導航:首頁 > 數據分析 > 哪些神經網路在數據挖掘中的運用

哪些神經網路在數據挖掘中的運用

發布時間:2025-01-17 02:51:34

Ⅰ 數據挖掘技術都有哪些功能

數據挖掘是從大量的、不完全的、有雜訊的、模糊的、隨機的數據集中識別有效的、新穎的、潛在有用的,以及最終可理解的模式的非平凡過程。它是一門涉及面很廣的交叉學科,包括機器學習、數理統計、神經網路資料庫、模式識別、粗糙集、模糊數學等相關技術。

數據挖掘的技術,可分為:統計方法、機器學習方法、神經網路方法和資料庫方法。統計方法,可細分為:回歸分析(多元回歸、自回歸等)、判別分析(貝葉斯判別、CBR、遺傳演算法、貝葉斯信念網路等。神經網路方法,可細分為:前向神經網路(BP演算法等)、自組織神經網路(自組織特徵映射、競爭學習等)等。資料庫方法主要是基於可視化的多維數據分析或OLAP方法,另外還有面向屬性的歸納方法。

大數據挖掘方法有哪些

直接數據挖掘:目標是利用可用的數據建立一個模型,這個模型對剩餘的數據,對一個特定的變數(可以理解成資料庫中表的屬性,即列)進行描述。

間接數據挖掘:目標中沒有選出某一具體的變數,用模型進行描述;而是在所有的變數中建立起某種關系。

數據挖掘的方法

神經網路方法

神經網路由於本身良好的魯棒性、自組織自適應性、並行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。

遺傳演算法

遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法,是一種仿生全局優化方法。遺傳演算法具有的隱含並行性、易於和其它模型結合等性質使得它在數據挖掘中被加以應用。

決策樹方法

決策樹是一種常用於預測模型的演算法,它通過將大量數據有目的分類,從中找到一些有價值的,潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。

粗集方法

粗集理論是一種研究不精確、不確定知識的數學工具。粗集方法有幾個優點:不需要給出額外信息;簡化輸入信息的表達空間;演算法簡單,易於操作。粗集處理的對象是類似二維關系表的信息表。

覆蓋正例排斥反例方法

它是利用覆蓋所有正例、排斥所有反例的思想來尋找規則。首先在正例集合中任選一個種子,到反例集合中逐個比較。與欄位取值構成的選擇子相容則捨去,相反則保留。按此思想循環所有正例種子,將得到正例的規則(選擇子的合取式)。

統計分析方法

在資料庫欄位項之間存在兩種關系:函數關系和相關關系,對它們的分析可採用統計學方法,即利用統計學原理對資料庫中的信息進行分析。可進行常用統計、回歸分析、相關分析、差異分析等。

模糊集方法

即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。

數據挖掘任務

關聯分析

兩個或兩個以上變數的取值之間存在某種規律性,就稱為關聯。數據關聯是資料庫中存在的一類重要的、可被發現的知識。關聯分為簡單關聯、時序關聯和因果關聯。關聯分析的目的是找出資料庫中隱藏的關聯網。一般用支持度和可信度兩個閥值來度量關聯規則的相關性,還不斷引入興趣度、相關性等參數,使得所挖掘的規則更符合需求。

聚類分析

聚類是把數據按照相似性歸納成若干類別,同一類中的數據彼此相似,不同類中的數據相異。聚類分析可以建立宏觀的概念,發現數據的分布模式,以及可能的數據屬性之間的相互關系。

分類

分類就是找出一個類別的概念描述,它代表了這類數據的整體信息,即該類的內涵描述,並用這種描述來構造模型,一般用規則或決策樹模式表示。分類是利用訓練數據集通過一定的演算法而求得分類規則。分類可被用於規則描述和預測。

