1. 數據分析的方法有哪些
數據分析是指通過統計分析方法對收集到的數據進行分析,將數據加以匯總、理解並消化,通過數據分析可以幫助人們作出判斷,根據分析結果採取恰當的對策,常用的數據分析方法如下:
將收集到的數據通過加工、整理和分析的過程,使其轉化為信息,通常來說,數據分析常用的方法有列表法和作圖法,所謂列表法,就是將數據按一定規律用列表方式表達出來,是記錄和處理數據最常用的一種方法;
表格設計應清楚表明對應關系,簡潔明了,有利於發現要相關量之間的關系,並且在標題欄中還要註明各個量的名稱、符號、數量級和單位等;
而作圖法則能夠醒目地表達各個物理量間的變化關系,從圖線上可以簡便求出實驗需要的某些結果,一些復雜的函數關系也可以通過一定的變化用圖形來表現。
想要了解更多關於數據分析的問題,可以咨詢一下CDA認證中心。CDA行業標准由國際范圍數據領域的行業專家、學者及知名企業共同制定並每年修訂更新,確保了標準的公立性、權威性、前沿性。通過CDA認證考試者可獲得CDA中英文認證證書。
2. 數據分析報告有哪些要點
1、確定報告受眾和分析目的
無論寫什麼類型的數據分析報告,都要先搞清楚報告給誰看,不同的受眾對一份數據分析報告的期待是不一樣的。
2、框架、思路清晰
作為數據分析結論輸出最重要的部分,一份優秀的數據分析報告要能夠准確體現你的分析思路,讓讀者充分接收你的信息,所以在製作報告時,框架和思路要清晰。
這里的框架不單指報告的行文邏輯,更多是指數據分析過程的框架,比方說我們拿到一個分析問題,不可能一下子就找到問題背後的原因,需要利用各種手段將問題拆解分析,直到得出最終結論,這時候就可能會用到我們常提到的MECE、PEST、AAARRR等分析框架
3、保障數據准確
寫一份報告,獲取和整理數據往往會占據 6成以上的時間。要規劃數據協調相關部門組織數據採集、導出處理數據,最後才是寫報告,如果數據不準確,那分析的結果也沒有意義,報告也就失去價值,因此在收集整合數據時需要注意數據是否靠譜,驗證數據口徑和數據范圍。
4、讓圖表傳達更加直接
圖與表之間,圖與圖之間的聯系如何闡述,反映出的問題如何表達,這些都是在做數據分析圖表就要弄明白的。很多細心的領導及專門會針對你的數據分析以及結論來提問,因為現狀和未來是他們最關心的。所以數據圖表展現也要體現你的分析思路,而不單單是為了展示數據。
3. 如何進行有效的數據分析
首先,我們要明確數據分析的概念和含義,清楚地理解什麼是數據分析;
什麼是數據分析呢,淺層面講就是通過數據,查找其中蘊含的能夠反映現實狀況的規律。
專業一點講:數據分析就是適當的統計分析方法對收集來的大量數據進行分析,將他們加以匯總、理解和消化,以求最大化的開發數據的功能,發揮數據的作用。
那麼,我們做數據 分析的目的是什麼呢?
事實上,數據分析就是為了提取有用的信息和形成結論而對數據加以詳細的研究和概括總結的過程。
數據分析可以分為:描述性數據分析、探索性數據分析、驗證性數據分析
工作中我們運用數據分析的作用有哪些?
1、現狀分析:就是企業運營狀況的分析,主要是各項指標的監控以及日報、周報、月報等
2、原因分析:需求分析,多數是針對運營中出現的問題進行剖析,找出出現問題的因素以便於解決問題
3、預測分析:針對以後的運營情況做出分析報告,對公司以後的發展趨勢做出有效的預測,對公司的發展目標和策略制定做出有力的支撐。
最重要的一點:
我們如何做數據分析呢,換一句話說就是如何進行數據分析,是怎樣的流程?
