⑴ 數據分析師需要學什麼
數據分析師要學習以下幾點:
一、統計學
對於互聯網的數據分析來說,並不需要掌握太復雜的統計理論。所以只要按照本科教材,學一下統計學就夠了。
二、編程能力
學會一門編程語言,會讓處理數據的效率大大提升。如果只會在 Excel 上復制粘貼,動手能力是不可能快的。
三、資料庫
數據分析師經常和資料庫打交道,不掌握資料庫的使用可不行。學會如何建表和使用 SQL 語言進行數據處理,可以說是必不可少的技能。
四、數據倉庫
許多人分不清楚資料庫和數據倉庫的差異,簡單來說,數據倉庫記錄了所有歷史數據,專門設計為方便數據分析人員高效使用的。
五、數據分析方法
對於互聯網數據分析人員來說,可以看一下《精益創業》和《精益數據分析》,掌握常用的數據分析方法,然後再根據自己公司的產品調整,靈活組合。
六、數據分析工具
SAS、Matlab、SPSS 這些工具經常有人推薦。
關於數據分析師的學習可以到CDA認證機構咨詢一下,CDA行業標准由國際范圍數據領域的行業專家、學者及知名企業共同制定並每年修訂更新,確保了標準的公立性、權威性、前沿性。通過CDA認證考試者可獲得CDA中英文認證證書。
⑵ 數據分析需要學習哪些
1、數學知識
數學知識是數據分析師的基礎知識。對於初級數據分析師,了解一些描述統計相關的基礎內容,有一定的公式計算能力即可,了解常用統計模型演算法則是加分。
對於高級數據分析師,統計模型相關知識是必備能力,線性代數(主要是矩陣計算相關知識)最好也有一定的了解。
而對於數據挖掘工程師,除了統計學以外,各類演算法也需要熟練使用,對數學的要求是最高的。
所以數據分析並非一定要數學能力非常好才能學習,只要看你想往哪個方向發展,數據分析也有偏“文”的一面,特別是女孩子,可以往文檔寫作這一方向發展。
2、分析工具
對於初級數據分析師,玩轉Excel是必須的,數據透視表和公式使用必須熟練,VBA是加分。另外,還要學會一個統計分析工具,SPSS作為入門是比較好的。
對於高級數據分析師,使用分析工具是核心能力,VBA基本必備,SPSS/SAS/R至少要熟練使用其中之一,其他分析工具(如Matlab)視情況而定。
對於數據挖掘工程師……嗯,會用用Excel就行了,主要工作要靠寫代碼來解決呢。
3、編程語言
對於初級數據分析師,會寫SQL查詢,有需要的話寫寫Hadoop和Hive查詢,基本就OK了。
對於高級數據分析師,除了SQL以外,學習Python是很有必要的,用來獲取和處理數據都是事半功倍。當然其他編程語言也是可以的。
對於數據挖掘工程師,Hadoop得熟悉,Python/Java/C++至少得熟悉一門,Shell得會用……總之編程語言絕對是數據挖掘工程師的最核心能力了。
4、業務理解
業務理解說是數據分析師所有工作的基礎也不為過,數據的獲取方案、指標的選取、乃至最終結論的洞察,都依賴於數據分析師對業務本身的理解。
對於初級數據分析師,主要工作是提取數據和做一些簡單圖表,以及少量的洞察結論,擁有對業務的基本了解就可以。
對於高級數據分析師,需要對業務有較為深入的了解,能夠基於數據,提煉出有效觀點,對實際業務能有所幫助。
對於數據挖掘工程師,對業務有基本了解就可以,重點還是需要放在發揮自己的技術能力上。
業務能力是優秀數據分析師必備的,如果你之前對某一行業已經非常熟悉,再學習數據分析,是非常正確的做法。剛畢業沒有行業經驗也可以慢慢培養,無需擔心。
5、邏輯思維
這項能力在我之前的文章中提的比較少,這次單獨拿出來說一下。
對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。
對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。
對於數據挖掘工程師,邏輯思維除了體現在和業務相關的分析工作上,還包括演算法邏輯,程序邏輯等,所以對邏輯思維的要求也是最高的。
6、數據可視化
數據可視化說起來很高大上,其實包括的范圍很廣,做個PPT里邊放上數據圖表也可以算是數據可視化,所以我認為這是一項普遍需要的能力。
對於初級數據分析師,能用Excel和PPT做出基本的圖表和報告,能清楚的展示數據,就達到目標了。
對於高級數據分析師,需要探尋更好的數據可視化方法,使用更有效的數據可視化工具,根據實際需求做出或簡單或復雜,但適合受眾觀看的數據可視化內容。
對於數據挖掘工程師,了解一些數據可視化工具是有必要的,也要根據需求做一些復雜的可視化圖表,但通常不需要考慮太多美化的問題。
7、協調溝通
對於初級數據分析師,了解業務、尋找數據、講解報告,都需要和不同部門的人打交道,因此溝通能力很重要。
對於高級數據分析師,需要開始獨立帶項目,或者和產品做一些合作,因此除了溝通能力以外,還需要一些項目協調能力。
對於數據挖掘工程師,和人溝通技術方面內容偏多,業務方面相對少一些,對溝通協調的要求也相對低一些。
⑶ 數據分析和數據挖掘學要哪些專業知識
在學數據分析之前,我們首先要明確知識架構。一般來說,數據分析師需要的技能就是這些:需要掌握SQL資料庫的基本操作,同時掌握基本的數據管理。會用Excel和SQL做基本的數據提取、分析和展示;會用腳本語言進行數據分析,Python或者R;有獲取外部數據的能力加分,比如爬蟲;會基本的數據可視化技能,能撰寫數據報告;熟悉常用的數據挖掘演算法(數據分析演算法包括回歸分析、決策樹、分類、聚類方法等)。這些技能掌握了,就能夠入門數據分析師了。
數據挖掘需要的技能:1.需要理解主流機器學習演算法的原理和應用。2.需要熟悉至少一門編程語言如(Python、C、C++、Java、Delphi等)。3.需要理解資料庫原理,能夠熟練操作至少一種資料庫(Mysql、SQL、DB2、Oracle等),能夠明白MapRece的原理操作以及熟練使用Hadoop系列工具更好。
更多數據挖掘的信息,推薦咨詢CDA數據分析師的課程。CDA數據分析師認證的課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。點擊預約免費試聽課。