導航:首頁 > 數據分析 > 如何看待產品合作中用戶數據的價值

如何看待產品合作中用戶數據的價值

發布時間:2024-05-03 11:18:55

① 如何正確認識大數據的價值和效益

1、數據使用必須承擔保護的責任與義務

我國數據流通與數據交易主要存在以下問題:數據源活性不夠,數據中介機構還處於起步階段;多源數據的匯集技術尤其是非結構化數據分析技術滯後;缺乏熟悉不同行業並掌握在特定領域使用數據技術的人才。

數據的價值在於融合與挖掘,數據流通、交易有利於促進數據的融合和挖掘,搞活數據從而產生效益。數據共享開放、流通交易和數據保護及數據安全對數據技術提出嚴峻挑戰,對法律的制定及執行提出了很高要求。為此,數據使用必須承擔保護的責任與義務。

② 大數據時代的商業法則

大數據時代的商業法則

大數據時代給企業帶來了前所未有的商機,在大數據時代,企業必須學會利用大數據精確地分析、導入用戶、促成交易,並用最有效率的方式組織生產。在大數據時代,企業必須遵循新的商業法則,否則就會被大數據的浪潮所淹沒。

法則1:解讀用戶的真實需求 解讀用戶的真實需求,就是通過數據的收集、分析挖掘出用戶內心的慾望,提高企業產品推送的成功率,並將其轉化為企業的訂單。


大數據看似神秘莫測,其實在解讀用戶需求上的操作思路卻極其簡單,即盡可能掌握用戶的個人信息和關注信息。當關注信息指向個人時,就能夠相對精準地定義出用戶的需求。


在這一過程中,主要的操作模式有兩種:靜態輻射模式和動態跟蹤模式。


靜態輻射模式


靜態輻射模式的數據分析在一個時間節點上進行,盡量擴大分析對象,並用標簽來篩選出最可能成交的用戶。這是大數據應用中最典型的一種模式。由於一些大企業主動會進行用戶標簽的管理,需要大數據助力營銷的企業就可以「借船出海」。


標簽與購買的關系有兩種:一類標簽與購買的關系非常明顯。例如,一個常常瀏覽經管類書籍的用戶一定是這類書籍的潛在購買者。


另一類標簽與購買的關系卻並不十分明顯。這就需要企業提前進行分析,有時還需要藉助第三方專業機構的分析結果。


例如,新浪微博會根據用戶平時的瀏覽和表達為用戶貼上「標簽」。但是,這些標簽與有些購買行為之間的關系就並不明顯。金夫人是國內婚紗攝影巨頭,他們首先利用自己作為網路大客戶的身份,無償獲取了網路提供的婚紗攝影客戶調研分析數據,發現美食、影院等標簽的用戶最有可能購買婚紗攝影產品。利用這一跨資料庫的結果,金夫人在新浪微博的平台上鎖定了「年齡20~35左右的某地區女性」群體,加上了美食、影院等標簽,精準鎖定了高轉化可能的用戶,並購買了平台提供的「粉絲通」服務,對他們進行定向廣告推送。一般來說,推送5~6萬個用戶大約會得到70~80個電話咨詢,這種轉化過來的電話咨詢顧客被稱「顧客資源」,從顧客資源到最後的成單,轉化率優異,大約在40%。


動態跟蹤模式


動態跟蹤模式的數據分析在一個時間周期內進行,盡量縮小分析對象,不斷通過用戶的行為來為用戶貼上標簽,伺機發現產品推送的時點。由於這種分析針對小群體,無法由第三方機構提供統一的規模化服務,所以,對於企業來說是有高門檻的,需要企業練好內功。這種模式中,企業對於用戶不斷產生的新數據,要進行隨時跟蹤,並隨時在雲端進行處理。


例如,Target超市以20多種懷孕期間孕婦可能會購買的商品為基礎,將所有用戶的購買記錄作為數據來源,通過構建模型分析購買者的行為相關性,能准確地推斷出孕婦的具體臨盆時間,這樣Target的銷售部門就可以有針對地在每個懷孕顧客的不同階段寄送相應的產品優惠券。在一個個例中,他們居然比用戶更早知道了她懷孕的信息。


