一定程度上給數據提供了虛假成分。」沈陽說,不過,從宏觀上講,可以控制這些虛假成分。
如何控制「水分」?沈陽舉例說,在統計微博粉絲時,可以將范圍縮小至帶V的粉絲,因為帶V粉絲造假成本高;如果要更精準的數據,可以進一步縮小范圍,如近期活躍的帶V粉絲。「當然,這樣篩選數據會面臨高成本的問題」。
沈陽在早期的研究中還關注到大數據的另外兩個問題:樣本代表性和相關性誤差。
沈陽認為,我們不可能搜集到全數據,而與大數據相關的形容詞往往是大規模、精準、細化,在調用如此「完美」的數據時,如何注意情景和樣本的適用性是一個問題。正如網路民意與現實民意的討論,微博不代表網路,網路不代表社會,朋友圈也是小圈子,跳出圈子看世界不容易,切勿陷入相同的悖論。在選樣、測量、誤差校正不盡如人意時,好數據將劣化,大數據將虛化。
相關性誤差,則更偏向於技術。沈陽認為,在要素構成簡單的情景中,可以利用大數據,基於一定演算法和模型對變數元素進行相關性分析。然而,在復雜系統中,僅有相關性解釋還不夠,易走偏。比如一個明顯不對的結論:一個城市的網頁數越高,其網路形象就越好。雖然數據統計證實了網頁數和網路形象存在一般的正相關,但忽略了負面事件帶來的網頁量爆發等,因此結論也是不科學的。相關性要真正體現在數據之間、數據與真實事件影射的現象之間、真實事件的客觀聯繫上。
「大數據並不是簡單地買幾台伺服器把數據存下來,而是要將大數據與實際接軌,突出工具化、服務化和實用化,讓大數據能解決具體問題。」沈陽說。
隱私保護日益突出
基於多年研究大數據的心得,沈陽認為,新媒體在運用大數據過程中,一個非常關鍵的問題是,隱私保護。「目前,隱私保護問題越來越突出」。
此前,《法制日報》記者在參加一次論壇時,工信部相關部門一名負責人曾表達這樣的觀點:大數據時代到來後,隨著互聯網技術及其應用的發展,大數據、雲計算技術方式的使用,個人信息的價值不斷被挖掘、被使用,但是安全保護是一個很大的問題。
工信部相關部門這名負責人認為,大數據時代的個人信息安全面臨三大問題。
「一個問題是數據未經授權被搜集,這種情況發生得比較多。」工信部相關部門這名負責人說,第二個問題是超出范圍使用。所謂超范圍使用,是指企業通過一定的所謂合法的形式拿到個人信息,但是拿到以後使用信息的目的、用途以及范圍,並非信息權利主體所熟知。這種情況包括,當互聯網對一些數據信息進行更進一步或者深層挖掘時,這種挖掘在一定程度上有可能侵犯了權利主體的權益。因為互聯網企業之前可能告訴權利主體,獲取信息是基於特定的目的或者在特定范圍內使用,但是進一步挖掘就有可能觸犯了約定。第三個問題是數據保存。曾有網路社區存儲的幾千萬用戶信息被黑客拿到後轉賣給第三家,最後造成信息濫用。
在新媒體廣泛使用、深度挖掘大數據的時代,如何保護公民隱私?
