導航:首頁 > 數據分析 > 多選題資料庫可以分為哪些類型

多選題資料庫可以分為哪些類型

發布時間:2024-09-29 12:51:14

『壹』 論文數據分析方法有哪些

論文數據方法有多選題研究、聚類分析和權重研究三種。

1、多選題研究:多選題分析可分為四種類型包括:多選題、單選-多選、多選-單選、多選-多選。

拓展資料:

一、回歸分析

在實際問題中,經常會遇到需要同時考慮幾個變數的情況,比如人的身高與體重,血壓與年齡的關系,他們之間的關系錯綜復雜無法精確研究,以致於他們的關系無法用函數形式表達出來。為研究這類變數的關系,就需要通過大量實驗觀測獲得數據,用統計方法去尋找他們之間的關系,這種關系反映了變數間的統計規律。而統計方法之一就是回歸分析。

最簡單的就是一元線性回歸,只考慮一個因變數y和一個自變數x之間的關系。例如,我們想研究人的身高與體重的關系,需要搜集大量不同人的身高和體重數據,然後建立一個一元線性模型。接下來,需要對未知的參數進行估計,這里可以採用最小二乘法。最後,要對回歸方程進行顯著性檢驗,來驗證y是否隨著x線性變化。這里,我們通常採用t檢驗。

二、方差分析

在實際工作中,影響一件事的因素有很多,人們希望通過實驗來觀察各種因素對實驗結果的影響。方差分析是研究一種或多種因素的變化對實驗結果的觀測值是否有顯著影響,從而找出較優的實驗條件或生產條件的一種數理統計方法。

人們在實驗中所觀察到的數量指標稱為觀測值,影響觀測值的條件稱為因素,因素的不同狀態稱為水平,一個因素可能有多種水平。

在一項實驗中,可以得到一系列不同的觀測值,有的是處理方式不同或條件不同引起的,稱為因素效應。有的是誤差引起的,稱做實驗誤差。方差分析的主要工作是將測量數據的總變異按照變異原因的不同分解為因素效應和試驗誤差,並對其作出數量分析,比較各種原因在總變異中所佔的重要程度,作為統計推斷的依據。

例如,我們有四種不同配方下生產的元件,想判斷他們的使用壽命有無顯著差異。在這里,配方是影響元件使用壽命的因素,四種不同的配方成為四種水平。可以利用方差分析來判斷。

三、判別分析

判別分析是用來進行分類的統計方法。我來舉一個判別分析的例子,想要對一個人是否有心臟病進行判斷,可以取一批沒有心臟病的病人,測其一些指標的數據,然後再取一批有心臟病的病人,測量其同樣指標的數據,利用這些數據建立一個判別函數,並求出相應的臨界值。

這時候,對於需要判別的病人,還是測量相同指標的數據,將其帶入判別函數,求得判別得分和臨界值,即可判別此人是否屬於有心臟病的群體。

四、聚類分析

聚類分析同樣是用於分類的統計方法,它可以用來對樣品進行分類,也可以用來對變數進行分類。我們常用的是系統聚類法。首先,將n個樣品看成n類,然後將距離最近的兩類合並成一個新類,我們得到n-1類,再找出最接近的兩類加以合並變成n-2類,如此下去,最後所有的樣品均在一類,將上述過程畫成一張圖。在圖中可以看出分成幾類時候每類各有什麼樣品。

比如,對中國31個省份的經濟發展情況進行分類,可以通過收集各地區的經濟指標,例如GDP,人均收入,物價水平等等,並進行聚類分析,就能夠得到不同類別數量下是如何分類的。

五、主成分分析

主成分分析是對數據做降維處理的統計分析方法,它能夠從數據中提取某些公共部分,然後對這些公共部分進行分析和處理。

在用統計分析方法研究多變數的課題時,變數個數太多就會增加課題的復雜性。人們自然希望變數個數較少而得到的信息較多。在很多情形,變數之間是有一定的相關關系的,當兩個變數之間有一定相關關系時,可以解釋為這兩個變數反映此課題的信息有一定的重疊。

