㈠ 僅從數據存儲角度看,資料庫和百度雲,微盤,這些網盤有什麼區別和聯系新手入門,多謝大神!
資料庫是數據存儲的本質,網路雲,微盤,華為企業雲硬碟,這些都是載體。他們都是通過資料庫來實現。
㈡ 從資料庫最終用戶角度看,資料庫系統的結構分為哪些
由軟體、資料庫和數據管理員組成。其軟體主要包括操作系統、各種宿主語言、實用程序以及資料庫管理系統。資料庫由資料庫管理系統統一管理,數據的插入、修改和檢索均要通過資料庫管理系統進行。數據管理員負責創建、監控和維護整個資料庫,使數據能被任何有權使用的人有效使用。
資料庫管理員一般是由業務水平較高、資歷較深的人員擔任。資料庫系統是為適應數據處理的需要而發展起來的一種較為理想的數據處理的核心機構。計算機的高速處理能力和大容量存儲器提供了實現數據管理自動化的條件。
(2)角度在資料庫里如何存儲擴展閱讀
資料庫研究跨越了計算機應用、系統軟體和理論三個領域,其中應用促進了新系統的發展,新系統帶來了新的理論研究,而理論研究在前兩個領域起著指導作用。資料庫系統的出現是計算機應用的一個里程碑,它使計算機應用有科學計算向數據處理轉變。
因此,計算機可以用於各行各業,甚至在家裡。在此之前,文件系統能夠處理持久數據,但它們不提供對數據任何部分的快速訪問,而這對於數據量不斷增加的應用程序至關重要。
㈢ 圖片該如何存儲在資料庫裡面,存放路徑好還是以二進制存放在資料庫里好
個人推薦保存圖片路徑。因為如果你要存到二進制到資料庫,客戶訪問的時候你還有個復原過程。至於你說的管理不方便指的是什麼?你保存相對路徑不就行了。
㈣ 數據倉庫在資料庫里處於什麼層級
簡而言之,資料庫是面向事務的設計,數據倉庫是面向主題設計的。
資料庫一般存儲在線交易數據,數據倉庫存儲的一般是歷史數據。
資料庫設計是盡量避免冗餘,一般採用符合範式的規則來設計,數據倉庫在設計是有意引入冗餘,採用反範式的方式來設計。
資料庫是為捕獲數據而設計,數據倉庫是為分析數據而設計,它的兩個基本的元素是維表和事實表。維是看問題的角度,比如時間,部門,維表放的就是這些東西的定義,事實表裡放著要查詢的數據,同時有維的ID。
單從概念上講,有些晦澀。任何技術都是為應用服務的,結合應用可以很容易地理解。以銀行業務為例。資料庫是事務系統的數據平台,客戶在銀行做的每筆交易都會寫入資料庫,被記錄下來,這里,可以簡單地理解為用資料庫記帳。數據倉庫是分析系統的數據平台,它從事務系統獲取數據,並做匯總、加工,為決策者提供決策的依據。比如,某銀行某分行一個月發生多少交易,該分行當前存款余額是多少。如果存款又多,消費交易又多,那麼該地區就有必要設立ATM了。
顯然,銀行的交易量是巨大的,通常以百萬甚至千萬次來計算。事務系統是實時的,這就要求時效性,客戶存一筆錢需要幾十秒是無法忍受的,這就要求資料庫只能存儲很短一段時間的數據。而分析系統是事後的,它要提供關注時間段內所有的有效數據。這些數據是海量的,匯總計算起來也要慢一些,但是,只要能夠提供有效的分析數據就達到目的了。
數據倉庫,是在資料庫已經大量存在的情況下,為了進一步挖掘數據資源、為了決策需要而產生的,它決不是所謂的「大型資料庫」。那麼,數據倉庫與傳統資料庫比較,有哪些不同呢?讓我們先看看W.H.Inmon關於數據倉庫的定義:面向主題的、集成的、與時間相關且不可修改的數據集合。
「面向主題的」:傳統資料庫主要是為應用程序進行數據處理,未必按照同一主題存儲數據;數據倉庫側重於數據分析工作,是按照主題存儲的。這一點,類似於傳統農貿市場與超市的區別—市場裡面,白菜、蘿卜、香菜會在一個攤位上,如果它們是一個小販賣的;而超市裡,白菜、蘿卜、香菜則各自一塊。也就是說,市場里的菜(數據)是按照小販(應用程序)歸堆(存儲)的,超市裡面則是按照菜的類型(同主題)歸堆的。
「與時間相關」:資料庫保存信息的時候,並不強調一定有時間信息。數據倉庫則不同,出於決策的需要,數據倉庫中的數據都要標明時間屬性。決策中,時間屬性很重要。同樣都是累計購買過九車產品的顧客,一位是最近三個月購買九車,一位是最近一年從未買過,這對於決策者意義是不同的。
「不可修改」:數據倉庫中的數據並不是最新的,而是來源於其它數據源。數據倉庫反映的是歷史信息,並不是很多資料庫處理的那種日常事務數據(有的資料庫例如電信計費資料庫甚至處理實時信息)。因此,數據倉庫中的數據是極少或根本不修改的;當然,向數據倉庫添加數據是允許的。
數據倉庫的出現,並不是要取代資料庫。目前,大部分數據倉庫還是用關系資料庫管理系統來管理的。可以說,資料庫、數據倉庫相輔相成、各有千秋。
補充一下,數據倉庫的方案建設的目的,是為前端查詢和分析作為基礎,由於有較大的冗餘,所以需要的存儲也較大。為了更好地為前端應用服務,數據倉庫必須有如下幾點優點,否則是失敗的數據倉庫方案。
1.效率足夠高。客戶要求的分析數據一般分為日、周、月、季、年等,可以看出,日為周期的數據要求的效率最高,要求24小時甚至12小時內,客戶能看到昨天的數據分析。由於有的企業每日的數據量很大,設計不好的數據倉庫經常會出問題,延遲1-3日才能給出數據,顯然不行的。
2.數據質量。客戶要看各種信息,肯定要准確的數據,但由於數據倉庫流程至少分為3步,2次ETL,復雜的架構會更多層次,那麼由於數據源有臟數據或者代碼不嚴謹,都可以導致數據失真,客戶看到錯誤的信息就可能導致分析出錯誤的決策,造成損失,而不是效益。
3.擴展性。之所以有的大型數據倉庫系統架構設計復雜,是因為考慮到了未來3-5年的擴展性,這樣的話,客戶不用太快花錢去重建數據倉庫系統,就能很穩定運行。主要體現在數據建模的合理性,數據倉庫方案中多出一些中間層,使海量數據流有足夠的緩沖,不至於數據量大很多,就運行不起來了。