又如,亞馬遜基於自己對用戶的了解來進行精準營銷,在網站上的推薦和電子郵件對於產品的推送成為了促進成交的利器。調研公司Forrester分析師蘇察瑞塔·穆爾普魯稱,根據其他電子商務網站的業績,在某些情況下,亞馬遜網站推薦的銷售轉化率可高達60%。這一轉化率遠遠高於其他電子商務網站,難怪一些觀察員將亞馬遜的推薦系統視為「殺手級應用」。最新的消息顯示,亞馬遜已經注冊了「未下單、先發貨」的技術專利,這是更加精準的需求預判和更加直接的產品推送,他們對於大數據的應用已經是爐火純青!


法則2:形成社會化協作的生產安排


如果能依靠大數據進行產品推送實現購買,海量需求就會從互聯網洶涌而來。這意味著產品的數據增多、涉及原料增多、消費者零散下單……這一變化使得工業時代標准化的產品生產模式受到前所未有的顛覆,生產端需要基於大數據形成前所未有的柔性,來對接消費端的柔性。


互聯網商業環境對價值鏈提出了新的挑戰:鏈條上的采購、生產、物流、分銷、零售各環節中,除了生產之外的其他環節也需要強大的數據處理能力,各個環節的數據處理系統和數據本身必須是共享的,而且,這些系統和內容還必須向全社會開放。要達到這種要求,顯然應該應用價值鏈接網,並用大數據來進行生產協調。


大數據的確給價值鏈重塑帶來了機會。在工業經濟時代,生產更多地通過「規模經濟」來獲利,大規模標准化的生產最大程度地降低了單位成本。但在互聯網經濟時代,生產更應該通過「范圍經濟、協同效應和重塑學習曲線」來獲利,因為,多種類、小規模的生產需要價值鏈上的靈動協作。


基於互聯網這樣一個平台,所有的價值鏈環節可以實現數據共享和集中處理。另外,因為使用統一的數據構架,所以不會出現數據孤島,浪費有價值的數據。由此,價值鏈各個環節之間可以無縫鏈接,實現最敏捷、最合理的生產。基於互聯網這樣一個平台,企業入圍合作即可以獲得充分的信息,也不再會遭遇太高的學習門檻。更厲害的是,用戶參與生產也變得容易,模塊化的選擇題,讓業余者也可以發出專業的需求信號。由此,從始端原料的生產者到終端的消費者,全部都被植入了價值鏈(或稱為價值網),社會化協作得以真正實現。而在大數據出現以前,這幾乎是不可能的!


順應法則贏未來


獨具特色的大數據商業法則,將會引發未來商業格局的變化。未來的贏家,將屬於能夠適應新的商業法則和新的商業邏輯的代表者。


在用大數據掘金的世界,誰掌握大數據,並能利用大數據實現上述兩大商業法則的變革,誰就能贏得未來。


因此,我們可以肯定地判斷出,掌握了大數據的資源整合類企業,將會成為大數據時代的企業贏家。這類企業是商業生態(價值網)中的「舵手」,通過靈敏地識別市場需求,指揮網路成員協同生產,獲得組合創新優勢。由於控制了整個網路,此類企業擁有網路收益的剩餘索取權,往往獲利最為豐厚。工業經濟時代,企業是依賴品牌、聲譽和社會資本實現資源整合。互聯網時代,資源變得無限豐富,協作變得極度頻繁,企業更需要依靠大數據來發現需求、整合資源。可以這樣說,掌握了大數據,這類企業就知道「用戶要什麼,哪裡有什麼,如何用資源去滿足用戶需求」。


未來的資源整合企業將基於大數據來運作。維克托·邁爾·舍恩伯格等人在《大數據時代》中,將基於大數據的資源整合企業分為三種:第一種是掌握數據的企業,這類企業掌握了埠,掌握了數據的所有權;第二種是掌握演算法的企業,負責處理數據,挖掘有價值的商業信息,這些企業被稱為「數據武士」;第三種是掌握思維的企業,他們往往先人一步發現市場的機會,他們既不掌握數據技能,也不掌握專業技能,但正因為如此才有廣闊的思維,能夠最大程度串聯資源,形成商業模式,他們相當於「路徑尋找者(pathfinder)」。