預測

預測是利用歷史數據找出變化規律,建立模型,並由此模型對未來數據的種類及特徵進行預測。預測關心的是精度和不確定性,通常用預測方差來度量。

時序模式

時序模式是指通過時間序列搜索出的重復發生概率較高的模式。與回歸一樣,它也是用己知的數據預測未來的值,但這些數據的區別是變數所處時間的不同。

偏差分析

在偏差中包括很多有用的知識,資料庫中的數據存在很多異常情況,發現資料庫中數據存在的異常情況是非常重要的。偏差檢驗的基本方法就是尋找觀察結果與參照之間的差別。

Ⅲ 數據挖掘的常用方法都有哪些

在數據分析中,數據挖掘工作是一個十分重要的工作,可以說,數據挖掘工作占據數據分析工作的時間將近一半,由此可見數據挖掘的重要性,要想做好數據挖掘工作需要掌握一些方法,那麼數據挖掘的常用方法都有哪些呢?下面就由小編為大家解答一下這個問題。
首先給大家說一下神經網路方法。神經網路是模擬人類的形象直覺思維,在生物神經網路研究的基礎上,根據生物神經元和神經網路的特點,通過簡化、歸納、提煉總結出來的一類並行處理網路,利用其非線性映射的思想和並行處理的方法,用神經網路本身結構來表達輸入和輸出的關聯知識。神經網路方法在數據挖掘中十分常見。
然後給大家說一下粗糙集方法。粗糙集理論是一種研究不精確、不確定知識的數學工具。粗糙集處理的對象是類似二維關系表的信息表。目前成熟的關系資料庫管理系統和新發展起來的數據倉庫管理系統,為粗糙集的數據挖掘奠定了堅實的基礎。粗糙集理論能夠在缺少先驗知識的情況下,對數據進行分類處理。在該方法中知識是以信息系統的形式表示的,先對信息系統進行歸約,再從經過歸約後的知識庫抽取得到更有價值、更准確的一系列規則。因此,基於粗糙集的數據挖掘演算法實際上就是對大量數據構成的信息系統進行約簡,得到一種屬性歸約集的過程,最後抽取規則。
而決策樹方法也是數據挖掘的常用方法之一。決策樹是一種常用於預測模型的演算法,它通過一系列規則將大量數據有目的分類,從中找到一些有價值的、潛在的信息。它的主要優點是描述簡單,分類速度快,易於理解、精度較高,特別適合大規模的數據處理,在知識發現系統中應用較廣。它的主要缺點是很難基於多個變數組合發現規則。在數據挖掘中,決策樹常用於分類。
最後給大家說的是遺傳演算法。遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法。數據挖掘是從大量數據中提取人們感興趣的知識,這些知識是隱含的、事先未知的、潛在有用的信息。因此,許多數據挖掘問題可以看成是搜索問題,資料庫或者數據倉庫為搜索空間,挖掘演算法是搜索策略。
上述的內容就是我們為大家講解的數據挖掘工作中常用的方法了,數據挖掘工作常用的方法就是神經網路方法、粗糙集方法、決策樹方法、遺傳演算法,掌握了這些方法才能夠做好數據挖掘工作。

Ⅳ 神經網路的分類

神經網路有多種分類方式,例如,按網路性能可分為連續型與離散型網路,確專定型與隨機型網路屬:按網路拓撲結構可分為前向神經網路與反饋神經網路。本章土要簡介前向神經網路、反饋神經網路和自組織特徵映射神經網路。
前向神經網路是數據挖掘中廣為應用的一種網路,其原理或演算法也是很多神經網路模型的基礎。徑向基函數神經網路就是一種前向型神經網路。
Hopfield神經網路是反饋網路的代表。Hvpfi}ld網路的原型是一個非線性動力學系統,目前,已經在聯想記憶和優化計算中得到成功應用。
模擬退火演算法是為解決優化計算中局部極小問題提出的。Baltzmann機是具有隨機輸出值單元的隨機神經網路,串列的Baltzmann機可以看作是對二次組合優化問題的模擬退火演算法的具體實現,同時它還可以模擬外界的概率分布,實現概率意義上的聯想記憶。
自組織競爭型神經網路的特點是能識別環境的特徵並自動聚類。自組織竟爭型神經網路已成功應用於特徵抽取和大規模數據處理。