工信部相關部門這名負責人提出了一個觀點:信息保護人人有責。
「在信息安全保護方面,很重要的一點在於,權利人自身要加強保護意識。」工信部相關部門這名負責人說,現在,不管是要求政府部門監管,還是要求司法機關動起來,一個重要前提是人人保護信息,這樣才可能使信息保護問題得到根本解決,否則只靠公權力機關單方面去做是沒有用的。當然,在提倡人人保護信息的同時,執法保護也是一個很重要的方面。
在沈陽看來,在使用大數據過程中保護個人隱私,一方面需要司法機關發布有效的法律判例,對侵犯隱私行為形成輿論壓力;另一方面要加強大數據隱私保護研究。
以上是小編為大家分享的關於新媒體遇上大數據隱私保護仍是「痛點」的相關內容,更多信息可以關注環球青藤分享更多干貨
⑸ 讀《大數據時代》心得體會
讀《大數據時代》心得體會(一)
讀了《大數據時代》後,感覺到一個大變革的時代將要來臨。雖然還不怎麼明了到底要徹底改變哪些思維和操作方式,但顯然作者想要“終結”或顛覆一些傳統上作為我們思維和生存基本理論、方法和方式。在這樣的想法面前,我的思想被強烈震撼,不禁戰栗起來。
“在小數據時代,我們會假象世界是怎樣運作的,然後通過收集和分析數據來驗證這種假想。”“隨著由假想時代到數據時代的過渡,我們也很可能認為我們不在需要理論了。”書中幾乎肯定要顛覆統計學的理論和方法,也試圖通過引用《連線》雜志主編安德森的話“量子物理學的理論已經脫離實際”來“終結”量子力學。對此我很高興,因為統計學和量子力學都是我在大學學習時學到抽筋都不能及格的課目。但這兩個理論實在太大,太權威,太基本了,我想我不可能靠一本書就能擺脫這兩個讓我頭疼一輩子的東西。作者其實也不敢旗幟鮮明地提出要顛覆它們的論點,畢竟還是在前面加上了“很可能認為”這樣的保護傘。
近幾十年,我們總是在遇到各種各樣的新思維。在新思維面前我們首先應該做到的就是要破和立,要改變自己的傳統,跟上時代的腳步。即使腦子還跟不上,嘴巴上也必須跟上,否則可能會被扣上思想僵化甚至阻礙世界發展的大帽子。既然大數據是“通往未來的必然改變”,那我就必須“不受限於傳統的思維模式和特定領域里隱含的固有偏見”,跟作者一起先把統計學和量子力學否定掉再說。反正我也不喜歡、也學不會它們。
當我們人類的數據收集和處理能力達到拍位元組甚至更大之後,我們可以把樣本變成全部,再加上有能力正視混雜性而忽視精確性後,似乎真的可以拋棄以抽樣調查為基礎的統計學了。但是由統計學和量子力學以及其他很多“我們也很可能認為我們不再需要的”理論上溯,它們幾乎都基於一個共同的基礎——邏輯。要是不小心把邏輯或者邏輯思維或者邏輯推理一起給“不再需要”的話,就讓我很擔心了!