按照各自生產要素的價值性和稀缺性,很難說哪類企業真正將在大數據的商業模式中獲益,三類企業各自有各自的貢獻,各自有各自的稀缺之處。


ITASoftware是美國四大機票預訂系統,是一個典型的掌握數據的企業,其將數據提供給Farecast這家提供預測機票價格的企業,後者是一個典型的掌握演算法和思維的企業,直接接觸用戶。結果,ITA Software僅僅從這種合作中分得了一小塊收益。


Overture是搜索引擎付費點擊模式的鼻祖,如果把谷歌看作是媒體,那麼Overture則是相當於廣告代理公司,通過演算法細分不同的瀏覽用戶,向廣告投放企業提供目標用戶的付費點擊(選出他們最需要的用戶)。Overture是典型掌握演算法和思維的企業,雅虎、谷歌則是掌握數據的企業。事實上,谷歌的兩大金礦AdWords和AdSense技術,都是借鑒了Overture的演算法。但是,Overture不能直接接觸到用戶,沒有數據,喪失了話語權,只能獲得少量收益,以至於最後被雅虎收購。


基於大數據的資源整合類企業,它們的生態鏈又將遵循兩個法則。


法則一:接觸用戶的企業總是能夠獲得最多的收益,這和價值鏈上的分配原則是高度一致的。終端價格和原料供應之間的差價全部是由售賣終端產品的企業獲取的。


法則二:掌握數據的企業具有這個商業生態內最大的議價能力,最終最有可能成為贏家。演算法可以攻克,也可以購買,事實上,擠入這個行業的企業並不在少數。而思維則存在一種肯尼斯·阿羅所說的「信息悖論」,即信息在被他人知曉前都價值極高,但卻無法被證實。一旦公開證實它,又因所有人都知道而失去了價值。所以,不管思維和演算法企業走得多快,只要數據企業隨時可以封鎖數據源,就依然把握著「殺手鐧」。甚至,有的數據企業在看不清楚商業模式時,將數據釋放讓思維和演算法企業進行試錯,而一旦試錯成功,則收回數據所有權,模仿其商業模式。


BAT的數據帝國


因此,我們可以說,在大數據時代,資源整合企業的競爭,將會決定未來商業世界的版圖。


在很多人還沒有弄清楚大數據時代的商業法則時,國內互聯網三巨頭BAT(網路、阿里、騰訊)已經在迅速地構建自己的「數據帝國」。


在互聯網的大世界中,用戶有諸多的入口,可以通過不同的APP上傳數據。BAT的原則是,有關吃穿用住行的一切服務商,只要能夠增加他們的數據種類和質量,他們通通拿下。這里,體現出一種典型的「數據累積的邊際收益遞增效應」,即每多增加一個單位的數據,可挖掘的價值就有一個加速的增長,每增加一個種類的數據,可挖掘的價值就有一個加速的增長。某些時候,BAT甚至根本不考慮數據在現階段能否變現為收益,僅僅是納入麾下,等待未來的開發。


現實的情況是,經過了幾輪的收購之後,BAT基本上覆蓋了吃、穿、用、住、行、社交等各個領域的數據入口,加之其原來的龐大數據入口,在數據規模上的優勢已經無與倫比。短時間內,任何企業想要超越他們,幾乎都是不可能的。


BAT不僅是在做掌握數據的企業,也是在做掌握演算法和思維的企業。一方面,擁有龐大的商業用戶群和擁有用戶群消費偏好的大數據,只要具有相應的內容,就可以形成成交、獲取收益。另一方面,他們甚至可以開放應用程序介面(APIs)把自己掌握的數據授權給別人使用,這樣數據就能夠重復產生價值。這方面,阿里巴巴的百川計劃就是一個典型。簡單來說,他們向其他廠商的APP免費開放數據,但他們不收費,僅僅需要他們回饋數據作為代價。這個計劃實施以後,所有的APP都會是他們的入口。


可以說,BAT的帝國是基於數據建立的。甚至有人預言,數據作為「表外資產」一定會在某個時候被會計准則納入。因為,相對於無形資產,這種資產的價值更大。


值得一提的是,傳統工業經濟思維的人根本看不懂大數據時代的商業邏輯。某學者曾對阿里巴巴的收購(零售、文化、金融等)提出過質疑,他列舉蘋果和谷歌收購的案例,認為他們都是在進行專業領域的收購,這是有利於增強競爭力的,但阿里進行的都是多元化收購,是不利於增強競爭力的。