Ⅳ 常見的數據挖掘方法有哪些

在大數據時代,數據挖掘是最關鍵的工作。大數據的挖掘是從海量、不完全的、有雜訊的、模糊的、隨機的大型資料庫中發現隱含在其中有價值的、潛在有用的信息和知識的過程,也是一種決策支持過程。其主要基於人工智慧,機器學習,模式學習,統計學等。通過對大數據高度自動化地分析,做出歸納性的推理,從中挖掘出潛在的模式,可以幫助企業、商家、用戶調整市場政策、減少風險、理性面對市場,並做出正確的決策。目前,在很多領域尤其是在商業領域如銀行、電信、電商等,數據挖掘可以解決很多問題,包括市場營銷策略制定、背景分析、企業管理危機等。大數據的挖掘常用的方法有分類、回歸分析、聚類、關聯規則、神經網路方法、Web 數據挖掘等。這些方法從不同的角度對數據進行挖掘。
(1)分類。分類是找出資料庫中的一組數據對象的共同特點並按照分類模式將其劃分為不同的類,其目的是通過分類模型,將資料庫中的數據項映射到摸個給定的類別中。可以應用到涉及到應用分類、趨勢預測中,如淘寶商鋪將用戶在一段時間內的購買情況劃分成不同的類,根據情況向用戶推薦關聯類的商品,從而增加商鋪的銷售量。
(2)回歸分析。回歸分析反映了資料庫中數據的屬性值的特性,通過函數表達數據映射的關系來發現屬性值之間的依賴關系。它可以應用到對數據序列的預測及相關關系的研究中去。在市場營銷中,回歸分析可以被應用到各個方面。如通過對本季度銷售的回歸分析,對下一季度的銷售趨勢作出預測並做出針對性的營銷改變。
(3)聚類。聚類類似於分類,但與分類的目的不同,是針對數據的相似性和差異性將一組數據分為幾個類別。屬於同一類別的數據間的相似性很大,但不同類別之間數據的相似性很小,跨類的數據關聯性很低。
(4)關聯規則。關聯規則是隱藏在數據項之間的關聯或相互關系,即可以根據一個數據項的出現推導出其他數據項的出現。關聯規則的挖掘過程主要包括兩個階段:第一階段為從海量原始數據中找出所有的高頻項目組;第二極端為從這些高頻項目組產生關聯規則。關聯規則挖掘技術已經被廣泛應用於金融行業企業中用以預測客戶的需求,各銀行在自己的ATM 機上通過捆綁客戶可能感興趣的信息供用戶了解並獲取相應信息來改善自身的營銷。
(5)神經網路方法。神經網路作為一種先進的人工智慧技術,因其自身自行處理、分布存儲和高度容錯等特性非常適合處理非線性的以及那些以模糊、不完整、不嚴密的知識或數據為特徵的處理問題,它的這一特點十分適合解決數據挖掘的問題。典型的神經網路模型主要分為三大類:第一類是以用於分類預測和模式識別的前饋式神經網路模型,其主要代表為函數型網路、感知機;第二類是用於聯想記憶和優化演算法的反饋式神經網路模型,以Hopfield 的離散模型和連續模型為代表。第三類是用於聚類的自組織映射方法,以ART 模型為代表。雖然神經網路有多種模型及演算法,但在特定領域的數據挖掘中使用何種模型及演算法並沒有統一的規則,而且人們很難理解網路的學習及決策過程。
(6)Web數據挖掘。Web數據挖掘是一項綜合性技術,指Web 從文檔結構和使用的集合C 中發現隱含的模式P,如果將C看做是輸入,P 看做是輸出,那麼Web 挖掘過程就可以看做是從輸入到輸出的一個映射過程。其流程:發現資源;信息選擇和預處理;模式識別;模式分析。
當前越來越多的Web 數據都是以數據流的形式出現的,因此對Web 數據流挖掘就具有很重要的意義。目前常用的Web數據挖掘演算法有:PageRank演算法,HITS演算法以及LOGSOM 演算法。這三種演算法提到的用戶都是籠統的用戶,並沒有區分用戶的個體。目前Web 數據挖掘面臨著一些問題,包括:用戶的分類問題、網站內容時效性問題,用戶在頁面停留時間問題,頁面的鏈入與鏈出數問題等。在Web 技術高速發展的今天,這些問題仍舊值得研究並加以解決。

