Ⅰ 主流數據分析工具有哪些
1、Excel
Excel 是最基礎也最常用的數據分析軟體,可以進行各種數據的處理、統計分析和輔助決策操作。
2、SAS軟體
SAS是全球最大的軟體公司之一,是由美國NORTH CAROLINA州立大學1966年開發的統計分析軟體。SAS把數據存取、管理、分析和展現有機地融為一體,功能非常強大。
3、R軟體
R是一套完整的數據處理、計算和制圖軟體系統。具備數組運算工具(其向量、矩陣運算方面功能尤其強大),完整連貫的統計分析工具,優秀的統計制圖功能。
4、SPSS
SPSS是世界上最早的統計分析軟體,也是比較成熟的分析工具,操作簡便、編程方便、功能強大。
5、Python
Python可以說是現在進行數據分析處理的主流軟體工具了,強大的庫和編程特性,可以幫助我們快速處理大規模的數據分析和挖掘任務。
Ⅱ 數據分析常用哪些工具
1、數據處理工具:Excel
數據分析師,在有些公司也會有數據產品經理、數據挖掘工程師等等。他們最初級最主要的工具就是Excel。有些公司也會涉及到像Visio,Xmind、PPT等設計圖標數據分析方面的高級技巧。數據分析師是一個需要擁有較強綜合能力的崗位,因此,在有些互聯網公司仍然需要數據透視表演練、Vision跨職能流程圖演練、Xmind項目計劃導圖演練、PPT高級動畫技巧等。
2、資料庫:MySQL
Excel如果能夠玩的很轉,能勝任一部分數據量不是很大的公司。但是基於Excel處理數據能力有限,如果想勝任中型的互聯網公司中數據分析崗位還是比較困難。因此需要學會資料庫技術,一般Mysql。你需要了解MySQL管理工具的使用以及資料庫的基本操作;數據表的基本操作、MySQL的數據類型和運算符、MySQL函數、查詢語句、存儲過程與函數、觸發程序以及視圖等。比較高階的需要學習MySQL的備份和恢復;熟悉完整的MySQL數據系統開發流程。
3、數據可視化:Tableau & Echarts
如果說前面2條是數據處理的技術,那麼在如今“顏值為王”的現在,如何將數據展現得更好看,讓別人更願意看,這也是一個技術活。好比公司領導讓你對某一個項目得研究成果做匯報,那麼你不可能給他看單純的數據一樣,你需要讓數據更直觀,甚至更美觀。
Ⅲ 一般數據分析師常用的工具有哪些
①數據處理工具:Excel
在Excel,需要重點了解數據處理的重要技巧及函數的應用,特別是數據清理技術的應用。這項運用能對數據去偽存真,掌握數據主動權,全面掌控數據;Excel數據透視表的應用重在挖掘隱藏的數據價值,輕松整合海量數據:各種圖表類型的製作技巧及Power Query、Power Pivot的應用可展現數據可視化效果,讓數據說話。
②資料庫:MySQL
Excel如果能夠玩的很轉,能勝任一部分數據量不是很大的公司。但是基於Excel處理數據能力有限,如果想勝任中型的互聯網公司中數據分析崗位還是比較困難。因此需要學會資料庫技術,一般Mysql。你需要了解MySQL管理工具的使用以及資料庫的基本操作;數據表的基本操作、MySQL的數據類型和運算符、MySQL函數、查詢語句、存儲過程與函數、觸發程序以及視圖等。比較高階的需要學習MySQL的備份和恢復;熟悉完整的MySQL數據系統開發流程。
③數據可視化:Tableau & Echarts
目前比較流行的商業數據可視化工具是Tableau & Echarts。Echarts是開源的,代碼可以自己改,種類也非常豐富。
④大數據分析:SPSS & Python& HiveSQL 等
如果說Excel是“輕數據處理工具”,Mysql是“中型數據處理工具”那麼,大數據分析,涉及的面就非常廣泛,技術點涉及的也比較多。
Ⅳ 分析數據的軟體有哪些
1、Excel
Excel作為入門級的工具,是最基礎也是最主要的數據分析工具,它可以進行各種數據的處理、統計分析和輔助決策操作,數據透視圖是Excel中最重要的工具,如果不考慮性能和數據量,它可以處理絕大部分的分析工作。正所謂初級學圖表,中級學函數透視表,高級學習VBA。EXCEL功能的強大隻有那些正真學過它的人才能知道
2、SQL