實際上,這是沒有看懂阿里巴巴商業模式的表現。互聯網時代的大多數商業模式,早就脫離了行業的限制,而在某種程度上走向了「大一統」,即「導入流量+大數據分析變現流量」。這種模式里數據就是通用的邏輯,難怪在大數據出現時,維克托·邁爾·舍恩伯格等人就斷言,行業專家和技術專家的光芒會被數據專家掩蓋住,因為後者不受舊觀念的影響,能夠聆聽數據發出的聲音。


盡管BAT強悍如斯,但在他們的夾縫中,仍然有一些商機,企業也可以搭建入口、解讀需求、安排生產。如果說大數據改造商業的神奇已經毋庸置疑,那為何眾多企業依然拿不起放在眼前的這把金鑰匙?很大程度上是因為這些企業缺乏數據基因。


大數據和互聯網經濟的來襲,使得企業只能「被動接網」。面對海量的潛在需求,不僅無法解讀,也無法調動生產進行對接。這就出現了大量企業被互聯網的海量需求「反噬」,並導致供應鏈失控的案例。


在大數據時代,企業規模、資金、生產技術不再重要,品牌也不再擁有神力。獲取數據、分析處理數據、挖掘數據價值的能力成為企業的立身之本。目前我國大部分企業還沒有意識到我們已經進入大數據時代,就像我們大多數消費者沒有意識到我們的消費行為隨時在被計算一樣。在這樣的一個時代,只有建立在數據之上的企業、按照大數據時代的商業法則運營的企業才能更好地生存。

以上是小編為大家分享的關於大數據時代的商業法則的相關內容,更多信息可以關注環球青藤分享更多干貨

③ 如何用商業思維分析用戶行為數據

如何用商業思維分析用戶行為數據

數據這么多,各類數據的表達不一樣,具體應該如何處理?有人說:「產品初期,活動為輔,處理數據在於穩定。」有人說:「產品中期,活動為主,處理數據在於調控。」有人說:「產品末期,活動為核,處理數據在於激勵。」還有人說:「處理產品數據要先四步走!」

第1步:看整體數據,主要看整體數據有何異常,以及哪些數據的趨勢較好(例如,整體數據,游戲人數穩定,月收入對比極端)

第2步:看細分數據(例如,細分數據,游戲新增用戶和流失活躍付費用戶成正比,新增用戶不付費,大R流失嚴重)

第3步:結合數據分析(例如,分析數據,付費玩家為什麼流失?沒有付費競爭?還是付費後達到游戲金字塔頂端失去樂趣?)

第4步:根據數據行動(例如,更新版本,開展玩家召回活動,換量….)

估計這樣的知識各位同學早已經倒背如流。在這篇文章中,作者將和運營童鞋們一起深入發掘數據價值以及互聯網中的商業思維。筆者認為:數據≠數學!如果你用函數思維看游戲,那隻能說你數學不錯;在互聯網行業,必須將用戶行為數據與商業思維相結合,才能創造互聯網價值。

1. 培養數據的商業敏感性

最近看了某工作室高層頻繁辭職,項目組陸續被裁,各大獵頭忙著搶人的新聞,最近又和HR交談,得知現在某網的簡歷已經漲到15塊錢一份;初步看來,沒什麼關聯,細細品味,關聯又很大,如果將思維轉換,則又是另一種景象……

以智聯為例,網站主要看注冊量,及硬廣/守株待兔的套路,HR買簡歷去智聯,不一定能拿到中意的簡歷;而獵頭可謂是聞風而動,往往主動行動,掌握了大部分的高質量簡歷,不僅省了錢,也拿到了好的資源;把握市場動向,培養商業敏感性,將此原則代入到游戲中不難發現,若一款MMO游戲的用戶大量流失(因為托?關服?其他…)而作為另一款MMO產品運營的你能提前敏感的嗅到這縷商業氣息嗎?如果不能,則用戶重返渠道(其他游戲),那你無疑只能繼續守株待兔,懇求渠道施捨流量,這無疑是失敗的。