主成分分析是對於原先提出的所有變數,將重復的變數(關系緊密的變數)刪去多餘,建立盡可能少的新變數,使得這些新變數是兩兩不相關的,而且這些新變數在反映課題的信息方面盡可能保持原有的信息。

最經典的做法就是用F1(選取的第一個線性組合,即第一個綜合指標)的方差來表達,即Var(F1)越大,表示F1包含的信息越多。因此在所有的線性組合中選取的F1應該是方差最大的,故稱F1為第一主成分。

如果第一主成分不足以代表原來P個指標的信息,再考慮選取F2即選第二個線性組合,為了有效地反映原來信息,F1已有的信息就不需要再出現在F2中,用數學語言表達就是要求Cov(F1, F2)=0,則稱F2為第二主成分,依此類推可以構造出第三、第四,……,第P個主成分。

六、因子分析

因子分析是主成分分析的推廣和發展,它也是多元統計分析中降維的一種方法。因子分析將多個變數綜合為少數幾個因子,以再現原始變數與因子之間的相關關系。

在主成分分析中,每個原始變數在主成分中都佔有一定的分量,這些分量(載荷)之間的大小分布沒有清晰的分界線,這就造成無法明確表述哪個主成分代表哪些原始變數,也就是說提取出來的主成分無法清晰的解釋其代表的含義。

因子分析解決主成分分析解釋障礙的方法是通過因子軸旋轉。因子軸旋轉可以使原始變數在公因子(主成分)上的載荷重新分布,從而使原始變數在公因子上的載荷兩級分化,這樣公因子(主成分)就能夠用哪些載荷大的原始變數來解釋。以上過程就解決了主成分分析的現實含義解釋障礙。

例如,為了了解學生的學習能力,觀測了許多學生數學,語文,英語,物理,化學,生物,政治,歷史,地理九個科目的成績。為了解決這個問題,可以建立一個因子模型,用幾個互不相關的公共因子來代表原始變數。我們還可以根據公共因子在原始變數上的載荷,給公共因子命名。

例如,一個公共因子在英語,政治,歷史變數上的載荷較大,由於這些課程需要記憶的內容很多,我們可以將它命名為記憶因子。以此類推,我們可以得到幾個能評價學生學習能力的因子,假設有記憶因子,數學推導因子,計算能力因子等。

接下來,可以計算每個學生的各個公共因子得分,並且根據每個公共因子的方差貢獻率,計算出因子總得分。通過因子分析,能夠對學生各方面的學習能力有一個直觀的認識。

七、典型相關分析

典型相關分析同樣是用於數據降維處理,它用來研究兩組變數之間的關系。它分別對兩組變數提取主成分。從同一組內部提取的主成分之間互不相關。用從兩組之間分別提取的主成分的相關性來描述兩組變數整體的線性相關關系。

閱讀全文

與多選題資料庫可以分為哪些類型相關的資料

熱點內容
ps入門必備文件 瀏覽:348
以前的相親網站怎麼沒有了 瀏覽:15
蘋果6耳機聽歌有滋滋聲 瀏覽:768
怎麼徹底刪除linux文件 瀏覽:379
編程中字體的顏色是什麼意思 瀏覽:534
網站關鍵詞多少個字元 瀏覽:917
匯川am系列用什麼編程 瀏覽:41
筆記本win10我的電腦在哪裡打開攝像頭 瀏覽:827
醫院單位基本工資去哪個app查詢 瀏覽:18
css源碼應該用什麼文件 瀏覽:915
編程ts是什麼意思呢 瀏覽:509
c盤cad佔用空間的文件 瀏覽:89
不銹鋼大小頭模具如何編程 瀏覽:972
什麼格式的配置文件比較主流 瀏覽:984
增加目錄word 瀏覽:5
提取不相鄰兩列數據如何做圖表 瀏覽:45
r9s支持的網路制式 瀏覽:633
什麼是提交事務的編程 瀏覽:237
win10打字卡住 瀏覽:774
linux普通用戶關機 瀏覽:114

友情鏈接