導航:首頁 > 數據分析 > 數據評價的方法有哪些

數據評價的方法有哪些

發布時間:2024-04-30 00:48:10

『壹』 統計數據分析的基本方法有哪些

1、對比分析法


就是將某一指標與選定的比較標准進行比較,比如:與歷史同期比較、與上期比較、與其他競爭對手比較、與預算比較。一般用柱狀圖進行呈現。


2、結構分析法


就是對某一項目的子項目佔比進行統計和分析,一般用餅圖進行呈現。比如:A公司本年度營業額為1000萬,其中飲料營業額佔33.6%、啤酒佔55%,其他產品的營業額佔11.4%。


3、趨勢分析法


就是對某一指標進行連續多個周期的數據進行統計和分析,一般用折線圖進行呈現。比如:A公司前年度營業額為880萬,去年900萬,本年度1000萬,預計明年為1080萬。


4、比率分析法


就是用相對數來表示不同項目的數據比率,比如:在財務分析中有“盈利能力比率、營運能力比率、償債能力比率、增長能力比率”。


5、因素分析法


就是對某一指標的相關影響因素進行統計與分析。比如,房價與物價、土地價格、地段、裝修等因素有關


6、綜合分析法


就是運用多種分析方法進行數據的統計與分析,比如:5W2H分析法、SWOT分析法、PEST分析法、漏斗分析法等。

『貳』 鏁版嵁鍒嗘瀽鐨勫父鐢ㄦ柟娉曟暟鎹鍒嗘瀽鐨勫父鐢ㄦ柟娉曟湁鍝浜

1銆佸規瘮鍒嗘瀽娉曪細甯哥敤浜庡圭旱鍚戠殑銆佹í鍚戠殑銆佹渶涓虹獊鍑虹殑銆佽″垝涓庡疄闄呯殑絳夊悇縐嶇浉鍏蟲暟鎹鐨勩備緥濡傦細浠婂勾涓庡幓騫村悓鏈熷伐璧勬敹鍏ョ殑澧為暱鎯呭喌銆3鏈圕PI鐜姣斿為暱鎯呭喌絳夈
2銆佽秼鍔垮垎鏋愭硶錛氬父鐢ㄤ簬鍦ㄤ竴孌墊椂闂村懆鏈熷唴錛岄氳繃鍒嗘瀽鏁版嵁榪愯岀殑鍙樺寲瓚嬪娍(涓婂崌鎴栦笅闄)錛屼負鏈鏉ョ殑鍙戝睍鏂瑰悜鎻愪緵甯鍔┿備緥濡傦細鐢ㄧ數閲忕殑瀛h妭鎬ф嘗鍔ㄣ佽偂甯傜殑娑ㄨ穼瓚嬪娍絳夈
3銆佺浉鍏沖垎鏋愭硶錛氬父鐢ㄤ簬鍒嗘瀽涓や釜鎴栧氫釜鍙橀噺涔嬮棿鐨勬ц川浠ュ強鐩稿叧紼嬪害銆備緥濡傦細姘旀俯涓庣敤鐢甸噺鐨勭浉鍏蟲с佽繍鍔ㄩ噺澶у皬涓庝綋閲嶇殑鐩稿叧鎬х瓑銆
4銆佸洖褰掑垎鏋愭硶錛氬父鐢ㄤ簬鍒嗘瀽涓涓鎴栧氫釜鑷鍙橀噺鐨勫彉鍖栧逛竴涓鐗瑰畾鍥犲彉閲忕殑褰卞搷紼嬪害錛屼粠鑰岀『瀹氬叾鍏崇郴銆備緥濡傦細姘旀俯銆佺敤鐢佃懼囥佺敤鐢墊椂闀跨瓑鍥犵礌瀵圭敤鐢甸噺鏁板煎ぇ灝忕殑褰卞搷紼嬪害銆佸伐璧勬敹鍏ョ殑楂樹綆瀵圭敓媧繪秷璐規敮鍑哄ぇ灝忕殑褰卞搷紼嬪害絳夈
5銆佹弿榪版у垎鏋愭硶錛氬父鐢ㄤ簬瀵逛竴緇勬暟鎹鏍鋒湰鐨勫悇縐嶇壒寰佽繘琛屽垎鏋愶紝浠ヤ究浜庢弿榪版牱鏈鐨勫悇縐嶅強鍏舵墍浠h〃鐨勬諱綋鐨勭壒寰併備緥濡傦細鏈鏈堟棩騫沖潎鐢ㄧ數閲忋佷笂嫻峰競宸ヨ祫鏀跺叆涓浣嶆暟絳夈
6銆佺粨鏋勫垎鏋愭硶錛氬父鐢ㄤ簬鍒嗘瀽鏁版嵁鎬諱綋鐨勫唴閮ㄧ壒寰併佹ц川鍜屽彉鍖栬勫緥絳夈備緥濡傦細鍚勯儴鍒嗙敤鐢甸噺鍗犳葷敤鐢電殑姣旈噸銆佺敓媧繪秷璐規敮鍑烘瀯鎴愭儏鍐電瓑銆

『叄』 數據分析常用的分析方法有哪些

1. 描述型分析


這是最常見的分析方法。在業務中,這種方法向數據分析師提供了重要指標和業務的衡量方法。


例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是“描述型分析”方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。