當然,我們無法從別人後台調取數據,那麼一般從哪裡看其他游戲的數據走向呢?看競品論壇,游戲更新力度,看論壇用戶活躍度,都能看出一絲端倪,然後深入接觸用戶,一切自然水落石出,至於如何拉攏用戶,自然是因人而異。

2. 培養數據的衍生敏感性

如果市場上的牙刷銷量增加了,你能感覺到牙膏的銷量也會增加嗎?如果放在互聯網市場,不難看出一個很悲觀的事實,牙刷銷量增加,一夜之間,白玉牙刷,象牙牙刷,卡通牙刷,瑪瑙牙刷等等產品一夜崛起,最後通貨膨脹,大家都沒得做。

對於這種情況,是開發者的心態問題,所以筆者無法說什麼;本段主要說的是數據的衍生敏感性,例如一件稀有裝備從100元漲到200元,那麼產出稀有裝備的副本/特殊地圖的進場道具也會從10元漲到20元;道具上漲,玩家的充值力度就得加大;玩家充值力度加大,ARPU值隨之提升,如何最大化的提升arpu值;從產品層面來說,加大充值活動力度,調整裝備產出概率,抓住用戶需求,投其所好,實現利益最大化;而不是裝備增值,便增加多種裝備,這樣只會適得其反。

3. 換位思考看數據

有些CP選渠道,會很重視流量這個東西,無論產品怎樣,只要渠道流量好,便一個勁地上渠道,鋪推廣,搞營銷….

流量這東西,講究的是適不適合,渠道流量再多,那也不是你的,即使是你的,那也不是你一個人的,換個角度思考;從渠道的角度看產品,渠道看產品,看轉化,看付費,看留存;知根知底,數據這東西是雙向的,只不過彼此看的角度不同,你若真想要量,至少得用產品數據交換渠道數據。

換個角度來說,若產品的各類數據較高;最好摸清楚用戶是從那個渠道來的,主要貢獻的用戶群體是誰?這樣一來,產品設計可以更傾向用戶喜好,這樣投其所好的行為是提升轉換率的一種好方法。(以MMO混服為例,區分用戶可給包打上渠道標識,簡單易懂)

4. 用商業思維看行為數據

行為數據,即用戶行為佔有率,例如活躍度,留存率,付費率…

商業思維,即利益分析,例如用戶周期價值,用戶可挖掘價值的探索性…

例如,兩個公會沖突,游戲內打得火熱,公會成員拼活躍,比等級;公會會長拼裝備,比充值,兩方打得火熱,不死不休,無論是在線還是充值都達到了一個可觀的水平;作為運營,你怎麼辦?如果你什麼也不做,在那裡偷偷樂呵,並且沾沾自喜;筆者讀過一本書,書里說過一句話:「坐著就是為了等死!」如果你不信,次月兩個公會和好,或者一個公會被趕出遊戲,後悔也晚了。

「你想坐著等死嗎?」如果不想,就得學會用商業思維看待行為數據;例如,這兩個幫會的競爭平台有哪些?論壇?貼吧?哪些人在活躍,哪些人在付費?影響他們的人是誰?他們是否還有可繼續發掘價值?

如何平衡這種關系?皮球效應很重要,壓得越狠,彈得越高,什麼都不管,只會越彈越低,歸於平靜;目前游戲較為常見的就是托這種催化劑;的確,托是起到了一定作用,但是治標不治本;如果用商業思維去思考,以天涯貼吧為例,話題已經存在,真實的用戶已經存在,那麼口碑營銷是很容易實現的,通過原有用戶的話題,吸引潛在用戶,帶來更多的商業利益;通過對用戶習慣(例如:愛湊熱鬧)和人性弱點(例如:地位越高,越好面子)的把控,製造一場營銷,此類營銷效果顯著,最重要的是不要錢!

很簡單的一次用戶行為,很常見的用戶行為數據,換個角度分析,或許就是一場商業營銷!