《大數據時代》第16頁“大數據的核心就是預測”。邏輯是——描述時空信息“類”與“類”之間長時間有效不變的先後變化關系規則。兩者似乎是做同一件事。可大數據要的“不是因果關系,而是相關關系”,“知道是什麼就夠了,沒必要知道為什麼”,而邏輯學四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明確規定”任何事物都有其存在的充足理由。且邏輯推理三部分——歸納邏輯、溯因邏輯和演繹邏輯都是基於因果關系。兩者好像又是對立的。在同一件事上兩種方法對立,應該只有一個結果,就是要否定掉其中之一。這就是讓我很擔心的原因。
可我卻不能拭目以待,像旁觀者一樣等著哪一個“脫穎而出”,因為我身處其中。問題不解決,我就沒法思考和工作,自然就沒法活了!更何況還有兩個更可怕的事情。
其一:量子力學搞了一百多年,為了處理好混雜性問題,把質量和速度結合到能量上去了,為了調和量子力學與相對論的矛盾,又搞出一個量子場論,再七搞八搞又有了蟲洞和羅森橋,最後把四維的時空彎曲成允許時間旅行的樣子,恨不得馬上造成那可怕的時間旅行機器。唯一阻止那些“愛因斯坦”們“瞎胡鬧”的就是因果關系,因為爸爸就是爸爸,兒子就是兒子。那麼大數據會不會通過正視混雜性,放棄因果關系最後反而搞出時間機器,讓爸爸不再是爸爸,兒子不再是兒子了呢?其二:人和機器的根本區別在於人有邏輯思維而機器沒有。《大數據時代》也擔心“最後做出決策的將是機器而不是人”。如果真的那一天因為放棄邏輯思維而出現科幻電影上描述的機器主宰世界消滅人類的結果,那我還不如現在就趁早跳樓。
還好我知道自己對什麼統計學、量子力學、邏輯學和大數據來說都是門外漢,也許上面一大篇都是在胡說八道,所謂的擔心根本不存在。但問題出現了,還是解決的好,不然沒法睡著覺。自己解決不了就只能依靠專家來指點迷津。
所以想向《大數據時代》的作者提一個合理化建議:把這本書繼續寫下去,至少加一個第四部分——大數據時代的邏輯思維。
讀《大數據時代》心得體會(二)
信息時代的到來,我們感受到的是技術變化日新月異,隨之而來的是生活方式的轉變„„我們這樣評論著的信息時代已經變為曾經。如今,大數據時代成為炙手可熱的話題。筆者在這說明信息和數據,只是試圖首先說明信息、數據的關系和不同,也試圖說明,為什麼信息時代轉變為了大數據時代?大數據時代帶給了我們什麼?