2. 診斷型分析


描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。


良好設計的BI dashboard能夠整合:按照時間序列進行數據讀入、特徵過濾和鑽取數據等功能,以便更好的分析數據。


3. 預測型分析


預測型分析主要用於進行預測。事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。


預測模型通常會使用各種可變數據來實現預測。數據成員的多樣化與預測結果密切相關。在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。


4. 指令型分析


數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對“發生了什麼”、“為什麼會發生”和“可能發生什麼”的分析,來幫助用戶決定應該採取什麼措施。通常情況下,指令型分析不是單獨使用的方法,而是前面的所有方法都完成之後,最後需要完成的分析方法。

『肆』 數據分析常用的方法有哪些

1、簡單趨勢


通過實時訪問趨勢了解供應商及時交貨情況。如產品類型,供應商區域(交通因子),采購額,采購額對供應商佔比。


2、多維分解


根據分析需要,從多維度對指標進行分解。例如產品采購金額、供應商規模(需量化)、產品復雜程度等等維度。


3、轉化漏斗


按照已知的轉化路徑,藉助漏斗模型分析總體和每一步的轉化情況。常見的轉化情境有不同供應商及時交貨率趨勢等。


4、用戶分群


在精細化分析中,常常需要對有某個特定行為的供應商群組進行分析和比對;數據分析需要將多維度和多指標作為分群條件,有針對性地優化供應鏈,提升供應鏈穩定性。


5、細查路徑


數據分析可以觀察供應商的行為軌跡,探索供應商與本公司的交互過程;進而從中發現問題、激發靈感亦或驗證假設。


6、留存分析


留存分析是探索用戶行為與回訪之間的關聯。一般我們講的留存率,是指“新新供應商”在一段時間內“重復行為”的比例。通過分析不同供應商群組的留存差異、使用過不同功能供應商的留存差異來找到供應鏈的優化點。


7、A/B 測試


A/B測試就是同時進行多個方案並行測試,但是每個方案僅有一個變數不同;然後以某種規則優勝略汰選擇最優的方案。數據分析需要在這個過程中選擇合理的分組樣本、監測數據指標、事後分析和不同方案評估。

『伍』 常用的數據分析方法有哪些

①對比分析法

通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。利用對比分析法可以對數據規模大小、水平高低、速度快慢等做出有效的判斷和評價。常見的對比有橫向對比和縱向對比。


②分組分析法


分組分析法是指根據數據的性質、特徵,按照一定的指標,將數據總體劃分為不同的部分,分析其內部結構和相互關系,從而了解事物的發展規律。根據指標的性質,分組分析法分為屬性指標分組和數量指標分組。所謂屬性指標代表的是事物的性質、特徵等,如姓名、性別、文化程度等,這些指標無法進行運算;而數據指標代表的數據能夠進行運算,如人的年齡、工資收入等。分組分析法一般都和對比分析法結合使用。


③預測分析法


預測分析法主要基於當前的數據,對未來的數據變化趨勢進行判斷和預測。預測分析一般分為兩種:一種是基於時間序列的預測,例如,依據以往的銷售業績,預測未來3個月的銷售額;另一種是回歸類預測,即根據指標之間相互影響的因果關系進行預測,例如,根據用戶網頁瀏覽行為,預測用戶可能購買的商品。


④漏斗分析法


漏斗分析法也叫流程分析法,它的主要目的是專注於某個事件在重要環節上的轉化率,在互聯網行業的應用較普遍。比如,對於信用卡申請的流程,用戶從瀏覽卡片信息,到填寫信用卡資料、提交申請、銀行審核與批卡,最後用戶激活並使用信用卡,中間有很多重要的環節,每個環節的用戶量都是越來越少的,從而形成一個漏斗。使用漏斗分析法,能使業務方關注各個環節的轉化率,並加以監控和管理,當某個環節的轉換率發生異常時,可以有針對性地優化流程,採取適當的措施來提升業務指標。


⑤AB測試分析法


AB 測試分析法其實是一種對比分析法,但它側重於對比A、B兩組結構相似的樣本,並基於樣本指標值來分析各自的差異。例如,對於某個App的同一功能,設計了不同的樣式風格和頁面布局,將兩種風格的頁面隨機分配給使用者,最後根據用戶在該頁面的瀏覽轉化率來評估不同樣式的優劣,了解用戶的喜好,從而進一步優化產品。

閱讀全文

與數據評價的方法有哪些相關的資料

熱點內容
js中修改class屬性的值 瀏覽:678
蘋果設備鎖怎麼解除 瀏覽:253
linux添加文件夾許可權 瀏覽:329
怎麼快速打開文件路徑 瀏覽:74
u盤文件夾為空win10 瀏覽:980
jsp網上購物系統源碼 瀏覽:135
微信色子表情啥意思 瀏覽:414
課件視頻聲音常用的文件格式 瀏覽:974
如何儲存圖片到文件 瀏覽:616
凌源做購物網站需要多少錢 瀏覽:350
沒有mods文件夾 瀏覽:799
deb文件如何安裝到免越獄手機 瀏覽:331
會聲會影x8文件損壞 瀏覽:167
要在電腦上寫文件路徑 瀏覽:689
dotaimba那個版本好玩 瀏覽:339
機房怎麼不用u盤傳文件 瀏覽:858
編程的美表現在哪些方面 瀏覽:240
win10如何顯示工具欄 瀏覽:914
星瑞如何手機app遠程關閉車輛 瀏覽:802
農金app怎麼改信息 瀏覽:154

友情鏈接