『壹』 數據缺失想要補齊有什麼方法,用spss的替換缺失值和缺失值分析完全不會用
1、均值插補。數據的屬性分為定距型和非定距型。如果缺失值是定距型的,就以該屬性存在值的平均值來插補缺失的值;如果缺失值是非定距型的,就根據統計學中的眾數原理,用該屬性的眾數(即出現頻率最高的值)來補齊缺失的值。
2、利用同類均值插補。同均值插補的方法都屬於單值插補,不同的是,它用層次聚類模型預測缺失變數的類型,再以該類型的均值插補。假設X=(X1,X2...Xp)為信息完全的變數,Y為存在缺失值的變數。
那麼首先對X或其子集行聚類,然後按缺失個案所屬類來插補不同類的均值。如果在以後統計分析中還需以引入的解釋變數和Y做分析,那麼這種插補方法將在模型中引入自相關,給分析造成障礙。
3、極大似然估計(Max Likelihood ,ML)。在缺失類型為隨機缺失的條件下,假設模型對於完整的樣本是正確的,那麼通過觀測數據的邊際分布可以對未知參數進行極大似然估計(Little and Rubin)。
這種方法也被稱為忽略缺失值的極大似然估計,對於極大似然的參數估計實際中常採用的計算方法是期望值最大化(Expectation Maximization,EM)。
4、多重插補(Multiple Imputation,MI)。多值插補的思想來源於貝葉斯估計,認為待插補的值是隨機的,它的值來自於已觀測到的值。具體實踐上通常是估計出待插補的值,然後再加上不同的雜訊,形成多組可選插補值。根據某種選擇依據,選取最合適的插補值。
(1)數據插補處理是什麼擴展閱讀
缺失值產生的原因很多,裝備故障、無法獲取信息、與其他欄位不一致、歷史原因等都可能產生缺失值。一種典型的處理方法是插值,插值之後的數據可看作服從特定概率分布。另外,也可以刪除所有含缺失值的記錄,但這個操作也從側面變動了原始數據的分布特徵。
對於缺失值的處理,從總體上來說分為刪除存在缺失值的個案和缺失值插補。對於主觀數據,人將影響數據的真實性,存在缺失值的樣本的其他屬性的真實值不能保證,那麼依賴於這些屬性值的插補也是不可靠的,所以對於主觀數據一般不推薦插補的方法。插補主要是針對客觀數據,它的可靠性有保證。
『貳』 在數控機床的編程中,什麼叫插補
所謂插補就是根據給定進給速度和給定輪廓的要求,在輪廓的已知點之間,確定中間點的方法,比如說要加工一條直線,首先必須知道起點和終點,但這是不夠的,還要確定若干個中間點才能保證加工軌跡的准確性,加工出合格的產品。插補的任務就是根據進給速度的要求,在輪廓起點和重點之間計算出若干個中間點的坐標值,每個中間點計算所需要的時間直接影響系統的控制速度,而插補中間點坐標值的計算精度又影響到數控系統的控制精度,插補演算法是整個數控系統控制的核心。
『叄』 幾種常見的缺失數據插補方法
(一)個案剔除法(Listwise Deletion)
最常見、最簡單的處理缺失數據的方法是用個案剔除法(listwise
deletion),也是很多統計軟體(如SPSS和SAS)默認的缺失值處理方法。在這種方法中如果任何一個變數含有缺失數據的話,就把相對應的個案從分析中剔除。如果缺失值所佔比例比較小的話,這一方法十分有效。至於具體多大的缺失比例算是「小」比例,專家們意見也存在較大的差距。有學者認為應在5%以下,也有學者認為20%以下即可。然而,這種方法卻有很大的局限性。它是以減少樣本量來換取信息的完備,會造成資源的大量浪費,丟棄了大量隱藏在這些對象中的信息。在樣本量較小的情況下,刪除少量對象就足以嚴重影響到數據的客觀性和結果的正確性。因此,當缺失數據所佔比例較大,特別是當缺數據非隨機分布時,這種方法可能導致數據發生偏離,從而得出錯誤的結論。
(二)均值替換法(Mean Imputation)
在變數十分重要而所缺失的數據量又較為龐大的時候,個案剔除法就遇到了困難,因為許多有用的數據也同時被剔除。圍繞著這一問題,研究者嘗試了各種各樣的辦法。其中的一個方法是均值替換法(mean
imputation)。我們將變數的屬性分為數值型和非數值型來分別進行處理。如果缺失值是數值型的,就根據該變數在其他所有對象的取值的平均值來填充該缺失的變數值;如果缺失值是非數值型的,就根據統計學中的眾數原理,用該變數在其他所有對象的取值次數最多的值來補齊該缺失的變數值。但這種方法會產生有偏估計,所以並不被推崇。均值替換法也是一種簡便、快速的缺失數據處理方法。使用均值替換法插補缺失數據,對該變數的均值估計不會產生影響。但這種方法是建立在完全隨機缺失(MCAR)的假設之上的,而且會造成變數的方差和標准差變小。
(三)熱卡填充法(Hotdecking)
對於一個包含缺失值的變數,熱卡填充法在資料庫中找到一個與它最相似的對象,然後用這個相似對象的值來進行填充。不同的問題可能會選用不同的標准來對相似進行判定。最常見的是使用相關系數矩陣來確定哪個變數(如變數Y)與缺失值所在變數(如變數X)最相關。然後把所有個案按Y的取值大小進行排序。那麼變數X的缺失值就可以用排在缺失值前的那個個案的數據來代替了。與均值替換法相比,利用熱卡填充法插補數據後,其變數的標准差與插補前比較接近。但在回歸方程中,使用熱卡填充法容易使得回歸方程的誤差增大,參數估計變得不穩定,而且這種方法使用不便,比較耗時。
(四)回歸替換法(Regression Imputation)
回歸替換法首先需要選擇若干個預測缺失值的自變數,然後建立回歸方程估計缺失值,即用缺失數據的條件期望值對缺失值進行替換。與前述幾種插補方法比較,該方法利用了資料庫中盡量多的信息,而且一些統計軟體(如Stata)也已經能夠直接執行該功能。但該方法也有諸多弊端,第一,這雖然是一個無偏估計,但是卻容易忽視隨機誤差,低估標准差和其他未知性質的測量值,而且這一問題會隨著缺失信息的增多而變得更加嚴重。第二,研究者必須假設存在缺失值所在的變數與其他變數存在線性關系,很多時候這種關系是不存在的。
(五)多重替代法(Multiple Imputation)
多重估算是由Rubin等人於1987年建立起來的一種數據擴充和統計分析方法,作為簡單估算的改進產物。首先,多重估算技術用一系列可能的值來替換每一個缺失值,以反映被替換的缺失數據的不確定性。然後,用標準的統計分析過程對多次替換後產生的若干個數據集進行分析。最後,把來自於各個數據集的統計結果進行綜合,得到總體參數的估計值。由於多重估算技術並不是用單一的值來替換缺失值,而是試圖產生缺失值的一個隨機樣本,這種方法反映出了由於數據缺失而導致的不確定性,能夠產生更加有效的統計推斷。結合這種方法,研究者可以比較容易地,在不舍棄任何數據的情況下對缺失數據的未知性質進行推斷。NORM統計軟體可以較為簡便地操作該方法