Ⅵ 有哪些深度神經網路模型

卷積神經元(Convolutional cells)和前饋神經元非常相似,除了它們只跟前一神經細胞層的部分神經元有連接。因為它們不是和某些神經元隨機連接的,而是與特定范圍內的神經元相連接,通常用來保存空間信息。這讓它們對於那些擁有大量局部信息,比如圖像數據、語音數據(但多數情況下是圖像數據),會非常實用。

解卷積神經元恰好相反:它們是通過跟下一神經細胞層的連接來解碼空間信息。這兩種神經元都有很多副本,它們都是獨立訓練的;每個副本都有自己的權重,但連接方式卻完全相同。可以認為,這些副本是被放在了具備相同結構的不同的神經網路中。這兩種神經元本質上都是一般意義上的神經元,但是,它們的使用方式卻不同。

池化神經元和插值神經元(Pooling and interpolating cells)經常和卷積神經元結合起來使用。它們不是真正意義上的神經元,只能進行一些簡單的操作。

池化神經元接受到來自其它神經元的輸出過後,決定哪些值可以通過,哪些值不能通過。在圖像領域,可以理解成是把一個圖像縮小了(在查看圖片的時候,一般軟體都有一個放大、縮小的功能;這里的圖像縮小,就相當於軟體上的縮小圖像;也就是說我們能看到圖像的內容更加少了;在這個池化的過程當中,圖像的大小也會相應地減少)。這樣,你就再也不能看到所有的像素了,池化函數會知道什麼像素該保留,什麼像素該舍棄。

插值神經元恰好是相反的操作:它們獲取一些信息,然後映射出更多的信息。額外的信息都是按照某種方式製造出來的,這就好像在一張小解析度的圖片上面進行放大。插值神經元不僅僅是池化神經元的反向操作,而且,它們也是很常見,因為它們運行非常快,同時,實現起來也很簡單。池化神經元和插值神經元之間的關系,就像卷積神經元和解卷積神經元之間的關系。

均值神經元和標准方差神經元(Mean and standard deviation cells)(作為概率神經元它們總是成對地出現)是一類用來描述數據概率分布的神經元。均值就是所有值的平均值,而標准方差描述的是這些數據偏離(兩個方向)均值有多遠。比如:一個用於圖像處理的概率神經元可以包含一些信息,比如:在某個特定的像素裡面有多少紅色。舉個例來說,均值可能是0.5,同時標准方差是0.2。當要從這些概率神經元取樣的時候,你可以把這些值輸入到一個高斯隨機數生成器,這樣就會生成一些分布在0.4和0.6之間的值;值離0.5越遠,對應生成的概率也就越小。它們一般和前一神經元層或者下一神經元層是全連接,而且,它們沒有偏差(bias)。

循環神經元(Recurrent cells )不僅僅在神經細胞層之間有連接,而且在時間軸上也有相應的連接。每一個神經元內部都會保存它先前的值。它們跟一般的神經元一樣更新,但是,具有額外的權重:與當前神經元之前值之間的權重,還有大多數情況下,與同一神經細胞層各個神經元之間的權重。當前值和存儲的先前值之間權重的工作機制,與非永久性存儲器(比如RAM)的工作機制很相似,繼承了兩個性質:

閱讀全文

與哪些神經網路在數據挖掘中的運用相關的資料

熱點內容
語音載入的文件在哪裡 瀏覽:928
無人機編程是什麼意思啊 瀏覽:539
百萬級數據如何遍歷 瀏覽:103
數據中心管理費用大概多少 瀏覽:867
weblogiclinux自啟動 瀏覽:819
蘋果退款打電話可以嗎 瀏覽:901
松江河招聘在哪個網站 瀏覽:868
手機數據線充電口一般是多少 瀏覽:150
近視眼散光的數據怎麼寫 瀏覽:984
數據實時處理能力是多少gb 瀏覽:302
iphone5s鍵盤設置 瀏覽:441
雅奇編程用什麼語言 瀏覽:153
什麼網站可以免費看動漫 瀏覽:300
三星數據流星怎麼打開 瀏覽:538
linuxnexus私服 瀏覽:499
flash效果工具 瀏覽:555
正在列印的文件怎麼取消列印 瀏覽:901
電腦網路不行關掉哪些 瀏覽:104
word從第三頁開始編頁碼 瀏覽:335
iphone來電通專業版 瀏覽:329

友情鏈接