信息和數據的定義。維基網路解釋:信息,又稱資訊,是一個高度概括抽象概念,是一個發展中的動態范疇,是進行互相交換的內容和名稱,信息的界定沒有統一的定義,但是信息具備客觀、動態、傳遞、共享、經濟等特性卻是大家的共識。數據:或稱資料,指描述事物的符號記錄,是可定義為意義的實體,它涉及到事物的存在形式。它是關於事件之一組離散且客觀的事實描述,是構成信息和知識的原始材料。數據可分為模擬數據和數字數據兩大類。數據指計算機加工的“原料”,如圖形、聲音、文字、數、字元和符號等。從定義看來,數據是原始的處女地,需要耕耘。信息則是已經處理過的可以傳播的資訊。信息時代依賴於數據的爆發,只是當數據爆發到無法駕馭的狀態,大數據時代應運而生。這是否是《大數據時代》一書所未曾闡述的背景材料?
在《大數據時代》一書中,大數據時代與小數據時代的區別:1、思維慣例。大數據時代區別與轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道“是什麼”,而不需要知道“為什麼”。作者語言絕對,卻反思其本質區別。數據的更多、更雜,導致應用主意只能盡量觀察,而不是傾其所有進行推理?這也是明智之舉2、使用用途。小數據停留在說明過去,大數據用驅動過去來預測未來。筆者認為數據的用途意在何為,與數據本身無關,而與數據的解讀者有關,而相關關系更有利於預測未來。3、結構。大數據更多的體現在海量非結構化數據本身與處理方法的整合。大數據更像是理論與現實齊頭並進,理論來創立處理非結構化數據的方法,處理結果與未來進行驗證。4、分析基礎。大數據是在互聯網背景下數據從量變到質變的過程。筆者認為,小數據時代也即是信息時代,是大數據時代的前提,大數據時代是升華和進化,本質是相輔相成,而並非相離互斥。
數據未來的故事。數據的發展,給我們帶來什麼預期和啟示?銀行業天然有大數據的潛質。客戶數據、交易數據、管理數據等海量數據不斷增長,海量機遇和挑戰也隨之而來,適應變革,適者生存。我們可以有更廣闊的業務發展空間、可以有更精準的決策判斷能力、可以有更優秀的經營管理能力„„可以這些都基於數據的收集、整理、駕馭、分析能力,基於脫穎而出的創新思維和執行。因此,建設“數據倉庫”,培養“數據思維”,養成“數據治理”,創造“數據融合”,實現“數據應用”才能擁抱“大數據”時代,從數據中攫取價值,笑看風雲變換,穩健贏取未來。
讀《大數據時代》心得體會(三)
這本書里主要介紹的是大數據在現代商業運作上的應用,以及它對現代商業運作的影響。
《大數據時代》這本書的結構框架遵從了學術性書籍的普遍方式。也既,從現象入手,繼而通過對現象的解剖提出對這一現象的解釋。然後在通過解釋在對未來進行預測,並對未來可能出現的問題提出自己看法與對策。
下面來重點介紹《大數據時代》這本書的主要內容。
《大數據時代》開篇就講了Google通過人們在搜索引擎上搜索關鍵字留下的數據提前成功的預測了20XX年美國的H1N1的爆發地與傳播方向以及可能的潛在患者的事情。Google的預測比政府提前將近一個月,相比之下政府只能夠在流感爆發一兩個周之後才可以弄到相關的數據。同時Google的預測與政府數據的相關性高達97%,這也就意味著Google預測數據的置信區間為3%,這個數字遠遠小於傳統統計學上的常規置信區間5%!而這個數字就是大數據時代預測結果的相對准確性與事件的可預測性的最好證明!通過這一事以及其他的案例,維克托提出了在大數據時代“樣本=總體”的思想。我們都知道當樣本無限趨近於總體的時候,通過計算得到的描述性數據將無限的趨近於事件本身的性質。而之前採取的“樣本<總體”的做法很大程度上無法做到更進一步的描述事物,因為之前的時代數據的獲取與存儲處理本身有很大的難度只導致人們採取抽樣的方式來測量事物。而互聯網終端與計算機的出現使數據的獲取、存儲與處理難度大大降低,因而相對准確性更高的“樣本=總體”的測算方式將成為大數據時代的主流,同時大數據時代本身也是建立在大批量數據的存儲與處理的基礎之上的。
接下來,維克多又通過了IBM追求高精確性的電腦翻譯計劃的失敗與Google只是將所有出現過的相應的文字語句掃描並儲存在詞庫中,所以無論需要翻譯什麼,只要有聯系Google詞庫就會出現翻譯,雖然有的時候的翻譯很無厘頭,但是大多數時候還是正確的,所以Google的電腦翻譯的計劃的成功,表明大數據時代對准確性的追求並不是特別明顯,但是相反大數據時代是建立在大數據的基礎住上的,所以大數據時代追求的是全方位覆蓋的數字測度而不管其准確性到底有多高,因為大量的數據會湮埋少數有問題的數據所帶來的影響。同時大量的數據也會無限的逼近事物的原貌。
之後,維克托又預測了一個在大數據時代催生的重要職業——數據科學家,這是一群數學家、統計學與編程家的綜合體,這一群人將能夠從獲取的數據中得到任何他們想要的結果。換言之,只要數據充足我們的一切外在的與內在的我們不想讓他人知道的東西都見會在這一群傢伙的面前展現得淋漓盡致。所以為了避免個人隱私在大數據時代被這一群人利用,維克托建議將這一群人分為兩部分,一部分使用數據為商業部門服務,而另一群人則負責審查這一些人是否合法的獲得與應用數據,是否侵犯了個人隱私。
無論如何,大數據時代將會到來,不管我們接受還是不接受!