然後,我們來看數據分析的六部曲
1、明確分析目的和思路:
這一定很重要,你想通過數據分析得到什麼,你想通過數據分析告訴別人什麼,這是你做數據分析的首要問題,分析不能是漫無目的的,一定要明確思路,有目的性、有計劃性的去做數據分析。找好角度、指標、以及分析邏輯尤為重要。
2、數據收集,這里不做過多的說明,一般情況下,數據來源都會可靠有效。我們要做的只是把我們需求的數據get即可。
3、數據處理:
主要包括數據清洗、數據轉化、數據提取、數據計算等方法,數據分析的前提是要保證數據質量,如果數據質量無法保證,分析出來的結果也沒法得到有效的利用,甚至會對決策者造成誤導的行為。
4、數據分析:
首先要明確數據處理和數據分析的區別:數據處理只是數據分析的基礎,我們做數據處理就是為了保證數據形式合適,保證數據的一致性和有效性。
5、數據展現:
數據展現就是把數據分析的結果,用可視化的圖標形式展現出來,用一種簡單易懂的方式表達出你分析的觀點
6、撰寫報告:
數據分析報告其實就是對整個數據分析過程的一個總結與呈現,通過報告把數據分析的起因、過程、結果及建議完整的呈現出來,供決策者參考。
4. 常用的數據分析方法有哪些
常見的數據分析方法有哪些?
1.趨勢分析
當有大量數據時,我們希望更快,更方便地從數據中查找數據信息,這時我們需要使用圖形功能。所謂的圖形功能就是用EXCEl或其他繪圖工具來繪制圖形。
趨勢分析通常用於長期跟蹤核心指標,例如點擊率,GMV和活躍用戶數。通常,只製作一個簡單的數據趨勢圖,但並不是分析數據趨勢圖。它必須像上面一樣。數據具有那些趨勢變化,無論是周期性的,是否存在拐點以及分析背後的原因,還是內部的或外部的。趨勢分析的最佳輸出是比率,有環比,同比和固定基數比。例如,2017年4月的GDP比3月增加了多少,這是環比關系,該環比關系反映了近期趨勢的變化,但具有季節性影響。為了消除季節性因素的影響,引入了同比數據,例如:2017年4月的GDP與2016年4月相比增長了多少,這是同比數據。更好地理解固定基準比率,即固定某個基準點,例如,以2017年1月的數據為基準點,固定基準比率是2017年5月數據與該數據2017年1月之間的比較。
2.對比分析
水平對比度:水平對比度是與自己進行比較。最常見的數據指標是需要與目標值進行比較,以了解我們是否已完成目標;與上個月相比,要了解我們環比的增長情況。
縱向對比:簡單來說,就是與其他對比。我們必須與競爭對手進行比較以了解我們在市場上的份額和地位。
許多人可能會說比較分析聽起來很簡單。讓我舉一個例子。有一個電子商務公司的登錄頁面。昨天的PV是5000。您如何看待此類數據?您不會有任何感覺。如果此簽到頁面的平均PV為10,000,則意味著昨天有一個主要問題。如果簽到頁面的平均PV為2000,則昨天有一個跳躍。數據只能通過比較才有意義。
3.象限分析
根據不同的數據,每個比較對象分為4個象限。如果將IQ和EQ劃分,則可以將其劃分為兩個維度和四個象限,每個人都有自己的象限。一般來說,智商保證一個人的下限,情商提高一個人的上限。
說一個象限分析方法的例子,在實際工作中使用過:通常,p2p產品的注冊用戶由第三方渠道主導。如果您可以根據流量來源的質量和數量劃分四個象限,然後選擇一個固定的時間點,比較每個渠道的流量成本效果,則該質量可以用作保留的總金額的維度為標准。對於高質量和高數量的通道,繼續增加引入高質量和低數量的通道,低質量和低數量的通過,低質量和高數量的嘗試策略和要求,例如象限分析可以讓我們比較和分析時間以獲得非常直觀和快速的結果。
4.交叉分析
比較分析包括水平和垂直比較。如果要同時比較水平和垂直方向,則可以使用交叉分析方法。交叉分析方法是從多個維度交叉顯示數據,並從多個角度執行組合分析。