5. 通過數據看用戶與產品關系

很多人對固定的數據很看重,arpu等核心數據形成了一套標榜,無數人逐條核對,衡量自己的產品好壞,無數運營以此核對,衡量運營的成功與否,如果你僅僅是為了KPI,那你是成功的,如果你還想做的更高,那這是遠遠不夠的。

用戶與產品關系,多數同學還定義在用戶定位、產品定位上;再深入進去,就是一套的核心數據考核,運營流程….

筆者認為,數據、用戶、產品;三者形成一種三角關系,可以探索的方面太多太多,例如:一個用戶在線5分鍾,一個用戶在線10分鍾,他們有什麼不同?如果將10分鍾定義為活躍用戶,5分鍾用戶和10分鍾用戶的在線目標在哪?什麼等級段的用戶在什麼時間段留存多少時間?這些很雜,也很容易被忽略。

再舉個例子,同一時間內,若某用戶一次性購買兩個寶石,他是算一次性購買?還是重復購買?不要小看此類數據,用戶單次購買和分次購買直接決定用戶的需求量,同樣的數量面前,區間價值很大!

最後換個行業思考,編劇行業對劇本有一個定義,劇本只有5分鍾!這個5分鍾說的不是電影周期,而是你只有5分鍾去打動你的用戶,若五分鍾不行,用戶便會失去耐性;游戲也是一樣,回到開頭所說,一個用戶在線5分鍾,一個用戶在線10分鍾,他們的區別不僅僅在於時間的差別,更在於產品的時間粘性,以此為例,若開場動畫很精美,進入游戲畫面也很贊,用戶用10分鍾去沉迷於此,是很容易的情況,若開場的新手引導繁瑣拖拉,則引導5分鍾也無法支持。

終上所述,通過數據看用戶與產品關系,通過數據發現問題,通過用戶整理問題,通過產品解決問題,這不僅僅涉及到運營,更涉及到策劃,美術等各個部門,畢竟產品不是上線就交給運營了,一個團隊,團結合作才是重點!

數據很多,也很雜,他們彼此形成一張關系網,觸一發而動全身;至於具體如何理解,不同的人有不同的領悟,只能說一句:「數據很重要!重要的不是他的演算法多麼准確,而是接地氣!他告訴我們,接下來,該怎麼做!」

以上是小編為大家分享的關於如何用商業思維分析用戶行為數據的相關內容,更多信息可以關注環球青藤分享更多干貨

④ 大數據營銷會給企業和用戶帶來什麼價值

隨著大數據應用的普及,企業越來越重視從大數據中挖掘潛在的商業價值,大數據在企業管理中的應用主要在於提高企業整體分析研究能力、市場快速反應能力,建立以知識管理為核心的「競爭情報數據倉庫」,提高核心競爭力 。

在大數據時代,企業將是完全以數據分析驅動的企業,利用大數據分析,能夠轉化成洞察的能力,充分釋放企業潛能,實現轉型與進化,本文重在分析大數據在企業當中所起到的作用。

瑤貝網路是基於移動互聯門戶基於用戶細分的大數據整合服務平台,用數據說話,我們更在行。公司面向社會化用戶開展精細化服務,打造線上精品商城,給老百姓提供更多便利、產生更大價值。

閱讀全文

與如何看待產品合作中用戶數據的價值相關的資料

熱點內容
要在電腦上寫文件路徑 瀏覽:689
dotaimba那個版本好玩 瀏覽:339
機房怎麼不用u盤傳文件 瀏覽:858
編程的美表現在哪些方面 瀏覽:240
win10如何顯示工具欄 瀏覽:914
星瑞如何手機app遠程關閉車輛 瀏覽:802
農金app怎麼改信息 瀏覽:154
聯通有哪些軟體不用網路的 瀏覽:261
編程資料庫英文叫什麼 瀏覽:587
2016蘋果游戲app排行榜 瀏覽:866
原子隨身聽支持哪些app 瀏覽:660
微信賣的沃顏面膜好嗎 瀏覽:845
linuxnslookup反向解析 瀏覽:725
lumia1320能升級win10 瀏覽:482
php數據類型哪個不是標量類型 瀏覽:66
u盤啟動盤文件bootini 瀏覽:552
ai繪制膠卷的圖文教程 瀏覽:806
qq群文件夾刪除 瀏覽:69
同花順app怎麼恢復默認設置 瀏覽:895
wpslinux命令 瀏覽:231

友情鏈接