㈠ 工業互聯網與大數據應用是干什麼的
1. 工業互聯網與大數據應用概述
工業互聯網是一個全球性的網路,通過連接各種機器和設備,利用先進的感測器、控制和軟體應用程序,形成了一個龐大的網路系統。這一系統能夠結合大數據分析,合理做出決策,從而提高生產力、節省成本,並推動設備技術的升級。
2. 產品創新加速
通過大數據技術,可以挖掘和分析客戶動態數據,幫助客戶參與到產品的需求分析和產品設計等創新活動中。例如,福特公司利用大數據技術優化了其電動車產品。
3. 產品故障診斷與預測
工業互聯網和大數據技術的結合使得產品故障實時診斷成為可能。例如,在馬航MH370搜尋過程中,波音公司的發動機運轉數據對於確定飛機的失聯路徑起到了關鍵作用。
4. 工業物聯網生產線的大數據應用
現代化工業製造生產線安裝有大量感測器,通過收集和分析這些數據,可以實現設備診斷、用電量分析、能耗分析、質量事故分析等功能。
5. 工業供應鏈的分析和優化
大數據分析已成為電子商務企業提升供應鏈競爭力的重要手段。例如,京東商城通過大數據提前分析和預測各地商品需求量,從而提高配送和倉儲效能。
6. 產品銷售預測與需求管理
通過大數據分析,可以看出區域性需求佔比、產品品類的市場受歡迎程度以及最常見的組合形式,以此來調整產品策略和鋪貨策略。
7. 生產計劃與排程
大數據可以給予更詳細的數據信息,發現歷史預測與實際的偏差概率,通過智能的優化演算法,制定預計劃排產,並監控計劃與現場實際的偏差,動態調整計劃排產。
8. 產品質量管理與分析
在傳統的製造業中,大數據正面臨著各種挑戰。通過大數據質量管理分析平台,可以得到很多嶄新的分析結果,幫助企業應對這些挑戰。
9. 工業污染與環保檢測
大數據對於環保具有巨大價值。通過分析和可視化環保數據,可以提高社會對環保問題的關注,並監督企業進行污染治理。
總結:工業互聯網與大數據應用在各個領域都具有巨大的價值潛力。然而,要實現這些價值,還需要解決大數據意識建立和數據孤島等問題。
㈡ 工業大數據包括哪些工業大數據應用在哪些方面
【導讀】眾所周知,第二次世界大戰也稱為工業革命,可見工業在生活中是多麼的重要,現在工業也已經趨於人工智慧化,不過還是處於前期的觀望試運行階段,今天我們就來了解一下大數據在工業方面的應用有哪些,一起來看看吧!
大數據在工業中的應用有哪些?
從需求角度來看,目前國內製造企業對大數據的需求較為明顯,但很多用戶仍處於觀望和試驗階段,不知道如何進行。因此,對於大數據服務提供商來說,有必要結合行業業務,尋找合適的應用場景。
工業大數據的應用有哪些?
互聯網給傳統製造業帶來了挑戰,而互聯網大數據可以為企業管理者和參與者提供一個新的視角,通過技術創新和開發,以及對數據的全面感知、收集、分析和共享,來審視製造業價值鏈。所帶來的巨大價值正在被傳統企業所認可。
然而,不同於目前互聯網大數據的火熱,工業大數據的應用對於企業來說有著很高的門檻。與互聯網不同,行業大數據與行業業務密切相關。因此,對企業的行業積累和對行業業務的深入了解都有很高的要求。此外,行業內的大數據分析比較准確,邏輯關系非常清晰。
工業大數據的應用有哪些?大數據在工業中的應用有哪些?通過大數據分析,企業可以使部門之間的數據更加協調,從而准確預測市場需求缺口。同時,通過更加靈活的工藝管理和更加自動化的生產設備裝配調度,實現智能化生產。然而,據我們所知,在中國從事大數據應用的公司並不多。然而,擁有自主知識產權和核心技術的企業並不多。要做好工業大數據的應用,需要有一套嚴謹的數據推理邏輯,以及平台和工具。目前,國內大數據應用企業還沒有足夠的能力滿足這一需求。
然而,仍有一些大型工業企業處於應用的前沿。以唐山鋼鐵集團為例,通過引進國際最先進的生產線,實現實時數據採集,與涵宇等企業合作,深入挖掘行業大數據價值,實時生產監控、生產調度、產品質量管理、能源控制等。此外,先進製造企業基於大數據在行業中的應用,將產品、機器、資源、人有機結合,推動基於大數據分析和應用的製造業智能化轉型。
綜上所述,在「互聯網+」時代,用戶需求具有實時性、小批量、碎片化、更新快等特點,對傳統製造業提出了挑戰。工業大數據有其鮮明的特點。隨著信息化和工業化的融合,產業大數據的應用為製造業轉型升級開辟了一條新途徑。深入探討工業大數據在製造過程中的應用場景和應用,將有利於更好地發揮其支撐作用。
以上就是小編今天給大家整理的關於「工業大數據包括哪些?工業大數據應用在哪些方面?」的相關內容,希望對大家有所幫助。總的來說,大數據的價值不可估量,未來發展前景也是非常可觀的,因此有興趣的小夥伴,盡早著手學習哦!