分析應用程序數據時,通常分為iOS和Android。
交叉分析的主要功能是從多個維度細分數據並找到最相關的維度,以探究數據更改的原因。
5. 如何進行數據分析
收集數據
數據分析師的工作第一步就是收集數據,如果是內部數據,可以用SQL進行取數,如果是要獲取外部數據,數據的可靠真實性和全面性其實很難保證。
2. 數據清洗
數據清洗是整個數據分析過程中不可缺少的一個環節,其結果質量直接關繫到模型效果和最終結論。在實際操作中,數據清洗通常會占據分析過程的50%—80%的時間。需要進行處理的數據大概分成以下幾種:缺失值、重復值、異常值和數據類型有誤的數據。
3. 數據可視化
是為了准確且高效、精簡而全面地傳遞出數據帶來的信息和知識。可視化能將不可見的數據現象轉化為可見的圖形符號,能將錯綜復雜、看起來沒法解釋和關聯的數據,建立起聯系和關聯,發現規律和特徵,獲得更有商業價值的洞見和價值。在利用了合適的圖表後,直截了當且清晰而直觀地表達出來,實現了讓數據說話的目的。
4. 數據方向建設和規劃
不同行業和領域的側重點是不同的,可以是商業策略,也可以是市場營銷,是不固定的,要依據公司的戰略發展走。
5. 數據報告展示
數據分析師作為業務與IT的橋梁,與業務的需求溝通是其實是數據分析師每日工作的重中之重。在明確了分析方向之後,能夠讓數據分析師的分析更有針對性。如果沒和業務溝通好,數據分析師就開始擼起袖子幹活了,往往會是白做了。最後結果的匯總體現也非常重要,不管是PPT、郵件還是監控看板,選擇最合適的展示手段,將分析結果展示給業務團隊。
6. 企業如何有效地進行數據挖掘和分析
經常聽人提到數據分析,那麼數據怎麼去分析?簡單來說,就是針對一些數據做統計、可視化、文字結論等。但是相比來說,數據挖掘就相對來說比較低調一些,這種低調,反而意味著數據挖掘對研究人員的要求要更高一些。
要想將製造數據的價值真正挖掘出來,做到最大化的有用且高效,可從以下三個方面來計劃: 第一步:明確數據採集的源頭,需要對內部現有的儀器設備做一個全面的排查,明確數據採集的時間頻率、採集的關鍵信息點、控制圖分析類型、控制指標、異常處理等信息。
第二步:明確數據的可用性,同時,確保生產製程的穩定性。用於制訂長期戰略決策的數據,必須從長期的維度來挖掘、分析數據,找到最關鍵的數字趨勢,突出值得關注的信息。
第三步:數據價值的衡量指標,對於收集的數據,有哪些衡量指標?這些指標對自上而下和
想要學習了解更多數據挖掘的信息,推薦CDA數據分析師課程。「CDA 數據分析師認證」是一套科學化,專業化,國際化的人才考核標准,涉及行業包括互聯網、金融、咨詢、電信、零 售、醫療、旅遊等,涉及崗位包括大數據、數據析、市場、產品、運營、咨詢、投資、研發等。點擊預約免費試聽課。
7. 如何做好數據分析
數據分析有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。
01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。
02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。
03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。
04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。
05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。
06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。