毫不誇張地說,SQL是數據方向所有崗位的必備技能,入門比較容易,概括起來就是增刪改查。SQL需要掌握的知識點主要包括數據的定義語言、數據的操縱語言以及數據的控制語言;在數據的操縱語言中,理解SQL的執行順序和語法順序,熟練掌握SQL中的重要函數,理解SQL中各種join的異同。總而言之,要想入行數據分析,SQL是必要技能。
3、Smartbi
Smartbi是專業的BI工具,基於統一架構實現數據採集、查詢、報表、自助分析、多維分析、移動分析、儀表盤、數據挖掘以及其他輔助功能,並且具有分析報告、結合AI進行語音分析等特色功能。十多年的發展歷史,國產BI軟體中最全面和成熟穩定的產品。廣泛應用於金融、政府、電信、企事業單位等領域。完善的在線文檔和教學視頻,操作簡便易上手。
4、Tableau
Tableau這款軟體 與 Excel 的數據透視圖有異曲同工之處,都是可以直接用滑鼠來選擇行、列標簽來生成各種不同的圖形圖表。但Tableau的設計、色彩及操作界面給人一種簡單,清新的感覺,做出來的圖比 excel 的更美觀。
5、SPSS
SPSS界面操作比較簡單,只要認識軟體基本界面和功能,准備好數據輸入進行分析,軟體會就自動給你算出分析結果。但要想讀透SPSS給出的分析結果,需要比較扎實的統計學知識。側重於統計分析類模型,能解決絕大部分統計學問題。
Ⅳ 數據分析的常見工具有哪些
初級的Excel
高級的有SAS SPSS kettle
編程的有R語言 python語言
還有一些是報表工具
編程工具比較重要,因為可以自己根據情況編輯,而不是只能用現成的
Ⅵ 大數據分析工具有哪些
1、Hadoop
Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop 是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。Hadoop 是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop 還是可伸縮的,能夠處理 PB 級數據。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。
2、HPCC
HPCC,High Performance Computing and Communications(高性能計算與通信)的縮寫。1993年,由美國科學、工程、技術聯邦協調理事會向國會提交了“重大挑戰項目:高性能計算與 通信”的報告,也就是被稱為HPCC計劃的報告,即美國總統科學戰略項目,其目的是通過加強研究與開發解決一批重要的科學與技術挑戰問題。HPCC是美國 實施信息高速公路而上實施的計劃,該計劃的實施將耗資百億美元,其主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆 比特網路技術,擴展研究和教育機構及網路連接能力。
3、Storm
Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。Storm很簡單,支持許多種編程語言,使用起來非常有趣。
4、Apache Drill
為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為“Drill”的開源項目。Apache Drill 實現了 Google's Dremel.
據Hadoop廠商MapR Technologies公司產品經理Tomer Shiran介紹,“Drill”已經作為Apache孵化器項目來運作,將面向全球軟體工程師持續推廣。
5、RapidMiner
RapidMiner是世界領先的數據挖掘解決方案,在一個非常大的程度上有著先進技術。它數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。
6、Pentaho BI
Pentaho BI 平台不同於傳統的BI 產品,它是一個以流程為中心的,面向解決方案(Solution)的框架。其目的在於將一系列企業級BI產品、開源軟體、API等等組件集成起來,方便商務智能應用的開發。它的出現,使得一系列的面向商務智能的獨立產品如Jfree、Quartz等等,能夠集成在一起,構成一項項復雜的、完整的商務智能解決方案。