㈢ 工業大數據應用在哪些方面
工業大數據應用將帶來工業企業創新和變革的新時代。通過互聯網、移動物聯網等帶來的低成本感知、高速移動連接、分布式計算和高級分析,信息技術和全球工業系統正在深入融合,給全球工業帶來深刻的變革,創新企業的研發、生產、運營、營銷和管理方式。這些創新不同行業的工業企業帶來了更快的速度、更高的效率和更高的洞察力。工業大數據的典型應用包括產品創新、產品故障診斷與預測、工業生產線物聯網分析、工業企業供應鏈優化和產品精準營銷等諸多方面。本文將對工業大數據在製造企業的應用場景進行逐一梳理。
1.加速產品創新
客戶與工業企業之間的交互和交易行為將產生大量數據,挖掘和分析這些客戶動態數據,能夠幫助客戶參與到產品的需求分析和產品設計等創新活動中,為產品創新作出貢獻。
2.產品故障診斷與預測
這可以被用於產品售後服務與產品改進。無所不在的感測器、互聯網技術的引入使得產品故障實時診斷變為現實,大數據應用、建模與模擬技術則使得預測動態性成為可能。
3.生產線的大數據應用
現代化工業製造生產線安裝有數以千計的小型感測器,來探測溫度、壓力、熱能、振動和雜訊。因為每隔幾秒就收集一次數據,利用這些數據可以實現很多形式的分析,包括設備診斷、用電量分析、能耗分析、質量事故分析(包括違反生產規定、零部件故障)等。首先,在生產工藝改進方面,在生產過程中使用這些大數據,就能分析整個生產流程,了解每個環節是如何執行的。
4.工業供應鏈分析和優化
當前,大數據分析已經是很多電子商務企業提升供應鏈競爭力的重要手段。例如,電子商務企業京東商城,通過大數據提前分析和預測各地商品需求量,從而提高配送和倉儲的效能,保證了次日貨到的客戶體驗。RFID等產品電子標識技術、物聯網技術以及移動互聯網技術能幫助工業企業獲得完整的產品供應鏈的大數據,利用這些數據進行分析,將帶來倉儲、配送、銷售效率的大幅提升和成本的大幅下降。
5.產品銷售預測與需求管理
通過大數據來分析當前需求變化和組合形式。大數據是一個很好的銷售分析工具,通過歷史數據的多維度組合,可以看出區域性需求佔比和變化、產品品類的市場受歡迎程度以及最常見的組合形式、消費者的層次等,以此來調整產品策略和鋪貨策略。
6.生產計劃與排程
製造業面對多品種小批量的生產模式,數據的精細化自動及時方便的採集(MES/DCS)及多變性導致數據劇烈增大,再加上十幾年的信息化的歷史數據,對於需要快速響應的APS來說,是一個巨大的挑戰。
大數據可以給予我們更詳細的數據信息,發現歷史預測與實際的偏差概率,考慮產能約束、人員技能約束、物料可用約束、工裝模具約束,通過智能的優化演算法,制定預計劃排產,並監控計劃與現場實際的偏差,動態的調整計劃排產。
幫我們規避「畫像」的缺陷,直接將群體特徵直接強加給個體(工作中心數據直接改變為具體一個設備、人員、模具等數據)。通過數據的關聯分析並監控它,我們就能計劃未來。雖然,大數據略有瑕疵,只要得到合理的應用,大數據會變成我們強大的武器。當年,福特問大數據的客戶需求是什麼?而回答是「一匹更快的馬」,而不是現在已經普及的汽車。所以,在大數據的世界裡,創意、直覺、冒險精神和知識野心尤為重要。
7.產品質量管理與分析
傳統的製造業正面臨著大數據的沖擊,在產品研發、工藝設計、質量管理、生產運營等各方面都迫切期待著有創新方法的誕生,來應對工業背景下的大數據挑戰。例如在半導體行業,晶元在生產過程中會經歷許多次摻雜、增層、光刻和熱處理等復雜的工藝製程,每一步都必須達到極其苛刻的物理特性要求,高度自動化的設備在加工產品的同時,也同步生成了龐大的檢測結果。
8.工業污染與環保檢測
工業大數據應用的價值潛力巨大。但是,實現這些價值還有很多工作要做。一個是大數據意識建立的問題。過去,也有這些大數據,但由於沒有大數據的意識,數據分析手段也不足,很多實時數據被丟棄或束之高閣,大量數據的潛在價值被埋沒。還有一個重要問題是數據孤島的問題。很多工業企業的數據分布於企業中的各個孤島中,特別是在大型跨國公司內,要想在整個企業內提取這些數據相當困難。因此,工業大數據應用一個重要議題是集成應用。
工業大數據的應用將推動工業企業基於對內外部環境相關數據的採集、存儲和分析,實現企業與內外部關聯環境的感知和互聯,並利用工業大數據分析技術開展挖掘分析,支撐工業企業基於數據進行決策管控,提升企業決策管控的針對性、有效性。