07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。
8. 我們如何提升自己的數據策略分析能力
很多同學抱怨:每天對著大堆數字,卻看不出個名堂。反而有些做業務的人,看幾個數字就能馬上做出准確判斷。咋回事!看著數據沒有感覺,是缺少數據洞察力的表現。數據洞察力和操作工具沒有關系,完全是一種思維習慣。建立起來以後,不單單對工作有幫助,在生活中用處也很大,今天我們系統講解下。
1
直觀感受下啥叫數據策略分析能力
數字本身沒有啥含義,數字+業務場景,才有了具體業務含義。注意,第一張圖上的小帥哥會暴走,並不是因為姑娘180身高,而是因為姑娘180把他比得太矮了(且因此受過嘲諷)。「比」才是問題的關鍵。所以數據本身不形成判斷,數據+標准才能形成判斷。想讀懂數據的含義,一定得看具體業務場景下,業務判斷的標準是什麼(如下圖)。
有了數據、業務場景、判斷標准,我們才能形成基本的數據洞察。這三者缺一不可。少了數據,就會陷入:「我看到一個黑蘋果,所以全天下蘋果都是黑色的」這種窘境。少了業務場景,就會出現:「一個女人十個月生娃,十個女人一個月就能生出來吧」這種糗事。少了判斷標准,就會雞同鴨講,大家扯了半天,發現說的「好/壞」根本不是一類。
2
培養洞察力的基本思路
既然洞察力來自數據、業務場景、判斷標準的組合,培養洞察力,也是從這三個方向出發,包括:
遇事找數據細致了解業務場景清晰判斷標准積累特定場景下,數據判斷的結論在新場景中使用結論,檢驗效果持續積累正確結論,修正錯誤結論
這一段話看起來很官方,可實際操作起來非常簡單,並且我們每個人、每天都在實踐。就比如找對象,懵懂的小男生都是挑剔熱巴太胖、冪冪頭禿,幻想自己找個仙女下凡。可真自己約會相親追過幾個女生,就發現「哦,原來現實中找個美女那麼難呀!」
然後真找個「美女」相處一段時間,就發現比起長相,性格、愛好、生活能力、工作能力哪個都更重要。半夜,小哥一個人獨自抽著煙,對著月亮,思考:「為毛我要花錢花力氣請個姑奶奶回來伺候,我欠抽嗎!」的時候,他的洞察力就有了質的飛躍。即使以後再看到漂亮小姑娘,他也會立即明白:這不是我的菜!
在現實生活中,制約洞察力的關鍵,往往是數據。因為生活中信息不對稱問題嚴重,收集數據的難度太高,還要付出時間、金錢甚至前途、未來這種高額成本。所以在生活中,我們常採用的是有限理性的策略。在可行范圍內,盡量用少的數據做決策。或者乾脆採用跟隨策略,跟著那些比我們優秀的人混。但在企業里,則是完全不同的另一幅場景。
3
培養數據洞察力的難點
在企業工作中,培養數據洞察力最大的難點,是數據、業務場景、標准三者是相互分離的。
做數據分析的同學們不了解業務場景,只能對著數據瞎猜;業務部門的人自己稀里糊塗,或者各懷鬼胎,故意扭曲判斷標准;對數據重視度不夠,基礎數據採集不全,遇到事都喜歡講個案,不看數據全貌;
這些糟糕狀況,都會導致做數據分析的同學們很難積累經驗。於是我們常常發現,企業里最有洞察力的人往往是老闆。因為在老闆那裡這三者是透明的,所以即使不操作基礎數據,他老人家也能明察秋毫。但這對數據分析師可不是件好事。因為老闆還等著我們給意見呢,事事都讓老闆跑在我們前邊,會引發不滿的。所以做數據的同學們還是得自己鍛煉下洞察力。
4
培養數據洞察力的步驟
很多同學一說要提升洞察力,最喜歡干這三件事:
找《XX行業2020-2025全景洞察報告(重磅深度!)》找XX行業數據指標體系思維導圖,挑個最密密麻麻的保存在D盤-干貨文件夾加各種數據分析群,問:「有沒有牛X的數據分析報告看看,有洞察那種,發來看看」