我覺得《大數據時代》這本書寫的很好,很值得一讀。因為會給我們很多啟發,比如你在相關的社交網站發表的言論或者照片都很有可能被“數據科學家”們利用,從而再將相關數據賣給各大網店。不過,事實就是我們將會成為被預測被引誘的對象。所以說,小心你在網上留下的痕跡。
我喜歡這本書是因為它給我展現了一個新的世界。
讀《大數據時代》心得體會(四)
利用周末,一口氣讀完了塗子沛的大作《大數據》。這本書很好看,行文如流水,引人入勝。書中,你讀到的不是大數據技術,更多是與大數據相關的美國政治、經濟、社會和文化的演進。作為一名信息化從業者,讀完全書,我深刻感受到了在信息化方面中國與美國的各自特色,也看到了我們與美國的差距。有幾個方面的體會,但窺一斑基本能見全貌。
一是政府業務資料庫公開的廣度和深度。近年來,隨著我國信息公開工作的推進,各級政府都在通過政府門戶網站建設積極推進網上政務信息公開,但我們的信息公開,現階段還主要是政府的政策、法律法規、標准、公文通告、工作職責、辦事指南、工作動態、人事任免等行政事務性信息的公開。當然,實時的政府業務資料庫公開也已經取得很大進步。在中國政府門戶網,可以查詢一些公益資料庫,如國家統計局的經濟統計數據、環保部數據中心提供的全國空氣、水文等數據,氣象總局提供的全國氣象數據,民航總局提供的全國航班信息等;訪問各個部委的網站,也能查到很多業務數據,如發改委的項目立項庫、工商局的企業信用庫、國土資源部的土地證庫、國家安監總局的煤礦安全預警信息庫、各類工程招標信息庫等等。這是一個非常大的進步,也是這么多年電子政務建設所取得的成效和價值!但是,政務業務資料庫中的很多數據目前還沒有實現公開,很多數據因為部門利益和“保密”等因素,還僅限於部門內部人員使用,沒有公開給公眾;已經公開的數據也僅限於一部分基本信息和統計信息,更多數據還沒有被公開。從《大數據》一書中記錄的美國數據公開的實踐來看,美國在數據公開的廣度和深度都比較大。美國人認為“用納稅人的錢收集的數據應該免費提供給納稅人使用”,盡管美國政府事實上對數據的公開也有抵觸,但民願不可違,美國政府的業務數據越來越公開,尤其是在奧巴馬政府簽署《透明和開放的政府》文件後,開放力度更加大。DATA.GOV是美國聯盟政府新建設的統一的數據開放門戶網站,網站按照原始數據、地理數據和數據應用工具來組織開放的各類數據,累積開放378529個原始和地理數據集。在中國尚沒有這樣的數據開放的網站。另外,由於制度的不同,美國業務信息公開的深度也很大,例如,網上公布的美國總統“白宮訪客記錄”公布的甚至是造訪白宮的各類人員的相關信息;美國的FedSpending網站,能夠逐條跟蹤、記錄、分析聯邦政府每一筆財政支出。這在中國,目前應該還沒有實現。
二是對政府對業務數據的分析。目前,中國各級政府網站所提供的業務數據基本上還是數據表,部分網站能提供一些統計圖,但很少能實現數據的跨部門聯機分析、數據關聯分析。這主要是由於以往中國政務信息化的建設還處於部門建設階段。美國在這方面的步伐要快一些,美國的DATA.GOV網站,不僅提供原始數據和地理數據,還提供很多數據工具,這些工具很多都是公眾、公益組織和一些商業機構提供的,這些應用為數據處理、聯機分析、基於社交網路的關聯分析等方面提供手段。如DATA.GOV上提供的白宮訪客搜索工具,可以搜尋到訪客信息,並將白宮訪客與其他微博、社交網站等進行關聯,提高訪客的透明度。
三是關於個人數據的隱私。在美國,公民的隱私和自有不可侵犯,美國沒有個人身份證,也不能建立基於個人身份證號碼的個人信息的關聯,建立“中央數據銀行”的提案也一再被否決。這一點,在中國不是問題,每個公民有唯一的身份信息,通過身份證信息,可以獲取公民的基本信息。今後,隨著國家人口基礎資料庫等基礎資源庫的建設,公民的社保、醫療等其他相關信息也能方便獲取,當然信息還是限於政府部門使用,但很難完全保證整合起來的這些個人信息不被泄露或者利用。
數據是信息化建設的基礎,兩個大國在大數據領域的互相學習和借鑒,取長補短,將推進世界進入信息時代。我欣喜地看到,美國政府20XX年啟動了“大數據研發計劃”,投資2億美元,推動大數據提取、存儲、分析、共享、可視化等領域的研究,並將其與超級計算和互聯網投資相提並論。同年,中國政府20XX年也批復了“十二五國家政務信息化建設工程規劃”,總投資額估計在幾百億,專門有人口、法人、空間、宏觀經濟和文化等五大資源庫的五大建設工程。開放、共享和智能的大數據的時代已經來臨!
我精心推薦