『壹』 什麼是結構化數據和非結構化數據
1、結構化數據
結構化數據,簡單來說就是資料庫。結合到典型場景中更容易理解,比如企業ERP、財務系統;醫療HIS資料庫;教育一卡通;政府行政審批;其他核心資料庫等。
基本包括高速存儲應用需求、數據備份需求、數據共享需求以及數據容災需求。
2、非結構化數據
非結構化數據是數據結構不規則或不完整,沒有預定義的數據模型,不方便用資料庫二維邏輯表來表現的數據。包括所有格式的辦公文檔、文本、圖片、XML, HTML、各類報表、圖像和音頻/視頻信息等等。
3、半結構化數據
和普通純文本相比,半結構化數據具有一定的結構性,OEM(Object exchange Model)是一種典型的半結構化數據模型。
半結構化數據(semi-structured data)。在做一個信息系統設計時肯定會涉及到數據的存儲,一般我們都會將系統信息保存在某個指定的關系資料庫中。我們會將數據按業務分類,並設計相應的表,然後將對應的信息保存到相應的表中。
數據:
數據是指對客觀事件進行記錄並可以鑒別的符號,是對客觀事物的性質、狀態以及相互關系等進行記載的物理符號或這些物理符號的組合。它是可識別的、抽象的符號。
它不僅指狹義上的數字,還可以是具有一定意義的文字、字母、數字元號的組合、圖形、圖像、視頻、音頻等,也是客觀事物的屬性、數量、位置及其相互關系的抽象表示。例如,「0、1、2…」、「陰、雨、下降、氣溫」、「學生的檔案記錄、貨物的運輸情況」等都是數據。數據經過加工後就成為信息。
在計算機科學中,數據是所有能輸入計算機並被計算機程序處理的符號的介質的總稱,是用於輸入電子計算機進行處理,具有一定意義的數字、字母、符號和模擬量等的通稱。計算機存儲和處理的對象十分廣泛,表示這些對象的數據也隨之變得越來越復雜。
『貳』 什麼是結構化數據,非結構化數據
相對於結構化數據(即行數據,存儲在資料庫里,可以用二維表結構來邏輯表達實現的數據)而言,不方便用資料庫二維邏輯表來表現的數據即稱為非結構化數據,包括所有格式的辦公文檔、文本、圖片、XML、HTML、各類報表、圖像和音頻/視頻信息等等。
欄位可根據需要擴充,即欄位數目不定,可稱為半結構化數據,例如Exchange存儲的數據。
非結構化資料庫
在信息社會,信息可以劃分為兩大類。一類信息能夠用數據或統一的結構加以表示,我們稱之為結構化數據,如數字、符號;而另一類信息無法用數字或統一的結構表示,如文本、圖像、聲音、網頁等,我們稱之為非結構化數據。結構化數據屬於非結構化數據,是非結構化數據的特例
數據清洗從名字上也看的出就是把「臟」的「洗掉」。因為數據倉庫中的數據是面向某一主題的數據的集合,這些數據從多個業務系統中抽取而來而且包含歷史數據,這樣就避免不了有的數據是錯誤數據、有的數據相互之間有沖突,這些錯誤的或有沖突的數據顯然是我們不想要的,稱為「臟數據」。我們要按照一定的規則把「臟數據」「洗掉」,這就是數據清洗.而數據清洗的任務是過濾那些不符合要求的數據,將過濾的結果交給業務主管部門,確認是否過濾掉還是由業務單位修正之後再進行抽取。不符合要求的數據主要是有不完整的數據、錯誤的數據、重復的數據三大類。
(1)不完整的數據
這一類數據主要是一些應該有的信息缺失,如供應商的名稱、分公司的名稱、客戶的區域信息缺失、業務系統中主表與明細表不能匹配等。對於這一類數據過濾出來,按缺失的內容分別寫入不同Excel文件向客戶提交,要求在規定的時間內補全。補全後才寫入數據倉庫。
(2)錯誤的數據