這三種方法完全沒用。這就像一個想談戀愛的小伙,每天在網上看美女圖片一樣,自己不動手練,不具體思考,是不可能提升洞察力的。永遠不動,永遠不會。得想辦法自己動手才行。而且往往這些東西內容太多,最後保存在D盤的玩意,你也永遠不會看。所以最好從一個具體小點出發。
第一步:從一個場景一個指標開始
做數據的同學,優勢在於手上有數據,可以隨時查。劣勢在於不了解業務場景。因此把數據結合到業務場景中,是破題的關鍵。最好找一個自己熟悉的業務,有好朋友的部門入手。從理解結果指標開始(如下圖)。
第二步:從極值到中間值
理解了指標業務含義,想要形成判斷,可以從白犀牛開始——先看指標極大、極小值的時候。這些情況是什麼場景,發生什麼問題,有什麼應對。有了對極值的了解,就行掌握基礎的判斷標准,也能積累分析假設和分析邏輯。當遇到沒有那麼極端的情況時,可以順著已經積累的分析邏輯去理解。實在解讀不了,也可以選擇再觀察觀察,看看數據往哪個極端方向發展(如下圖)。
第三步:從靜態到動態
當我們對靜態場景積累的足夠的洞察的時候,就能解讀動態場景。本質上,動態場景只是一系列靜態場景的合集。要額外提醒的是:一個業務變化往往有規律性。一個連續的規律,本身是具有業務含義的。積累周期形態的規律,可以從點到線,提升洞察能力。
第四步:從單指標到多指標
對單指標有了洞察積累,可以往多指標擴展,掌握了結果指標的判斷,可以聯系過程指標一起看。注意:多指標不是單指標的堆積,拼在一起的時候,也不是每個指標越多越好的。多指標組合時,在特定業務場景下會形成特定的形態,基於形態的解讀能做出更准確的判斷(如下圖)。
掌握了基礎形態,後續還能持續觀察形態變化,積累更多經驗,這樣就慢慢能由簡入繁,越來越多積累經驗,積累多了自然能舉一反三了。
要注意的是,換個行業,換個公司,換個產品,換個發展階段,具體場景都會變化。所以企圖追求「萬古不變的數據分析真理」,只會讓自己在玄學道路上越走越遠。想提升洞察力,就多多積累具體場景碎片,提升具體分析能力。具體問題,具體分析,這句話永遠不過時。
9. 數據分析的分析方法有哪些
數據分析的分析方法有:
1、列表法
將數據按一定規律用列表方式表達出來,是記錄和處理最常用的方法。表格的設計要求對應關系清楚,簡單明了,有利於發現相關量之間的相關關系;此外還要求在標題欄中註明各個量的名稱、符號、數量級和單位等:根據需要還可以列出除原始數據以外的計算欄目和統計欄目等。
2、作圖法
作圖法可以最醒目地表達各個物理量間的變化關系。從圖線上可以簡便求出實驗需要的某些結果,還可以把某些復雜的函數關系,通過一定的變換用圖形表示出來。
圖表和圖形的生成方式主要有兩種:手動製表和用程序自動生成,其中用程序製表是通過相應的軟體,例如SPSS、Excel、MATLAB等。將調查的數據輸入程序中,通過對這些軟體進行操作,得出最後結果,結果可以用圖表或者圖形的方式表現出來。
圖形和圖表可以直接反映出調研結果,這樣大大節省了設計師的時間,幫助設計者們更好地分析和預測市場所需要的產品,為進一步的設計做鋪墊。同時這些分析形式也運用在產品銷售統計中,這樣可以直觀地給出最近的產品銷售情況,並可以及時地分析和預測未來的市場銷售情況等。所以數據分析法在工業設計中運用非常廣泛,而且是極為重要的。
(9)如何才能將數據分析的有深度擴展閱讀:
數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,將它們加以匯總和理解並消化,以求最大化地開發數據的功能,發揮數據的作用。數據分析是為了提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。
數據分析的數學基礎在20世紀早期就已確立,但直到計算機的出現才使得實際操作成為可能,並使得數據分析得以推廣。數據分析是數學與計算機科學相結合的產物。