這一類錯誤產生的原因是業務系統不夠健全,在接收輸入後沒有進行判斷直接寫入後台資料庫造成的,比如數值數據輸成全形數字字元、字元串數據後面有一個回車操作、日期格式不正確、日期越界等。這一類數據也要分類,對於類似於全形字元、數據前後有不可見字元的問題,只能通過寫SQL語句的方式找出來,然後要求客戶在業務系統修正之後抽取。日期格式不正確的或者是日期越界的這一類錯誤會導致ETL運行失敗,這一類錯誤需要去業務系統資料庫用SQL的方式挑出來,交給業務主管部門要求限期修正,修正之後再抽取。
(3)重復的數據
對於這一類數據——特別是維表中會出現這種情況——將重復數據記錄的所有欄位導出來,讓客戶確認並整理。
數據清洗是一個反復的過程,不可能在幾天內完成,只有不斷的發現問題,解決問題。對於是否過濾,是否修正一般要求客戶確認,對於過濾掉的數據,寫入Excel文件或者將過濾數據寫入數據表,在ETL開發的初期可以每天向業務單位發送過濾數據的郵件,促使他們盡快地修正錯誤,同時也可以做為將來驗證數據的依據。數據清洗需要注意的是不要將有用的數據過濾掉,對於每個過濾規則認真進行驗證,並要用戶確認。
隨著網路技術的發展,特別是Internet和Intranet技術的飛快發展,使得非結構化數據的數量日趨增大。這時,主要用於管理結構化數據的關系資料庫的局限性暴露地越來越明顯。因而,資料庫技術相應地進入了「後關系資料庫時代」,發展進入基於網路應用的非結構化資料庫時代。所謂非結構化資料庫,是指資料庫的變長紀錄由若干不可重復和可重復的欄位組成,而每個欄位又可由若干不可重復和可重復的子欄位組成。簡單地說,非結構化資料庫就是欄位可變的資料庫。
我國非結構化資料庫以北京國信貝斯(iBase)軟體有限公司的iBase資料庫為代表。IBase資料庫是一種面向最終用戶的非結構化資料庫,在處理非結構化信息、全文信息、多媒體信息和海量信息等領域以及Internet/Intranet應用上處於國際先進水平,在非結構化數據的管理和全文檢索方面獲得突破。它主要有以下幾個優點:
(1)Internet應用中,存在大量的復雜數據類型,iBase通過其外部文件數據類型,可以管理各種文檔信息、多媒體信息,並且對於各種具有檢索意義的文檔信息資源,如HTML、DOC、RTF、TXT等還提供了強大的全文檢索能力。
(2)它採用子欄位、多值欄位以及變長欄位的機制,允許創建許多不同類型的非結構化的或任意格式的欄位,從而突破了關系資料庫非常嚴格的表結構,使得非結構化數據得以存儲和管理。
(3)iBase將非結構化和結構化數據都定義為資源,使得非結構資料庫的基本元素就是資源本身,而資料庫中的資源可以同時包含結構化和非結構化的信息。所以,非結構化資料庫能夠存儲和管理各種各樣的非結構化數據,實現了資料庫系統數據管理到內容管理的轉化。
(4)iBase採用了面向對象的基石,將企業業務數據和商業邏輯緊密結合在一起,特別適合於表達復雜的數據對象和多媒體對象。
(5)iBase是適應Internet發展的需要而產生的資料庫,它基於Web是一個廣域網的海量資料庫的思想,提供一個網上資源管理系統iBase Web,將網路伺服器(WebServer)和資料庫伺服器(Database Server)直接集成為一個整體,使資料庫系統和資料庫技術成為Web的一個重要有機組成部分,突破了資料庫僅充當Web體系後台角色的局限,實現資料庫和Web的有機無縫組合,從而為在Internet/Intranet上進行信息管理乃至開展電子商務應用開辟了更為廣闊的領域。
(6)iBase全面兼容各種大中小型的資料庫,對傳統關系資料庫,如Oracle、Sybase、SQLServer、DB2、Informix等提供導入和鏈接的支持能力。
通過從上面的分析後我們可以預言,隨著網路技術和網路應用技術的飛快發展,完全基於Internet應用的非結構化資料庫將成為繼層次資料庫、網狀資料庫和關系資料庫之後的又一重點、熱點技術。